

BFF3302 SENSOR AND INSTRUMENTATION SYSTEM

Transducer Elements

Ву

Ahmad Shahrizan Abdul Ghani (shahrizan@ump.edu.my)
Nafrizuan Bin Mat Yahya (nafrizuanmy@ump.edu.my)

Faculty of Manufacturing Engineering (FKP)

Chapter Description

Aims

Obtain basic knowledge about transducer.

Expected Outcomes

- Determine general treatment of instrument elements and their characteristic
- Analyse transducer elements, intermediate elements, and data acquisition system (DAQ)
- Determine principles of the work and derive mathematical model of sensors for measuring motion and vibration, dimensional metrology, force, torque and power, pressure, temperature, flow and acoustics

References

- B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.
- Introduction to signal processing, instrumentation, and control: an integrative approach / Joseph Bentsman Hackensack, NJ: World Scientific Pub., 2016
- Transducers for instrumentation / M. G. Joshi, New Delhi, India: Infinity, 2017
- Instrumentation and measurement in electrical engineering / editor : Harinirina Randrianarisoa, New York : Arcler Press, 2017

What is a Sensor?

- A sensor is a device that receives a signal and responds with an electrical signal.
- It detects the parameter
- * Eg. Thermocouple to sense/detect the changing of temperature.

What is Transducer?

- A transducer is a converter of one type of energy to another.
- OR
- A device that converts non electrical parameters into electrical signals (voltages or currents) or vice versa that are proportional to the value of the physical parameter being measured.

Introduction

Transducer

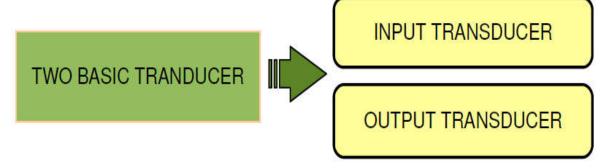
Analog

Digital

variation of input and produce a continuous variation of output

variation of input and produce a digital or discrete output.

Electromechanical types, potentiometric resistance type, inductance, capacitive, piezoelectric, resistance strain gauge, ionisation and mechano-electronic types.


transducers,
comprising
photo-emissive,
photoconductive and
photo-voltaic

Digital encoder types

Frequency generating types

- INPUT TRANSDUCER
- * Also called sensors
- * Convert physical quantity → proportional electrical signal.

OUTPUT TRANSDUCER

 Convert an electrical signal → physical quantity that can detect or use externally.

Introduction

Example of transducer in everyday life:

Thermostat in lecture room	Input tranduser that sense room temperature and is used to control air conditioning
Streetlight	Equipped with photo sensor that are used to turn the lights on when sun goes down
Speaker	Output transducer that converts electrical signal into sound energy

* Extra notes can be read at:

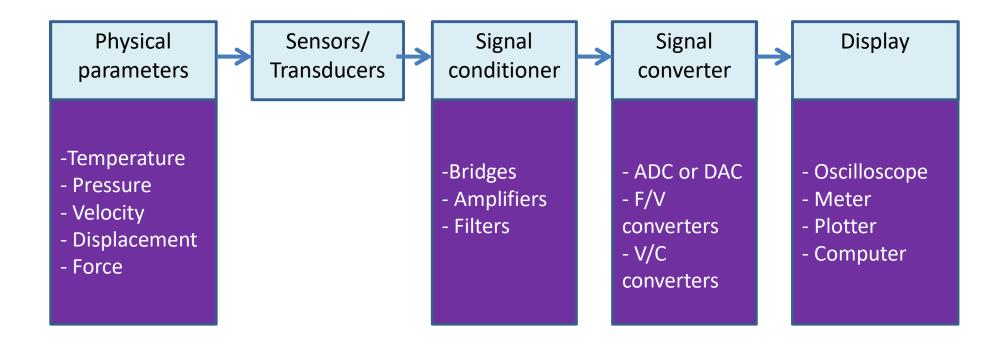
http://en.wikipedia.org/wiki/Transducer

http://www.kpsec.freeuk.com/transduc.htm

Introduction

A transducer's output can be voltage, current or resistance.

Output	Example of transducer	
Voltage	Thermocouple	
Current	IC temperature transducer	
Resistance	Resistance Temperature Detector (RTD) Thermistor Strain gauge	



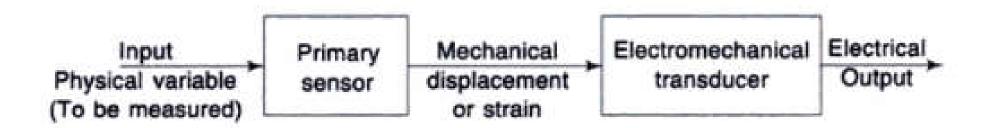
Electrical transducer

- > sensing device that transform physical, mechanical or optional quantity into an (e.g.) electrical voltage/current proportional to the input measurement.
- Electrical transducer should have following parameter:
 - Linearity input changes directly proportional to output
 - Sensitivity small changes results in changes of output voltage (e.g.)
 - Dynamic range small scale to bigger scale
 - Repeatability produce similar output for same input value
 - Physical size compact, easy to carry/used

Instrumentation systems

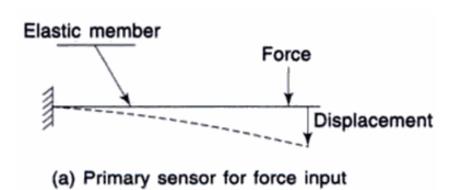
• In a nutshell, an instrumentation system should have sensors, signal conditioners, signal converters and a display.

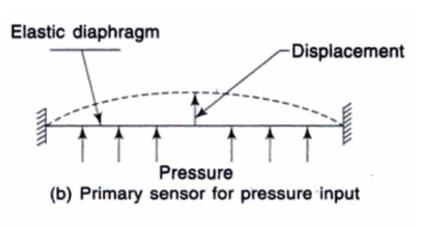
Electromechanical types


 An electrical output is produced due to an input of mechanical displacement or strain.

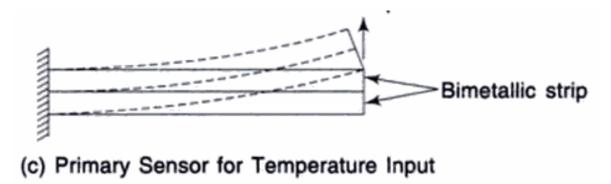
 The mechanical displacement or strain input in turn may be produced by a primary sensor due to the input physical variable which may be pressure, flow, etc.

Electromechanical types

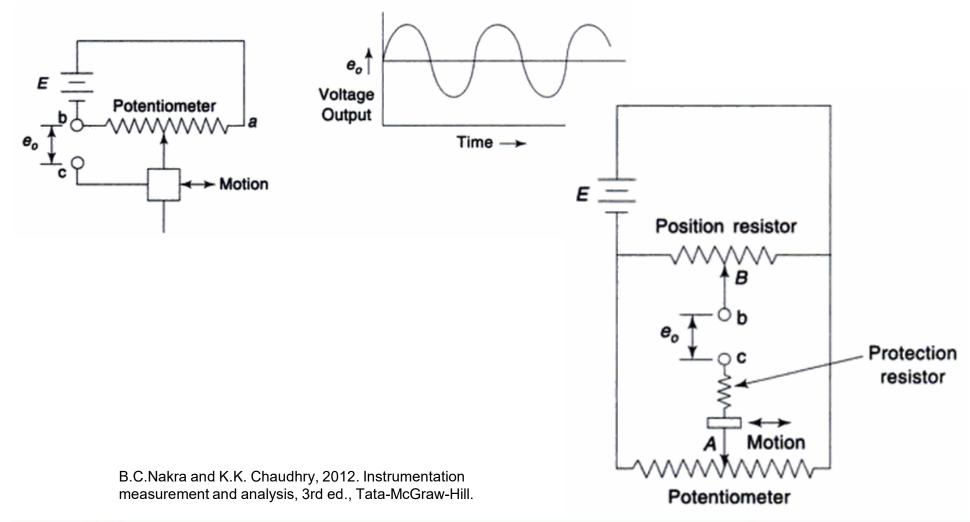

Scheme for measurement using electromechanical transducer:



B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

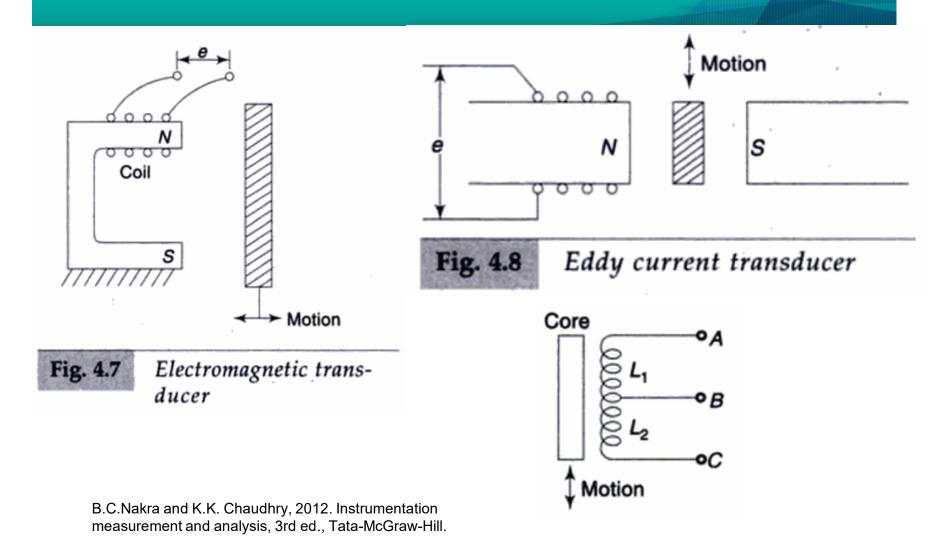


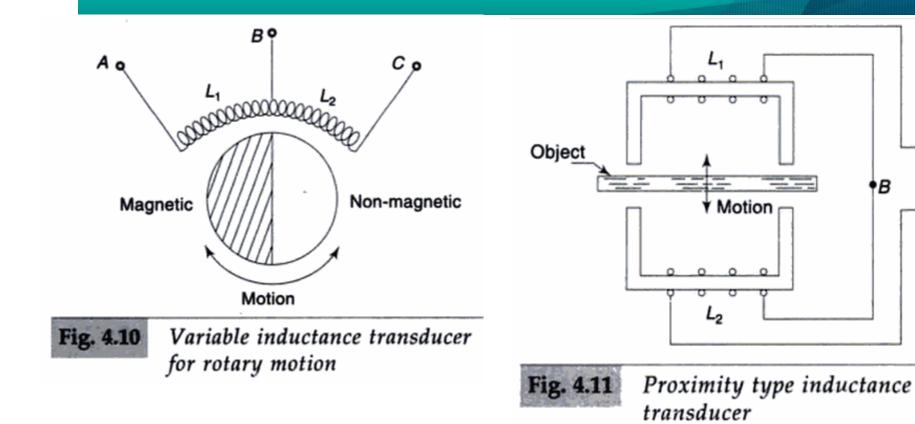
Electromechanical types


Displacement Due to temperature

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Potentiometric resistance-type transducer





B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

∳Β

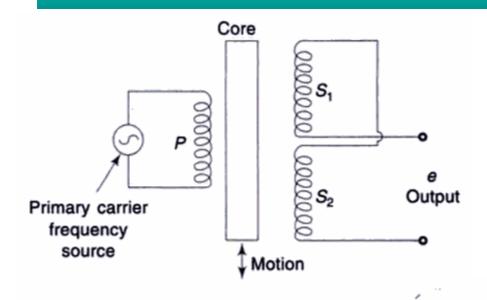


Fig. 4.12 LVDT (Linear motion type)

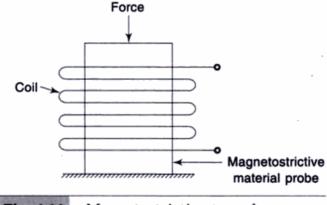
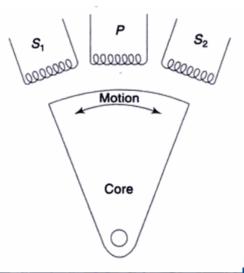



Fig. 4.14 Magnetostrictive transducer

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Capacitive type transducer

The capacitance C between two plates is given by

$$C = \frac{1}{3.6\pi} \varepsilon \frac{A}{d} \tag{4.1}$$

where

C is capacitance, μ F

A is area of plates, cm²

d is distance between plates, cm

 ε is dielectric constant of the medium between the plates (= 1 for air).

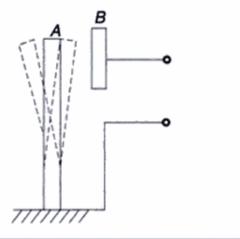


Fig. 4.15 Gap-change type capacitive transducer

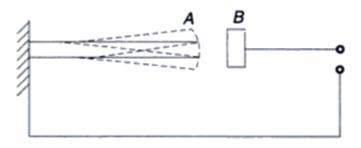
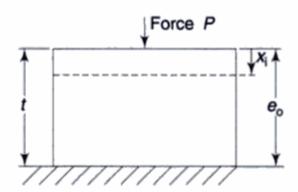


Fig. 4.16 Area-change type capacitive transducer

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Piezo-electric transducer


C being the capacitance of the crystal (μF) , ε the dielectric constant of the crystal material, A its area (cm^2) and t its thickness (cm). If A is in square metre (m^2) , t in metre (m) and C in farads (F), Eq. (4.8) becomes:

$$C = \frac{\mathcal{E}A}{1.31 \times 10^{11} t} \tag{4.9}$$

Relation between force P and deformation x_i is:

$$P = EA \frac{x_i}{t} \tag{4.10}$$

E being the Young's modulus of the crystal material.

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill. Fig. 4.21 Piezo-electric crystal subjected to force P

Piezo-electric transducer

Table 4.2 Properties of some Piezo-electric Materials

S.No.	Material	Charge sensitivity pC/N	Dieelectric constant ε	Young's modulus N/m ²
1.	Quartz	2.0	4.5	9 × 10 ¹⁰
2.	Tourmaline	1.9	6.6	16×10^{10}
3.	Barium titanate	150	1380	12×10^{10}
4.	Lead zirconate titanate	265	1500	7.9×10^{10}

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

Resistance strain gauges

Strain gauge transducers are of two types:

- 1. Unbonded strain gauge
- 2. Bonded strain gauge

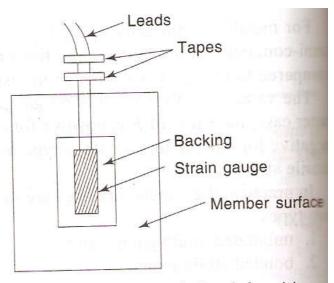


Fig. 4.30 Strain gauge in bonded position

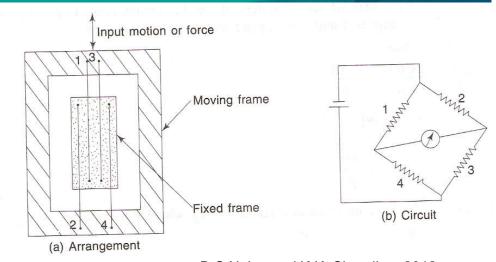


Fig. 4.28 Unbonded strain gauge

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill.

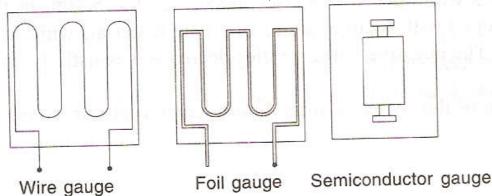
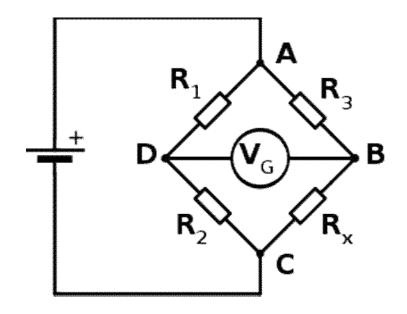
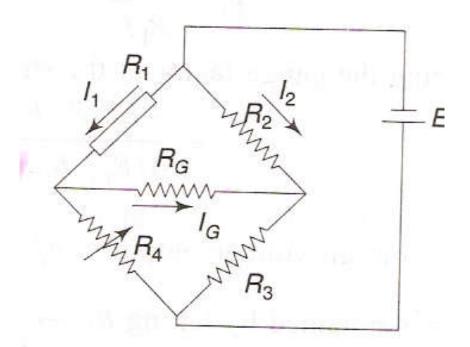




Fig. 4.29 Types of resistance strain gauges

Wheatstone Bridge

B.C.Nakra and K.K. Chaudhry, 2012. Instrumentation measurement and analysis, 3rd ed., Tata-McGraw-Hill. Fig. 4.31 Balanced strain gauge

Analysis of Bridge Circuits

• When the bridge is balanced, $V_o = 0$

$$\begin{split} V_o &= V_c \big[\frac{R_2}{R_1 + R_2} \big] - V_c \big[\frac{R_x}{R_3 + R_x} \big] = 0 \\ V_c \big[\frac{R_2}{R_1 + R_2} \big] - V_c \big[\frac{R_x}{R_3 + R_x} \big] = 0 \\ & [\frac{R_2}{R_1 + R_2} \big] - \big[\frac{R_x}{R_3 + R_x} \big] = 0 \\ & [\frac{R_2}{R_1 + R_2} \big] = \big[\frac{R_x}{R_3 + R_x} \big] = 0 \\ & [\frac{R_2}{R_1 + R_2} \big] = \big[\frac{R_x}{R_3 + R_x} \big] \\ & [\frac{R_2}{R_1 + R_2} \big] = \big[\frac{R_x}{R_3 + R_x} \big] \end{split}$$

$$R_{2}R_{3} + R_{2}R_{x} = R_{x}R_{1} + R_{x}R_{2}$$

$$R_{2}R_{3} = R_{x}R_{1}$$

$$R_{x} = \frac{R_{2}R_{3}}{R_{1}}$$