
plc4me.com

https://instrumentationforum.com/c/plc/18

m

Programmable
Logic Controllers

pet73842_fm_i-xviii.indd 1 05/11/15 4:14 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

This page intentionally left blank

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Programmable
Logic Controllers

Frank D. Petruzella

Fifth Edition

pet73842_fm_i-xviii.indd 3 05/11/15 4:14 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

PROGRAMMABLE LOGIC CONTROLLERS, FIFTH EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2017 by McGraw-Hill
Education. All rights reserved. Printed in the United States of America. Previous editions © 2011, 2005,
1998. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not
limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 RMN/RMN 1 0 9 8 7 6

ISBN 978-0-07-337384-3
MHID 0-07-337384-2

Senior Vice President, Products & Markets: Kurt L. Strand
Vice President, General Manager, Products & Markets: Marty Lange
Vice President, Content Design & Delivery: Kimberly Meriwether David
Managing Director: Thomas Timp
Global Brand Manager: Raghu Srinivasan
Director, Product Development: Rose Koos
Product Developer: Vincent Bradshaw
Marketing Manager: Nick McFadden
Digital Product Developer: Amy Bumbaco, Ph.D.
Director, Content Design & Delivery: Linda Avenarius
Executive Program Manager: Faye M. Herrig
Content Project Managers: Jessica Portz, Tammy Juran, Sandra Schnee
Buyer: Laura M. Fuller
Content Licensing Specialist: Lorraine Buczek
Compositor: MPS Limited
Printer: R. R. Donnelley

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Petruzella, Frank D., author.
Programmable logic controllers / Frank D. Petruzella.—Fifth edition.

 pages cm
Includes index.
ISBN 978-0-07-337384-3 (alk. paper)—ISBN 0-07-337384-2 (alk. paper) 1. Programmable

controllers. I. Title.
TJ223.P76P48 2017
629.8’95—dc23

 2015035302

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website
does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does
not guarantee the accuracy of the information presented at these sites.

mheducation.com/highered

pet73842_fm_i-xviii.indd 4 05/11/15 4:14 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Contents

3.8 ASCII Code. 54
3.9 Parity Bit . 54
3.10 Binary Arithmetic . 55
3.11 Floating Point Arithmetic 57
Review Questions. 59
Problems . 60

Chapter 4 Fundamentals of Logic 61

4.1 The Binary Concept . 62
4.2 AND, OR, and NOT Functions. 62

The AND Function . 62
The OR Function. 63
The NOT Function . 64
The Exclusive-OR (XOR) Function. 65

4.3 Boolean Algebra . 65
4.4 Developing Logic Gate Circuits from Boolean

Expressions . 66
4.5 Producing the Boolean Equation for a Given

Logic Gate Circuit . 66
4.6 Hardwired Logic versus Programmed Logic . 67
4.7 Programming Word Level Logic Instructions. 70
Review Questions. 72
Problems . 72

Chapter 5 Basics of PLC Programming 74

5.1 Processor Memory Organization 75
Program Files . 75
Data Files . 75

5.2 Program Scan . 78
5.3 PLC Programming Languages 81
5.4 Bit-Level Logic Instructions 83
5.5 Instruction Addressing 86
5.6 Branch Instructions . 87
5.7 Internal Relay Instructions 89
5.8 Programming Examine If Closed and Examine

If Open Instructions . 90
5.9 Entering the Ladder Diagram 91
5.10 Modes of Operation . 93
5.11 Connecting with Analog Devices 93
Review Questions. 95
Problems . 96

Preface .viii
Acknowledgments . xi
About the Author . xii

Chapter 1 Programmable Logic Controllers
(PLCs): An Overview 1

1.1 Programmable Logic Controllers 2
1.2 Parts of a PLC . 4
1.3 Principles of Operation 8
1.4 Modifying the Operation 11
1.5 PLCs versus Computers 11
1.6 PLC Size and Application. 12
Review Questions. 15
Problems . 16

Chapter 2 PLC Hardware Components 17

2.1 The I/O Section. 18
2.2 Discrete I/O Modules 22
2.3 Analog I/O Modules . 27
2.4 Special I/O Modules . 31
2.5 I/O Specifications . 33

Typical Discrete I/O Module Specifications . . 33
Typical Analog I/O Module Specifications . . . 34

2.6 The Central Processing
Unit (CPU) . 35

2.7 Memory Design . 36
2.8 Memory Types . 37
2.9 Programming Terminal Devices 39
2.10 Recording and Retrieving Data. 39
2.11 Human Machine Interfaces (HMIs) 39
Review Questions. 43
Problems . 45

Chapter 3 Number Systems and Codes 46

3.1 Decimal System . 47
3.2 Binary System. 47
3.3 Negative Numbers. 49
3.4 Octal System. 49
3.5 Hexadecimal System. 50
3.6 Binary Coded Decimal (BCD) System. 51
3.7 Gray Code . 53

v

pet73842_fm_i-xviii.indd 5 05/11/15 4:14 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

vi Contents

Chapter 6 Developing Fundamental PLC
Wiring Diagrams and Ladder
Logic Programs 98

6.1 Electromagnetic Control Relays 99
6.2 Contactors . 100
6.3 Motor Starters . 101
6.4 Manually Operated Switches 102
6.5 Mechanically Operated Switches 103
6.6 Sensors . 104

Proximity Sensor . 104
Magnetic Reed Switch. 107
Light Sensors. 107
Ultrasonic Sensors . 109
Strain/Weight Sensors 110
Temperature Sensors 110
Flow Measurement . 111
Velocity and Position Sensors 111

6.7 Output Control Devices 112
6.8 Seal-In Circuits . 114
6.9 Electrical Interlocking Circuits. 115
6.10 Latching Relays . 116
6.11 Converting Relay Schematics into

PLC Ladder Programs 121
6.12 Writing a Ladder Logic Program Directly

from a Narrative Description 124
6.13 Instrumentation . 127
Review Questions. 128
Problems . 129

Chapter 7 Programming Timers 131

7.1 Mechanical Timing Relays 132
7.2 Timer Instructions. 134
7.3 On-Delay Timer Instruction 135
7.4 Off-Delay Timer Instruction 140
7.5 Retentive Timer. 144
7.6 Cascading Timers . 147
Review Questions. 151
Problems . 151

Chapter 8 Programming Counters 156

8.1 Counter Instructions 157
8.2 Up-Counter . 159

One-Shot Instruction. 162
8.3 Down-Counter. 166
8.4 Cascading Counters 170
8.5 Incremental Encoder-Counter Applications . 173
8.6 Combining Counter and Timer Functions . . 174
8.7 High-Speed Counters 177
Review Questions. 179
Problems . 179

Chapter 9 Program Control Instructions 184

9.1 Program Control . 185
9.2 Master Control Reset Instruction 185
9.3 Jump Instruction . 188
9.4 Subroutine Functions 190
9.5 Immediate Input and Immediate Output

Instructions . 193
9.6 Forcing External I/O Addresses 195
9.7 Safety Circuitry. 197
9.8 Selectable Timed Interrupt 200
9.9 Fault Routine. 201
9.10 Temporary End Instruction 201
9.11 Suspend Instruction. 202
Review Questions. 203
Problems . 203

Chapter 10 Data Manipulation Instructions 207

10.1 Data Manipulation . 208
10.2 Data Transfer Operations 208
10.3 Data Compare Instructions 216
10.4 Data Manipulation Programs 221
10.5 Numerical Data I/O Interfaces 224
10.6 Closed-Loop Control 226
Review Questions. 230
Problems . 231

Chapter 11 Math Instructions 234

11.1 Math Instructions . 235
11.2 Addition Instruction 236
11.3 Subtraction Instruction 238
11.4 Multiplication Instruction 239
11.5 Division Instruction 240
11.6 Other Word-Level Math Instructions 242
11.7 File Arithmetic Operations 245
Review Questions. 247
Problems . 248

Chapter 12 Sequencer and Shift Register
Instructions 252

12.1 Mechanical Sequencers. 253
12.2 Sequencer Instructions 255
12.3 Sequencer Programs 259
12.4 Bit Shift Registers . 264
12.5 Word Shift Operations 272
Review Questions. 277
Problems . 277

pet73842_fm_i-xviii.indd 6 05/11/15 4:14 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Chapter 13 PLC Installation Practices,
Editing, and Troubleshooting 281

13.1 PLC Enclosures. 282
13.2 Electrical Noise. 284
13.3 Leaky Inputs and Outputs 285
13.4 Grounding . 285
13.5 Voltage Variations and Surges. 287
13.6 Program Editing and Commissioning. 288
13.7 Programming and Monitoring 289
13.8 Preventive Maintenance 291
13.9 Troubleshooting . 292

Processor Module . 292
Input Malfunctions . 292
Output Malfunctions 294
Ladder Logic Program 294

13.10 PLC Programming Software. 299
Review Questions. 302
Problems . 302

Chapter 14 Process Control, Network
Systems, and SCADA 305

14.1 Types of Processes . 306
14.2 Structure of Control Systems 308
14.3 On/Off Control . 310
14.4 PID Control. 311
14.5 Motion Control . 315
14.6 Data Communications. 316

Data Highway . 322
Serial Communication 322
DeviceNet . 322
ControlNet. 325
EtherNet/IP . 325
Modbus . 326
Fieldbus. 326
PROFIBUS-DP . 326

14.7 Supervisory Control
and Data Acquisition (SCADA) 328

Review Questions. 331
Problems . 332

Chapter 15 ControlLogix Controllers 333

Part 1 Memory and Project Organization 334
Memory Layout . 334
Configuration . 334
Project . 335
Tasks . 336
Programs . 336

Routines . 337
Tags . 337
Structures . 340
Creating Tags . 341
Monitoring and Editing Tags 342
Array . 342
Review Questions . 344

Part 2 Bit-Level Programming 345
Program Scan . 345
Creating Ladder Logic 346
Tag-Based Addressing 347
Adding Ladder Logic to the Main Routine. . 348
Internal Relay Instructions 350
Latch and Unlatch Instructions 352
One-Shot Instruction. 353
Review Questions . 356
Problems . 356

Part 3 Programming Timers 358
Timer Predefined Structure 358
On-Delay Timer (TON) 359
Off-Delay Timer (TOF) 362
Retentive Timer On (RTO) 364
Cascading of Timers 365
Review Questions . 367
Problems . 367

Part 4 Programming Counters 368
Counters . 368
Count-Up (CTU) Counter. 369
Count-Down (CTD) Counter 371
Combining Counter and Timer Functions . . 372
Review Questions . 373
Problems . 373

Part 5 Math, Comparison,
and Move Instructions 374
Math Instructions . 374
Comparison Instructions 376
Move Instructions . 379
Combining Math, Comparison,
and Move Instructions. 380
Review Questions . 383
Problems . 383

Part 6 Function Block Programming 384
Function Block Diagram (FBD) 384
FBD Programming . 388
Review Questions . 394
Problems . 394

Glossary . 395
Index . 407

Contents vii

pet73842_fm_i-xviii.indd 7 05/11/15 4:14 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

viii

Preface

Programmable logic controllers (PLCs) continue to evolve
as new technologies are added to their capabilities. As
PLC technology has advanced, so have programming lan-
guages and communications capabilities. Today’s PLCs
offer faster scan times, space efficient high-density input/
output systems, and special interfaces to allow non-
traditional devices to be attached directly to the PLC.

Now in its Fifth Edition, changes made to the content
of the text have been made solely based on reviews from
current instructors and include:

• material that should be added or deleted from
chapters

• topics requiring more in-depth coverage
• increased integration of the ControlLogix platform

of controllers
• chapter modifications require to meet current cur-

riculum needs

The primary source of information for a particular PLC
is always the accompanying user manuals provided by
the manufacturer. This textbook is not intended to replace
the vendor’s reference material, but rather to comple-
ment, clarify, and expand on this information. The text
covers the basics of programmable logic controllers in a
manner that complements instruction with a SLC-500 or
ControlLogix platform. The underlying PLC principles
and concepts covered in the text are common to most
manufacturers. They serve to maximize the knowledge
gained through on-the-job training and programs offered
by different vendors.

The text is written in an easy-to-read style that is de-
signed for students with no prior PLC experience. For
example, when the operation of a program is called for,
a bulleted list is used to summarize its execution. The

bulled list replaces a lengthy paragraph and is especially
helpful when covering the different steps related to the
execution of a program.

Each chapter begins with a brief introduction outlin-
ing chapter coverage and learning objectives. When ap-
plicable, the relay equivalent of the virtual programmed
instruction is explained first, followed by the appropriate
PLC instruction. Chapters conclude with a set of review
questions and problems. The review questions are closely
related to the chapter objectives and require students to
recall and apply information covered in the chapter. The
problems range from easy to difficult, thus challenging
students at various levels of competence.

Features new to the Fifth Edition include:

• Key concepts and terms are highlighted in bold the
first time they appear.

• New/updated photos and line art for every
chapter.

• New topics for every chapter as requested by
reviewers.

• Addition review questions for new topics.
• Updated instructor PowerPoint lessons.
• More than 175 SLC-500 and ControlLogix program

simulation videos tied directly to the programs
studied in the text

In addition, students who are using McGraw-
Hill’s Connect can watch simulated, step-by-step
execution of numerous ladder logic programming
examples. They’re guided by an audio commen-
tary that explains what to look for as the program
is executed. The videos are part of the Student
Resources section of Connect.

pet73842_fm_i-xviii.indd 8 05/11/15 4:14 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Preface ix

Chapter changes in this edition include:

Chapter 1

• Testing of field devices.
• Extended coverage of scan cycle sequence.
• Additional test bank questions.
• Program video simulations.
• New and modified line diagrams and photos.

Chapter 2

• ControlLogix Base and Alias addressing.
• Extended coverage of DC module Sinking and

Sourcing.
• Analog module input sensor 2-, 3-, and 4-wire

connections.
• Scaling of PLC analog inputs and outputs.
• Extended coverage of Human Machine Interfaces

(HMIs)
• Additional chapter review questions.
• Additional test bank questions.
• Program video simulations.
• New and modified line diagrams and photos.

Chapter 3

• 16 bit 2’s complement.
• Floating point arithmetic.
• Additional chapter problems.
• Additional test bank questions.
• Program video simulations.
• New and modified line diagrams and photos.

Chapter 4

• Modification to hardwired programming examples
• Additional test bank questions.
• Additional chapter review questions.
• Program video simulations.
• New and modified line diagrams and photos.

Chapter 5

• Electrical versus logical continuity.
• Evaluating XIO and XIC bit instructions.
• Rack-based versus tag-based addressing.
• Connecting with analog devices.

• Additional test bank questions.
• Additional chapter review questions.
• Program video simulations.
• New and modified line diagrams and photos.

Chapter 6

• Magnetic reed float switch.
• Resistance temperature detectors (RTDs).
• Electrical interlocking circuits.
• Process instrumentation.
• Additional test bank questions.
• Additional chapter review questions.
• Program video simulations.
• New and modified line diagrams and photos.

Chapter 7

• Extended coverage of timer instructions.
• ControlLogix timer instruction.
• Reciprocating timers.
• TON timer bit table.
• TOF timer bit table.
• Additional test bank questions.
• Program video simulations.
• New and modified line diagrams and photos.

Chapter 8

• ControlLogix counter instruction.
• Extended coverage of CTD instruction.
• Additional information on incremental encoders.
• New section on High-Speed Counter instruction.
• Additional test bank questions.
• Program video simulations.
• New and modified line diagrams and photos.

Chapter 9

• Extended coverage of MCR instruction.
• Extended coverage of Jump instruction.
• Extended coverage of Immediate Input and Output

instructions.
• ControlLogix Immediate Output instruction.
• Additional test bank questions.
• Program video simulations.
• New and modified line diagrams and photos.

pet73842_fm_i-xviii.indd 9 05/11/15 4:14 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

x Preface

Chapter 10

• Extended coverage of the Masked Move instruction.
• New example of a copy instruction program.
• New example of a data compare program.
• ControlLogix Limit Comparison instruction and

program.
• Additional test bank questions.
• Program video simulations.
• New and modified line diagrams and photos.

Chapter 11

• Extended coverage of basic math instruction.
• New example of a compute instruction program.
• New coverage Modulo (MOD) instruction.
• New scale analog input using the SCP instruction.
• New scale analog output using the SCP instruction.
• Additional test bank questions.
• Program video simulations.
• New and modified line diagrams and photos.

Chapter 12

• Extended coverage of Sequencer Output (SQO)
instruction.

• ControlLogix Sequencer Output (SQO) instruction
and program.

• ControlLogix shift registers instruction and program.
• ControlLogix FIFO instruction and program.
• Additional test bank questions.
• Program video simulations.
• New and modified line diagrams and photos.

Chapter 13

• Extended coverage of communications using
RSLinx and RSWho.

• Additional test bank questions.
• Program video simulations.
• New and modified line diagrams and photos.

Chapter 14

• SERCOS standard communication for motion control.
• HART communication protocol.

• SCADA alarm monitoring.
• FactoryTalk services platform.
• Additional test bank questions.
• Program video simulations.
• New and modified line diagrams and photos.

Chapter 15

Part 1
• Extended coverage of tag types.
• Program video simulations.
• New and modified line diagrams and photos.

Part 2
• Reversing conveyor motor program and operation.
• Motor pilot light internal relay program and

operation.
• Latch/unlatch car wash program and operation.
• One-shot program instructions used in conjunction

with math operations.
• Program video simulations.
• New and modified line diagrams and photos.

Part 3
• Cascading TON timers for timed event-driven rou-

tines program and operation
• Program video simulations.
• New and modified line diagrams and photos.

Part 4
• Combining Counter and Timer Functions program

and operation.
• Program video simulations.
• New and modified line diagrams and photos.

Part 5
• Monitoring the setting of a thumbwheel switch

program and operation.
• PLC program for three-speed control of a conveyor

system program and operation.
• Conveyor parts tracking program and operation.
• Program video simulations.
• New and modified line diagrams and photos.
• Part 6 Function block parameters tab.
• Program video simulations.
• New and modified line diagrams and photos.

pet73842_fm_i-xviii.indd 10 05/11/15 4:14 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

xi

I would like to thank the following reviewers for their
comments and suggestions:

Noureddine Bekhouche
Jacksonville State University

Mark Bohnet
Northwest Iowa Community College

Michael Buck
Dakota County Technical College

Wayne Buroker
Waukesha County Technical College

Jerry Clark
Northwest Mississippi Community College

Chris Haley
North Georgia Technical College

Garrett Hunter
Western Illinois University

Wael Ibrahim
ECPI University

Ahmed Kamal
Tennessee Tech University

Gholam H. Massiha
University of Louisiana at Lafayette

Randy Owens
Henderson Community College

James Schabowski
Waukesha County Technical College

Jenifer Shannon
Penn State University, Berks Campus

Accounties Lashan Smith
Tri-County Technical College

Kenneth E. Swayne
Pellissippi State Community College

John Veitch
SUNY Adirondack

William Walker
Truckee Meadows Community College

Robert Permenter
Albany Technical College

A special thanks to Don Pelster of Nashville State
Community College, for his outstanding work on per-
forming a technical edit of the text and providing us with
detailed feedback, suggestions and recommendations.

Frank D. Petruzella

Acknowledgments

pet73842_fm_i-xviii.indd 11 05/11/15 4:14 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

xii

Frank D. Petruzella has extensive practical
experience in the electrical control field, as well
as many years of experience teaching and author-
ing textbooks. Before becoming a full time edu-
cator, he was employed as an apprentice and
electrician in areas of electrical installation and

maintenance. He holds a Master of Science degree
from Niagara University, a Bachelor of Science
degree from the State University of New York
College–Buffalo, as well as diplomas in Electrical
Power and Electronics from the Erie County
Technical Institute.

About the Author

pet73842_fm_i-xviii.indd 12 05/11/15 4:14 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

xiii

Here, drawings and photos of real-world input
and output devices have been included

P rogrammable Logic Controllers makes it
easy to learn PLCs from the ground up! Up-
to-the-minute revisions include all the new-

est developments in programming, installing, and
maintaining processes. Clearly developed chapters
deliver the organizing objectives, explanatory con-
tent with helpful diagrams and illustrations, and
closing review problems that evaluate retention of
the chapter objectives.

CHAPTER OBJECTIVES overview the chapter, letting stu-
dents and instructors focus on the main points to better grasp
concepts and retain information.

Ladder logic program

B3:0/1

(Internal)

B3:0/2

(Internal)

LEQ
LESS THAN OR EQUAL
Source A

Source B

GEQ
GREATER THAN OR EQUAL
Source A

Source B

MOV
MOVE
Source

Destination

Low temp.
B3:0/1

Heater

Heater
High temp.

B3:0/2

L1
Inputs

S1

S1

S1

Thermocouple

Thermocouple

Thermocouple

Thermocouple

LED

Heater

L2
Outputs

LED Display

LED

5 9 5

597

603

Chapter content includes rich illustrative detail and extensive visual
aids, allowing students to grasp concepts more quickly and understand
practical applications

In Chapter 02, students not only read about but can also see how
HMIs fit into an overall PLC system, giving them a practical
introduction to the topics

HMI Package

I/O
Server

Graphic
Screen

Communication
ports

PLC

Tag Database

Start Stop

131

7
Programming Timers

Chapter Objectives

After completing this chapter, you will be able to:

 • Describe the operation of pneumatic on-delay and
off-delay timers

 • Describe PLC timer instruction and differentiate
between a nonretentive and retentive timer

 • Convert fundamental timer relay schematic diagrams to
PLC ladder logic programs

 • Analyze and interpret typical PLC timer ladder logic
programs

 • Program the control of outputs using the timer
instruction control bits

Image Used with Permission of Rockwell Automation, Inc.

The most commonly used PLC instruction, after
coils and contacts, is the timer. This chapter
deals with how timers time intervals and the way
in which they can control outputs. We discuss
the basic PLC on-delay timer function, as well as
other timing functions derived from it, and typical
industrial timing tasks.

File number

Timers4

File type Timer number

EN TT DNWord 0

T4:2
15 14 13

Preset valueWord 1

Accumulated valueWord 2

pet73842_fm_i-xviii.indd 13 05/11/15 4:14 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

xiv

Conventional system

I/O Module DeviceNet
Scanner
Module

DeviceNet system
4-wire cable

and connector

Coverage of communications and control networks utilizes
clear graphics to demonstrate how things work

BULLETED LISTS break down processes to helpfully sum-
marize execution of tasks

 Function Block Programming Part 6 391

•	 When	the	Motor_Stop	button	is	opened	the	output	
of	the	BAND	block	turns	false	to	de-energize	the	
contactor	coil	and	stop	the	motor.

Figure	 15-110	 shows	 a	 comparison	 between	 ladder	
logic	and	the	FBD	equivalent	for	the	10	second	TON	(on-
delay	timer)	and	TONR	(on-delay	with	reset).	The	opera-
tion	of	the	FBD	can	be	summarized	as	follows:

•	 When	the	Timer_Sw	is	closed,	the	TONR	func-
tion block	timer	turns	true	and	starts	accumulating	
time.

•	 The	accumulated	time	is	monitored	by	the	output	
reference	tag	named	ACC.

•	 The	EN	(enable	bit)	output	changes	to	1	to	turn	on	
the	EN_PL.

•	 The	TT	(timer	timing	bit)	output	changes	to	1	to	
turn	on	the	TT_PL.

•	 The	timer	times	out	after	10	seconds	to	set	the	DN	
(done	bit)	to	1	and	turn	on	the	DN_PL	and	reset	the	
TT	bit	to	zero	and	turn	off	the	TT_PL.

•	 The	EN	bit	and	EN_PL	remain	on	as	long	as	the	
Timer_Sw	stays	toggled	closed.

•	 Opening	the	Timer_Sw	resets	all	outputs	as	well	as	
the	accumulated	value	to	zero.

•	 The	timer	can	also	be	reset	by	way	of	the	Reset	
input.

Figure	15-111	shows	a	comparison	between	ladder	logic	
and	the	FBD	equivalent	for	the	Up/Down	counter	used	to	
limit	the	number	of	parts	stored	in	a	buffer	zone	to	50.	The	
operation	of	the	FBD	can	be	summarized	as	follows:

•	 The	CTUD	up/down	counter	function	block	accu-
mulated	value	is	initially	reset	by	momentary	actua-
tion	of	the	Restart_Button.

•	 The	accumulated	count	is	monitored	by	the	output	
reference	tag	named	ACC.

•	 Each	time	a	part	enters	the	buffer	zone,	the	Enter_
Limit_Sw	is	actuated	and	the	CUEnable	input	turns	
true	to	increment	the	count	by	1.

•	 Each	time	a	part	exits	the	buffer	zone,	the	Exit_
Limit_Sw	is	actuated	and	the	CDEnable	input	turns	
true	to	decrement	the	count	by	1.

•	 Whenever	the	number	of	parts	in	the	buffer	zone	
reaches	50	the	DN	bit	is	set	to	1	and	the	output	of	

Figure 15-110 Comparison between ladder logic and the FBD equivalent for a
10 second TON and TONR timer.

10000

0
DN_PL

0
TT_PL

0
EN_PL

Status_Timer.DN
DN_PL

<Local:2:O.Data.3>

Status_Timer.TT

Input
L1

TT_PL
<Local:2:O.Data.2>

Status_Timer.EN

ENTimer On Delay
Timer
Preset
Accum

Status_Timer
10000

0

EN_PL
<Local:2:O.Data.1>

DN

Timer_Sw
<Local:1:I.Data.6>

TON

Ladder logic

FBD equivalent

TONR_01

...TONR

Timer On Delay with Reset

TimerEnable ACC

PRE

Reset

EN

TT

DN

Timer_Sw

Outputs L2

TT_PL

EN_PL

0
ACC_Value

0

10000
Timer_Sw

DN_PL
Diagrams, such as this one illustrating an overview of the func-
tion block programming language, help students put the pieces
together

Operation of the program can be viewed in real time

Wash_In_Use

Wash_In_Use

Wash_In_Use

L

U

Motor_Stop
<Local:1:I.Data.0>

Motor_Start
<Local:1:I.Data.1>

Track_Motor
<Local:2:O.Data.0>

Discrete I/O

Slot 1

00

01

02

03

00

01

02

03

Slot 2

Exit_LS
<Local:1:I.Data.3>

Enter_LS
<Local:1:I.Data.2>

Do_Not_Enter_Sign
<Local:2:O.Data.1>

Track_Motor
<Local:2:O.Data.0>

 More than 175 SLC-500 and ControlLogix
program simulation videos tied directly to
the programs studied in the text

• The processor ignores the actual state of input limit
 switch I:1/3.
• Although limit switch I:1/3 is o� (0 or false) the
 processor considers it as being in the on (1 or true)
 state.
• The program scan records this, and the program is
 executed with this forced status.
• In other words, the program is executed as if the
 limit switch were actually closed.

L1 L2

Input OutputsLadder logic program

OFF

I:1/3

I:1/3

O:2/5 O:2/6

O:2/5

Force> ON
O:2/5

O:2/6 M

ON

ON

pet73842_fm_i-xviii.indd 14 05/11/15 4:15 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

xv

END-OF-CHAPTER REVIEWS are structured to reinforce
chapter objectives

EXAMPLE PROBLEMS help bring home the applicability
of chapter concepts

128 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

1. Explain the basic operating principle of an electro-
magnetic control relay.

2. What is the operating difference between a nor-
mally open and a normally closed relay contact?

3. In what ways are control relay coils and contacts rated?

4. How do contactors differ from relays?

5. What is the main difference between a contactor
and a magnetic motor starter?

6. a. Draw the schematic for an across-the-line AC
magnetic motor starter.

b. With reference to this schematic, explain the
function of each of the following parts:

i. Main contact M
ii. Control contact M

iii. Starter coil M
iv. OL relay coils
v. OL relay contact

7. The current requirement for the control circuit of a
magnetic starter is normally much smaller than that
required by the power circuit. Why?

8. Compare the method of operation of each of the
following types of switches:
a. Manually operated switch
b. Mechanically operated switch
c. Proximity switch

9. What do the abbreviations NO and NC represent
when used to describe switch contacts?

10. Draw the electrical symbol used to represent each
of the following switches:
a. NO pushbutton switch
b. NC pushbutton switch
c. Break-make pushbutton switch
d. Three-position selector switch
e. NO limit switch
f. NC temperature switch
g. NO pressure switch
h. NC level switch
i. NO proximity switch

11. Outline the method used to actuate inductive and
capacitive proximity sensors.

12. How are reed switch sensors actuated?

13. Compare the operation of a photovoltaic solar cell
with that of a photoconductive cell.

14. What are the two basic components of a photoelec-
tric sensor?

15. Compare the operation of the reflective-type and
through-beam photoelectric sensors.

16. Give an explanation of how a scanner and a decoder
act in conjunction with each other to read a bar code.

17. How does an ultrasonic sensor operate?

18. Explain the principle of operation of a strain gauge.

19. Explain the principle of operation of a thermocouple.

20. What is the most common approach taken with re-
gard to the measurement of fluid flow?

21. Explain how a tachometer is used to measure rota-
tional speed.

22. How does an optical encoder work?

23. Draw an electrical symbol used to represent each of
the following PLC control devices:
a. Pilot light
b. Relay
c. Motor starter coil
d. OL relay contact
e. Alarm

f. Heater
g. Solenoid
h. Solenoid valve
i. Motor
j. Horn

24. Explain the function of each of the following
actuators:
a. Solenoid
b. Solenoid valve
c. Stepper motor

25. Compare the operation of open-loop and closed-
loop control.

26. What is a seal-in circuit?

27. In what way is the construction and operation of an
electromechanical latching relay different from a
standard relay?

28. Give a short description of each of the following
control processes:
a. Sequential
b. Combination
c. Automatic

29. Compare the type of sensor signal obtained from a
thermocouple with that from an RTD.

30. Explain how a magnetic reed float switch works.

31. What is the function of an electrical interlocking
circuit?

32. What is the role of instrumentation in an industrial
process?

33. You have been assigned the task of calibrating an
instrument. How would you proceed?

CHAPTER 6 REVIEW QUESTIONS

 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 129

CHAPTER 6 PROBLEMS

will correctly execute the hardwired control circuit
in Figure 6-78.
Assume: Stop pushbutton used is an NO type.

Run pushbutton used is an NO type.
Jog pushbutton used has one set of NO
contacts.
OL contact is hardwired.

5. Design a PLC program and prepare a typical I/O
connection diagram and ladder logic program that
will correctly execute the hardwired control circuit
in Figure 6-79.
Assume: PB1 pushbutton used is an NO type.

PB2 pushbutton used is an NC type.
PS1 pressure switch used is an NO type.
LS1 limit switch used has only one set of
NC contacts.

1. Design and draw the schematic for a conventional
hardwired relay circuit that will perform each of
the following circuit functions when a normally
closed pushbutton is pressed:
•	 Switch a pilot light on
•	 De-energize a solenoid
•	 Start a motor running
•	 Sound a horn

2. Design and draw the schematic for a conventional
hardwired circuit that will perform the following
circuit functions using two break-make pushbuttons:
•	 Turn on light L1 when pushbutton PB1 is pressed.
•	 Turn on light L2 when pushbutton PB2 is pressed.
•	 Electrically interlock the pushbuttons so that L1

and L2 cannot both be turned on at the same time.
3. Study the ladder logic program in Figure 6-77, and

answer the questions that follow:
a. Under what condition will the latch rung 1 be true?
b. Under what conditions will the unlatch rung 2 be true?
c. Under what condition will rung 3 be true?
d. When PL1 is on, the relay is in what state

(latched or unlatched)?
e. When PL2 is on, the relay is in what state

(latched or unlatched)?
f. If AC power is removed and then restored to the

circuit, what pilot light will automatically come
on when the power is restored?

g. Assume the relay is in its latched state and all three
inputs are false. What input change(s) must occur
for the relay to switch into its unlatched state?

h. If the examine if closed instructions at addresses
I/1, I/2, and I/3 are all true, what state will the
relay remain in (latched or unlatched)?

4. Design a PLC program and prepare a typical I/O
connection diagram and ladder logic program that

Figure 6-77 Ladder logic program for Problem 3.

I/1

L1
Inputs Ladder logic program Outputs

L2

I/2

I/3

I/1 I/2 O/9

L

I/3 O/9

U

O/9 O/10

Rung 1

Rung 2

Rung 3

PL2

PL1

O/10

O/9

Figure 6-79 Hardwired control circuit for Problem 5.

Start

CR1

SOLCR1-2

CR1-1

PS1

LS1

SS1
CR2-2

CR2-1

CR2

SOL

SOL

LL

1
2

3

2

1

21
Stop

PB
PB

PL1

PL2

Figure 6-78 Hardwired control circuit for Problem 4.

LL

Stop
Run

OL

Jog M

21

M

pet73842_fm_i-xviii.indd 15 05/11/15 4:15 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

xvi

ANCILLARIES THAT WORK

Expanded on and updated from the previous edition, this new edition includes an outstanding instructor support package:

• ExamView and EZ Test question test banks for each chapter.

• PowerPoint lessons with animations that help visualize the actual process.

• Activity Manual contains true/false, completion, matching, and multiple-choice tests for every chapter in the text. So that stu-
dents get a better understanding of programmable logic controllers, the manual also includes a wide range of programming
assignments and additional practice exercises.

• Answers to the questions and problems in the textbook, Activities Manual, and LogixPro Manual. Available on the Instructor
Resources section of Connect.

In addition, for students, this edition also has available:

• LogixPro PLC Lab Manual for use with Programmable Logic Controllers
Fifth Edition, with LogixPro PLC Simulator. This manual contains:

• McGraw-Hill’s Connect and Smartbook.

• LogixPro simulations with audio and video for those using Connect.

 • Over 250 LogixPro student lab exercises sequenced to support material
covered in the text.

pet73842_fm_i-xviii.indd 16 10/11/15 11:57 AM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Required=Results

®

McGraw-Hill Connect®
Learn Without Limits
Connect is a teaching and learning platform that
is proven to deliver better results for students
and instructors.

Connect empowers students by continually
adapting to deliver precisely what they need,
when they need it, and how they need it, so your
class time is more engaging and effective.

Mobile

Connect Insight®

Connect Insight is Connect’s new one-of-a-kind visual
analytics dashboard—now available for both instructors
and students—that provides at-a-glance information
regarding student performance, which is immediately actionable. By
presenting assignment, assessment, and topical performance results
together with a time metric that is easily visible for aggregate or individual
results, Connect Insight gives the user the ability to take a just-in-time
approach to teaching and learning, which was never before available. Connect
Insight presents data that empowers students and helps instructors improve
class performance in a way that is efficient and effective.

88% of instructors who use Connect
require it; instructor satisfaction increases

by 38% when Connect is required.

Students can view
their results for any

Connect course.

Analytics

 Using Connect improves passing rates
by 10.8% and retention by 16.4%.

Connect’s new, intuitive mobile interface gives students and
instructors flexible and convenient, anytime–anywhere access to
all components of the Connect platform.

pet73842_fm_i-xviii.indd 17 05/11/15 4:15 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

SmartBook®

Proven to help students improve grades and study
more efficiently, SmartBook contains the same
content within the print book, but actively tailors that
content to the needs of the individual. SmartBook’s
adaptive technology provides precise, personalized
instruction on what the student should do next,
guiding the student to master and remember key
concepts, targeting gaps in knowledge and offering
customized feedback, and driving the student toward
comprehension and retention of the subject matter.
Available on smartphones and tablets, SmartBook
puts learning at the student’s fingertips—anywhere,
anytime.

Adaptive

Over 4 billion questions have been
answered, making McGraw-Hill

Education products more intelligent,
reliable, and precise.

THE FIRST AND ONLY
ADAPTIVE READING
EXPERIENCE DESIGNED
TO TRANSFORM THE
WAY STUDENTS READ

More students earn A’s and
B’s when they use McGraw-Hill
Education Adaptive products.

pet73842_fm_i-xviii.indd 18 05/11/15 4:15 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

1

1
Programmable Logic
Controllers (PLCs)
An Overview

Chapter Objectives

After completing this chapter, you will be able to:

 • Define what a programmable logic controller (PLC) is
and list its advantages over relay systems

 • Identify the main parts of a PLC and describe their
functions

 • Outline the basic sequence of operation for a PLC

 • Identify the general classifications of PLCs

This chapter gives a brief history of the evolution
of the programmable logic controller, or PLC.
The reasons for changing from relay control sys-
tems to PLCs are discussed. You will learn the
basic parts of a PLC, how a PLC is used to con-
trol a process, and the different kinds of PLCs
and their applications. The ladder logic language,
which was developed to simplify the task of pro-
gramming PLCs, is introduced.

Image Courtesy of Rockwell Automation, Inc.

pet73842_ch01_001-016.indd 1 03/11/15 7:08 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

2 Chapter 1 Programmable Logic Controllers (PLCs)

Programmable controllers offer several advantages
over a conventional relay type of control. Relays have to
be hardwired to perform a specific function. When the
system requirements change, the relay wiring has to be
changed or modified. In extreme cases, such as in the auto
industry, complete control panels had to be replaced since
it was not economically feasible to rewire the old panels
with each model changeover. The programmable control-
ler has eliminated much of the hardwiring associated with
conventional relay control circuits (Figure 1-2). It is small
and inexpensive compared to equivalent relay-based pro-
cess control systems. Modern control systems still include
relays, but these are rarely used for logic.

PLCs provide many other benefits including:

• Increased Reliability. Once a program has been
written and tested, it can be easily downloaded
to other PLCs. Since all the logic is contained in
the PLC’s memory, there is no chance of making
a logic wiring error (Figure 1-3). The program
takes the place of much of the external wiring that
would normally be required for control of a process.
Hardwiring, though still required to connect field
devices, is less intensive. PLCs also offer the
reliability associated with solid-state components.

• More Flexibility. It is easier to create and change a
program in a PLC than to wire and rewire a circuit.
With a PLC the relationships between the inputs and
outputs are determined by the user program instead
of the manner in which they are interconnected
(Figure 1-4). Original equipment manufacturers can
provide system updates by simply sending out a
new program. End users can modify the program in
the field, or if desired, security can be provided by
hardware features such as key locks and by software
passwords.

• Lower Cost. PLCs were originally designed to re-
place relay control logic, and the cost savings have
been so significant that relay control is becoming

1.1 Programmable Logic Controllers
Programmable logic controllers (Figure 1-1) are now the
most widely used industrial process control technology.
A programmable logic controller (PLC) is an industrial
grade computer that is capable of being programmed to
perform control functions. The programmable controller
has eliminated much of the hardwiring associated with
conventional relay control circuits. Other benefits include
fast response, easy programming and installation, high
control speed, network compatibility, troubleshooting and
testing convenience, and high reliability.

The PLC is designed for multiple input and output
arrangements, extended temperature ranges, immunity
to electrical noise, and resistance to vibration and im-
pact. Programs for the control and operation of manu-
facturing process equipment and machinery are typically
stored in battery-backed or nonvolatile memory. A PLC
is an example of a real-time system since the output of
the system controlled by the PLC depends on the input
conditions.

The PLC is, then, basically a digital computer designed
for use in machine control. Unlike a personal computer,
it has been designed to operate in the industrial environ-
ment and is equipped with special input/output interfaces
and a control programming language. The common ab-
breviation used in industry for these devices, PC, can be
confusing because it is also the abbreviation for “personal
computer.” Therefore, most manufacturers refer to their
programmable controller as a PLC, which stands for
“programmable logic controller.”

Initially the PLC was used to replace relay logic, but
its ever-increasing range of functions means that it is
found in many and more complex applications. Because
the structure of a PLC is based on the same principles as
those employed in computer architecture, it is capable not
only of performing relay switching tasks but also of per-
forming other applications such as timing, counting, cal-
culating, comparing, and the processing of analog signals.

Figure 1-1 Programmable logic controller.
Source: (a–b) Courtesy GE Intelligent Platforms.

(a) (b)

pet73842_ch01_001-016.indd 2 03/11/15 7:08 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Programmable Logic Controllers (PLCs) Chapter 1 3

• Faster Response Time. PLCs are designed for high-
speed and real-time applications (Figure 1-6). The
programmable controller operates in real time, which
means that an event taking place in the field will result
in the execution of an operation or output. Machines
that process thousands of items per second and objects
that spend only a fraction of a second in front of a sen-
sor require the PLC’s quick-response capability.

• Easier to Troubleshoot. PLCs have resident diag-
nostics and override functions that allow users to
easily trace and correct software and hardware

obsolete except for power applications. Generally,
if an application has more than about a half-dozen
control relays, it will probably be less expensive to
install a PLC.

• Communications Capability. A PLC can communi-
cate with other controllers or computer equipment to
perform such functions as supervisory control, data
gathering, monitoring devices and process parameters,
and download and upload of programs (Figure 1-5).

User program

PLC

Figure 1-3 All the logic is contained in the PLC’s memory.

Figure 1-4 Relationships between the inputs and outputs
are determined by the user program.

Contactor Light Solenoid

Outputs

Inputs

Pushbutton Limit switch Sensor

(a)

(b)

Figure 1-2 Relay- and PLC-based control panels. (a) Relay-
based control panel. (b) PLC-based control panel.
Source: (a) Courtesy Mid-Illini Technical Group, Inc.; (b) Photo courtesy Ramco
Electric, Ltd.

pet73842_ch01_001-016.indd 3 03/11/15 7:08 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

4 Chapter 1 Programmable Logic Controllers (PLCs)

point. For example, a control system consisting of
hundreds of input and output field devices may be
contained within a very large manufacturing area.
Thus, it would take a considerable amount of time
to check each device at its location. By having each
device wired back to a common point on a PLC
module, each device could be checked for operation
fairly quickly.

1.2 Parts of a PLC
A typical PLC can be divided into parts, as illustrated in
Figure 1-8. These are the central processing unit (CPU),
the input/output (I/O) section, the power supply, and the
programming device. The term architecture can refer to
PLC hardware, to PLC software, or to a combination of
both. An open architecture design allows the system to
be connected easily to devices and programs made by
other manufacturers. Open architectures use off-the-
shelf components that conform to approved standards. A
system with a closed architecture is one whose design is
proprietary, making it more difficult to connect to other
systems. Most PLC systems are in fact proprietary, so
you must be sure that any generic hardware or software
you may use is compatible with your particular PLC.
Also, although the principal concepts are the same in all
methods of programming, there might be slight differ-
ences in addressing, memory allocation, retrieval, and
data handling for different models. Consequently, PLC
programs cannot be interchanged among different PLC
manufacturers.

There are two ways in which I/Os (Inputs/Outputs) are
incorporated into the PLC: fixed and modular. Fixed I/O
(Figure 1-9) is typical of small PLCs that come in one
package with no separate, removable units. The processor
and I/O are packaged together, and the I/O terminals will
have a fixed number of connections built in for inputs and
outputs. The main advantage of this type of packaging is
lower cost. The number of available I/O points varies and
usually can be expanded by buying additional units of
fixed I/O. One disadvantage of fixed I/O is its lack of flex-
ibility; you are limited in what you can get in the quanti-
ties and types dictated by the packaging. Also, for some
models, if any part in the unit fails, the whole unit has to
be replaced.

Modular I/O (Figure 1-10) is divided by compart-
ments into which separate modules can be plugged. This
feature greatly increases your options and the unit’s flex-
ibility. You can choose from the modules available from
the manufacturer and mix them any way you desire. The
basic modular controller consists of a rack, power sup-
ply, processor module (CPU), input/output (I/O mod-
ules), and an operator interface for programming and

Figure 1-7 Control program can be displayed on a monitor
in real time.

PLC Monitor

Figure 1-5 PLC communication module.
Source: Photo courtesy Automation Direct, www.automationdirect.com.

Figure 1-6 High-speed counting.
Source: Courtesy Banner Engineering Corp.

problems. To find and fix problems, users can dis-
play the control program on a monitor and watch it
in real time as it executes (Figure 1-7)·

• Easier to Test Field Devices. A PLC control panel
has the ability to check field devices at a common

pet73842_ch01_001-016.indd 4 03/11/15 7:08 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Programmable Logic Controllers (PLCs) Chapter 1 5

monitoring. The modules plug into a rack. When a mod-
ule is slid into the rack, it makes an electrical connection
with a series of contacts called the backplane, located at
the rear of the rack. The PLC processor is also connected
to the backplane and can communicate with all the mod-
ules in the rack.

The power supply supplies DC power to other modules
that plug into the rack (Figure 1-11). For large PLC sys-
tems, this power supply does not normally supply power
to the field devices. With larger systems, power to field
devices is provided by external alternating current (AC)
or direct current (DC) supplies. For some small micro
PLC systems, the power supply may be used to power
field devices.

The processor (CPU) is the “brain” of the PLC.
A typical processor (Figure 1-12) usually consists of a mi-
croprocessor for implementing the logic and controlling
the communications among the modules. The processor
requires memory for storing user program instructions,
numerical values, and I/O devices status.

Figure 1-8 Typical parts of a programmable logic controller.
Source: (a) Courtesy Mitsubishi Automation; (b) Images Courtesy of Rockwell Automation, Inc.

Figure 1-9 Fixed I/O configuration.

PL

Input
connections

Common power bus
L1

L2
Common return bus

Output
connections

Processor PLC

M

(a) Modular type

Central
Processing
Unit (CPU)

Programming device

Memory

Input
sensing
devices

Output
load
devices

Program Data

Optical
isolation

Input
module

Output
module

Processor Module

Optical
isolation

Power supply
module

(b) Fixed type

Power supply

Communications

Input
section

Output
sectionMemory

CPU

pet73842_ch01_001-016.indd 5 03/11/15 7:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

6 Chapter 1 Programmable Logic Controllers (PLCs)

The CPU controls all PLC activity and is designed
so that the user can enter the desired program in relay
ladder logic. The PLC program is executed as part of a
repetitive process referred to as a scan (Figure 1-13). A
typical PLC scan starts with the CPU reading the sta-
tus of inputs. Then, the application program is executed.
Once the program execution is completed, the status of
all outputs is updated. Next, the CPU performs inter-
nal diagnostic and communication tasks. This process
is repeated continuously as long as the PLC is in the
run mode.

The I/O system forms the interface by which field de-
vices are connected to the controller (Figure 1-14). The
purpose of this interface is to condition the various sig-
nals received from or sent to external field devices. Input
devices such as pushbuttons, limit switches, and sensors

Figure 1-11 The power supply supplies DC power to other
modules that plug into the rack.
Source: Photo of PLC Modicon M340 © Schneider Electric, 2010.
www.schneider-electric.com.

Power supply

Figure 1-12 Typical PLC processor modules.
Source: Image Courtesy of Rockwell Automation, Inc.

Execute program

D
iagnostics &

com
m

unication

Re

ad inputs

Update outp
ut

s

Figure 1-13 Typical PLC scan cycle.

Output moduleInput module

Processor
module

Power
supply

Combination
I/O module

Module
slides into
the rack

Figure 1-10 Modular I/O configuration.

pet73842_ch01_001-016.indd 6 03/11/15 7:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Programmable Logic Controllers (PLCs) Chapter 1 7

modifying programs, and transferring programs to mul-
tiple machines.

A personal computer (PC) is the most commonly used
programming device. Most brands of PLCs have soft-
ware available so that a PC can be used as the program-
ming device. This software allows users to create, edit,
document, store, and troubleshoot ladder logic programs
(Figure 1-15). The computer monitor is able to display
more logic on the screen than can hand-held types, thus
simplifying the interpretation of the program. The per-
sonal computer communicates with the PLC processor
via a serial or parallel data communications link, or
Ethernet. If the programming unit is not in use, it may be
unplugged and removed. Removing the programming
unit will not affect the operation of the user program.

A program is a user-developed series of instructions
that directs the PLC to execute actions. A programming
language provides rules for combining the instructions
so that they produce the desired actions. Relay ladder
logic (RLL) is the standard programming language used
with PLCs. Its origin is based on electromechanical
relay control. The relay ladder logic program graphically
represents rungs of contacts, coils, and special instruc-
tion blocks. RLL was originally designed for easy use
and understanding for its users and has been modified
to keep up with the increasing demands of industry’s
control needs.

are hardwired to the input terminals. Output devices such
as small motors, motor starters, solenoid valves, and in-
dicator lights are hardwired to the output terminals. To
electrically isolate the internal components from the input
and output terminals, PLCs commonly employ an optical
isolator, which uses light to couple the circuits together.
The external devices are also referred to as “field” or
“real-world” inputs and outputs. The terms field or real
world are used to distinguish actual external devices that
exist and must be physically wired from the internal user
program that duplicates the function of relays, timers, and
counters.

A programming device is used to enter the desired
program into the memory of the processor. The program
can be entered using relay ladder logic, which is one of
the most popular programming languages. Instead of
words, ladder logic programming language uses graphic
symbols that show their intended outcome. A program in
ladder logic is similar to a schematic for a relay control
circuit. It is a special language written to make it easy
for people familiar with relay logic control to program
the PLC. Hand-held programming devices are sometimes
used to program small PLCs because they are inexpen-
sive and easy to use. Once plugged into the PLC, they
can be used to enter and monitor programs. Both com-
pact hand-held units and laptop computers are frequently
used on the factory floor for troubleshooting equipment,

Input module

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

IN 0

IN 2

IN 4

IN 6

IN 8

IN 10

IN 12

IN 14

DC
COM

IN 1

IN 3

IN 5

IN 7

IN 9

IN 11

IN 13

IN 15

DC
COM

Output module

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

VAC

OUT 1

OUT 3

OUT 5

OUT 7

OUT 9

OUT 11

OUT 13

OUT 15

OUT 0

OUT 2

OUT 4

OUT 6

OUT 8

OUT 10

OUT 12

OUT 14

AC
COM

24 VDC
input
module

240 VAC
output
module

24 VDC

Field device
power supply

+ –

240 VAC

M

Field device
power supply

L2 L1

R

Y

Figure 1-14 Typical PLC input/output (I/O) system connections.

pet73842_ch01_001-016.indd 7 03/11/15 7:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

8 Chapter 1 Programmable Logic Controllers (PLCs)

operation of the motor is provided by means of a sepa-
rate pushbutton station. The process is monitored with
temperature and pressure sensor switches that close
their respective contacts when conditions reach their
preset values.

This control problem can be solved using the relay
method for motor control shown in the relay ladder
diagram of Figure 1-17. The motor starter coil (M)
is energized when both the pressure and temperature
switches are closed or when the manual pushbutton is
pressed.

1.3 Principles of Operation
To get an idea of how a PLC operates, consider the sim-
ple process control problem illustrated in Figure 1-16.
Here a mixer motor is to be used to automatically stir
the liquid in a vat when the temperature and pres-
sure reach preset values. In addition, direct manual

Figure 1-15 Typical PC software used to create a ladder logic program.
Source: Image Courtesy of Rockwell Automation, Inc.

Pressure
sensor
switch

Motor

Temperature
sensor switch

Manual pushbutton station

Figure 1-16 Mixer process control problem.

L1 L2

M
OL

Manual
pushbutton

120 VAC

Motor
starter

coil

Temperature
switch

Pressure
switch

Figure 1-17 Process control relay ladder diagram.

pet73842_ch01_001-016.indd 8 03/11/15 7:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Programmable Logic Controllers (PLCs) Chapter 1 9

The same output field device (motor starter coil) would
also be used. This device would be hardwired to an appro-
priate output module according to the manufacturer’s ad-
dressing location scheme. Typical wiring connections for
a 120 VAC modular configured output module are shown
in Figure 1-19.

Next, the PLC ladder logic program would be con-
structed and entered into the memory of the CPU. A
typical ladder logic program for this process is shown in
Figure 1-20. The format used is similar to the layout of

Now let’s look at how a programmable logic controller
might be used for this application. The same input field
devices (pressure switch, temperature switch, and push-
button) are used. These devices would be hardwired to
an appropriate input module according to the manufac-
turer’s addressing location scheme. Typical wiring con-
nections for a 120 VAC modular configured input module
are shown in Figure 1-18.

Common

0

1
2

3
4

5

6

7

Input
module

L1 N
120 VAC

Manual
pushbutton

Temperature

Pressure

Figure 1-18 Typical wiring connections for a 120 VAC
modular configured input module.
Source: Photo courtesy Automation Direct, www.automationdirect.com.

Output
module

120 VAC

NL1

L1

0

1

2

3

4

5

6

7

Motor
starter coil

M
OL

Figure 1-19 Typical wiring connections for a 120 VAC
modular configured output module.
Source: Photo courtesy Automation Direct, www.automationdirect.com.

O/1

Motor
starter

coil
I/1

I/1
Pressure

switch
I/2

I/2

O/1

Temperature
switch

I/3

I/3

Manual
pushbutton

L2
L1

Inputs OutputProgram

Monitor
inputs

Checks the
inputs

Execute
program

Change
outputs

...

Executes control
program

...

And updates the
outputs

...

M
OL

Figure 1-20 Process control PLC ladder logic program with typical addressing scheme.

pet73842_ch01_001-016.indd 9 03/11/15 7:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

10 Chapter 1 Programmable Logic Controllers (PLCs)

for the process control scheme can be described by the
following sequence of events:

• First, the pressure switch, temperature switch, and
pushbutton inputs are examined and their status is
recorded in the controller’s memory.

• A closed contact is recorded in memory as logic 1
and an open contact as logic 0.

• Next the ladder diagram is evaluated, with each
internal contact given an OPEN or CLOSED status
according to its recorded 1 or 0 state.

• When the states of the input contacts provide logic
continuity from left to right across the rung, the
output coil memory location is given a logic 1 value
and the output module interface contacts will close.

• When there is no logic continuity of the program
rung, the output coil memory location is set to logic 0
and the output module interface contacts will be open.

• The completion of one cycle of this sequence by the
controller is called a scan. The scan time, the time
required for one full cycle, provides a measure of
the speed of response of the PLC.

• Generally, the output memory location is updated dur-
ing the scan but the actual output is not updated until
the end of the program scan during the I/O scan.

Figure 1-21 shows the typical wiring required to im-
plement the process control scheme using a fixed PLC

the hardwired relay ladder circuit. The individual symbols
represent instructions, whereas the numbers represent the
instruction location addresses. To program the controller,
you enter these instructions one by one into the proces-
sor memory from the programming device. Each input
and output device is given an address, which lets the PLC
know where it is physically connected. Note that the I/O
address format will differ, depending on the PLC model
and manufacturer. Instructions are stored in the user pro-
gram portion of the processor memory. During the pro-
gram scan the controller monitors the inputs, executes the
control program, and changes the output accordingly.

For the program to operate, the controller is placed in the
RUN mode, or operating cycle. During the program scan,
the controller monitors the inputs, executes the control pro-
gram, and changes the output accordingly. Each symbol
(looks like a normally open contact) is an instruction.
The symbol is considered to represent a coil that, when
energized, will energize the device that is wired to the re-
spective output. In the ladder logic program of Figure 1-20,
the coil O/1 is energized when contacts I/1 and I/2 are
closed or when contact I/3 is closed. Either of these con-
ditions provides a continuous logic path from left to right
across the rung that includes the coil.

A programmable logic controller operates in real time
in that an event taking place in the field will result in an
operation or output taking place. The RUN operation

I1

I1 I2 I3L1 L2

I2 Q1

I3

L1

L2

M Starter

Inputs

Pressure

Temp

PB

Outputs

Program

Q1 Q2 Q3 Q4

Figure 1-21 Typical wiring required to implement the process control scheme
using a fixed PLC controller.
Source: Image Courtesy of Rockwell Automation, Inc.

pet73842_ch01_001-016.indd 10 03/11/15 7:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Programmable Logic Controllers (PLCs) Chapter 1 11

1.5 PLCs versus Computers
The architecture of a PLC is basically the same as that of
a personal computer. A personal computer (PC) can be
made to operate as a programmable logic controller if you
provide some way for the computer to receive informa-
tion from devices such as pushbuttons or switches. You
also need a program to process the inputs and some way
to turn devices on and off.

However, some important characteristics distinguish
PLCs from personal computers. First, unlike PCs, the
PLC is designed to operate in the industrial environ-
ment with wide ranges of ambient temperature and
humidity. A well-designed industrial PLC installa-
tion, such as that shown in Figure 1-24, is not usually
affected by the electrical noise inherent in most indus-
trial locations.

Unlike the personal computer, the PLC is programmed
in relay ladder logic or other easily learned languages.
The PLC comes with its program language built into its
memory and has no permanently attached keyboard, CD
drive, or monitor. Instead, PLCs come equipped with

controller. In this example, the Allen-Bradley Pico con-
troller equipped with 8 inputs and 4 outputs is used to
control and monitor the process. Installation can be sum-
marized as follows:

• Fused power lines, of the specified voltage type and
level, are connected to the controller’s L1 and L2
terminals.

• The pressure switch, temperature switch, and push-
button field input devices are hardwired between
L1 and controller input terminals I1, I2, and I3,
respectively.

• The motor starter coil connects directly to L2 and in
series with Q1 relay output contacts to L1.

• The ladder logic program is entered using the front
keypad and LCD display.

• Pico programming software is also available that
allows you to create as well as test your program
using a personal computer.

1.4 Modifying the Operation
One of the important features of a PLC is the ease with
which the program can be changed. For example, assume
that the original process control circuit for the mixing op-
eration must be modified as shown in the relay ladder dia-
gram of Figure 1-22. The change requires that the manual
pushbutton control be permitted to operate at any pres-
sure, but not unless the specified temperature setting has
been reached.

If a relay system were used, it would require some re-
wiring of the circuit shown in Figure 1-22 to achieve the
desired change. However, if a PLC system were used, no
rewiring would be necessary. The inputs and outputs are
still the same. All that is required is to change the PLC
ladder logic program as shown in Figure 1-23.

L1 L2

Manual
pushbutton

120 VAC

Motor
starter

coil

Temperature
switch

Pressure
switch

M
OL

Figure 1-22 Relay ladder diagram for the modified
process.

O/1

Motor
starter

coil
I/1

Pressure
switch

I/2

Temperature
switch

I/3

Manual
pushbutton

Figure 1-23 PLC ladder logic program for the modified
process.

Figure 1-24 PLC installed in an industrial environment.
Source: Courtesy of Softac Systems, Ltd.

pet73842_ch01_001-016.indd 11 03/11/15 7:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

12 Chapter 1 Programmable Logic Controllers (PLCs)

Most recently automation manufacturers have re-
sponded to the increased requirements of industrial control
systems by blending the advantages of PLC-style control
with that of PC-based systems. Such a device has been
termed a programmable automation controller, or PAC
(Figure 1-26). Programmable automation controllers com-
bine PLC ruggedness with PC functionality. Using PACs,
you can build advanced systems incorporating software
capabilities such as advanced control, communication,
data logging, and signal processing with rugged hardware
performing logic, motion, process control, and vision.

1.6 PLC Size and Application
The criteria used in categorizing PLCs include function-
ality, number of inputs and outputs, cost, and physical
size (Figure 1-27). Of these, the I/O count is the most

terminals for input and output field devices as well as
communication ports.

Computers are complex computing machines capable
of executing several programs or tasks simultaneously
and in any order. Most PLCs, on the other hand, execute a
single program in an orderly and sequential fashion from
first to last instruction.

PLC control systems have been designed to be easily
installed and maintained. Troubleshooting is simplified
by the use of fault indicators and messaging displayed
on the programmer screen. Input/output modules for
connecting the field devices are easily connected and
replaced.

Software associated with a PLC but written and run on
a personal computer falls into the following two broad
categories:

• PLC software that allows the user to program
and document gives the user the tools to write a
PLC program—using ladder logic or another
programming language—and document or
explain the program in as much detail as is
necessary.

• PLC software that allows the user to monitor and
 control the process is also called a human
machine interface (HMI). It enables the user to
view a process—or a graphical representation of a
process—on a monitor, determine how the system is
running, trend values, and receive alarm conditions
(Figure 1-25). Many operator interfaces do not
use PLC software. PLCs can be integrated with
HMIs but the same software does not program both
devices.

Figure 1-25 Human Machine Interface (HMI)
Source: Image Courtesy of Rockwell Automation, Inc.

Figure 1-26 Programmable automation controller (PAC).
Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

Figure 1-27 Typical range of sizes of programmable
controllers.
Source: Courtesy Siemens.

pet73842_ch01_001-016.indd 12 03/11/15 7:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Programmable Logic Controllers (PLCs) Chapter 1 13

the PLC would be a subsystem of a larger process and
would have to communicate with a central PLC or com-
puter, provisions for a data communications network are
also required.

A control management PLC application involves one
PLC controlling several others (Figure 1-29). This kind
of application requires a large PLC processor designed to
communicate with other PLCs and possibly with a com-
puter. The control management PLC supervises several
PLCs by downloading programs that tell the other PLCs
what has to be done. It must be capable of connection to
all PLCs so that by proper addressing it can communicate
with any one it wishes to.

Memory is the part of a PLC that stores data, instruc-
tions, and the control program. Memory size is usually
expressed in K values: 1 K, 6 K, 12 K, and so on. The mea-
surement kilo, abbreviated K, normally refers to 1000 units.
When dealing with computer or PLC memory, however,
1 K means 1024, because this measurement is based on the
binary number system (210 5 1024). Depending on memory
type, 1 K can mean 1024 bits, 1024 bytes, or 1024 words.

Although it is common for us to measure the memory
capacity of PLCs in words, we need to know the num-
ber of bits in each word before memory size can be accu-
rately compared. Modern computers usually have a word
size of 16, 32, or 64 bits. For example, a PLC that uses
8-bit words has 49,152 bits of storage with a 6 K word
capacity (8 3 6 3 1024 5 49,152), whereas a PLC using
32-bit words has 196,608 bits of storage with the same
6 K memory (32 3 6 3 1024 5 196,608). The amount
of memory required depends on the application. Factors
affecting the memory size needed for a particular PLC
installation include:

• Number of I/O points used
• Size of control program
• Data-collecting requirements
• Supervisory functions required
• Future expansion

important factor. In general, the nano is the smallest size
with less than 15 I/O points. This is followed by micro
types (15 to 128 I/O points), medium types (128 to 512
I/O points), and large types (over 512 I/O points).

Matching the PLC with the application is a key factor
in the selection process. In general it is not advisable to
buy a PLC system that is larger than current needs dic-
tate. However, future conditions should be anticipated to
ensure that the system is the proper size to fill the current
and possibly future requirements of an application.

There are three major types of PLC application: single-
ended, multitask, and control management. A single-ended
or stand-alone PLC application involves one PLC con-
trolling one process (Figure 1-28). This would be a stand-
alone unit and would not be used for communicating with
other computers or PLCs. The size and sophistication of
the process being controlled are obvious factors in de-
termining which PLC to select. The applications could
dictate a large processor, but usually this category re-
quires a small PLC.

A multitask PLC application involves one PLC con-
trolling several processes. Adequate I/O capacity is a sig-
nificant factor in this type of installation. In addition, if

Figure 1-28 Single-ended PLC application.
Source: Courtesy Rogers Machinery Company, Inc.

Figure 1-29 Control management PLC application.

pet73842_ch01_001-016.indd 13 03/11/15 7:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

14 Chapter 1 Programmable Logic Controllers (PLCs)

The instruction set for a particular PLC lists the dif-
ferent types of instructions supported. Typically, this

Table 1-1 Typical PLC Instructions

Instruction Operation

XIC (Examine ON) Examine a bit for an ON condition

XIO (Examine OFF) Examine a bit for an OFF condition

OTE (Output Energize) Turn ON a bit (nonretentive)

OTL (Output Latch) Latch a bit (retentive)

OTU (Output Unlatch) Unlatch a bit (retentive)

TOF (Timer Off-Delay) Turn an output ON or OFF after its rung has been OFF for a preset time interval

TON (Timer On-Delay) Turn an output ON or OFF after its rung has been ON for a preset time interval

CTD (Count Down) Use a software counter to count down from a specified value

CTU (Count Up) Use a software counter to count up to a specified value

ranges from 15 instructions on smaller units up to 100 in-
structions on larger, more powerful units (see Table 1-1).

pet73842_ch01_001-016.indd 14 03/11/15 7:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Programmable Logic Controllers (PLCs) Chapter 1 15

1. What is a programmable logic controller (PLC)?

2. Identify four tasks in addition to relay switching
operations that PLCs are capable of performing.

3. List six distinct advantages that PLCs offer over
conventional relay-based control systems.

4. Explain the differences between open and propri-
etary PLC architecture.

5. State two ways in which I/O is incorporated into
the PLC.

6. Describe how the I/O modules connect to the pro-
cessor in a modular-type PLC configuration.

7. Explain the main function of each of the following
major components of a PLC:
a. Processor module (CPU)
b. I/O modules
c. Programming device
d. Power supply module

8. What are the two most common types of PLC
 programming devices?

9. Explain the terms program and programming
 language as they apply to a PLC.

10. What is the standard programming language used
with PLCs?

11. Answer the following with reference to the process
control relay ladder diagram of Figure 1-17 of this
chapter:
a. When do the pressure switch contacts close?
b. When do the temperature switch contacts close?
c. How are the pressure and temperature switches

connected with respect to each other?
d. Describe the two conditions under which the

motor starter coil will become energized.
e. What is the approximate value of the voltage

drop across each of the following when their
contacts are open?

(1) Pressure switch
(2) Temperature switch
(3) Manual pushbutton

12. The programmable controller operates in real time.
What does this mean?

13. Answer the following with reference to the process
control PLC ladder logic diagram of Figure 1-20 of
this chapter:
a. What do the individual symbols represent?
b. What do the numbers represent?
c. What field device is the number I/2 identified

with?
d. What field device is the number O/1 identified

with?
e. What two conditions will provide a continuous

path from left to right across the rung?
f. Describe the sequence of operation of the

 controller for one scan of the program.

14. Compare the method by which the process control
operation is changed in a relay-based system to the
method used for a PLC-based system.

15. Compare the PLC and PC with regard to:
a. Physical hardware differences
b. Operating environment
c. Method of programming
d. Execution of program

16. What two categories of software written and run on
PCs are used in conjunction with PLCs?

17. What is a programmable automation controller
(PAC)?

18. List four criteria by which PLCs are categorized.

19. Compare the single-ended, multitask, and control
management types of PLC applications.

20. What is the memory capacity, expressed in bits, for
a PLC that uses 16-bit words and has an 8 K word
capacity?

21. List five factors affecting the memory size needed
for a particular PLC installation.

22. What does the instruction set for a particular PLC
refer to?

CHAPTER 1 REVIEW QUESTIONS

pet73842_ch01_001-016.indd 15 03/11/15 7:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

16 Chapter 1 Programmable Logic Controllers (PLCs)

CHAPTER 1 PROBLEMS

1. Given two single-pole switches, write a program
that will turn on an output when both switch A and
switch B are closed.

2. Given two single-pole switches, write a program
that will turn on an output when either switch A or
switch B is closed.

3. Given four NO (Normally Open) pushbuttons (A-
B-C-D), write a program that will turn a lamp on if
pushbuttons A and B or C and D are closed.

4. Write a program for the relay ladder diagram
shown in Figure 1-30.

120 VAC

S3

TS1PB1

S2

S1 PS1
L1

Figure 1-31 Circuit for Problem 5.

LS2

120 VAC

S1 LS1
L1

Figure 1-30 Circuit for Problem 4.

5. Write a program for the relay ladder diagram
shown in Figure 1-31.

pet73842_ch01_001-016.indd 16 03/11/15 7:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

17

2
PLC Hardware Components

Chapter Objectives

After completing this chapter, you will be able to:

 • List and describe the function of the hardware
components used in PLC systems

 • Describe the basic circuitry and applications for discrete
and analog I/O modules, and interpret typical I/O and
CPU specifications

 • Explain I/O addressing

 • Describe the general classes and types of PLC memory
devices

 • List and describe the different types of PLC peripheral
support devices available

Courtesy of Nercon

This chapter exposes you to the details of PLC
hardware and modules that make up a PLC con-
trol system. The chapter’s illustrations show the
various parts of a PLC as well as general connec-
tion paths. In this chapter we discuss the CPU
and memory hardware components, including
the various types of memory that are available,
and we describe the hardware of the input/out-
put section, including the difference between the
discrete and analog types of modules.

pet73842_ch02_017-045.indd 17 03/11/15 3:43 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

18 Chapter 2 PLC Hardware Components

2.1 The I/O Section
The input/output (I/O) section of a PLC is the section to
which all field devices are connected and provides the in-
terface between them and the CPU. Input/output arrange-
ments are built into a fixed PLC while modular types use
external I/O modules that plug into the PLC.

Figure 2-1 illustrates a rack-based I/O section made up
of individual I/O modules. Input interface modules accept
signals from the machine or process devices and con-
vert them into signals that can be used by the controller.
Output interface modules convert controller signals into
external signals used to control the machine or process. A
typical PLC has room for several I/O modules, allowing it
to be customized for a particular application by selecting
the appropriate modules. Each slot in the rack is capable
of accommodating any type of I/O module.

The I/O system provides an interface between the hard-
wired components in the field and the CPU. The input
interface allows status information regarding processes
to be communicated to the CPU, and thus allows the CPU
to communicate operating signals through the output
interface to the process devices under its control.

One benefit of a PLC system is the ability to locate
the I/O modules near the field devices, as illustrated in
Figure 2-2, in order to minimize the amount of wiring
required. The processor receives signals from the remote
input modules and sends signals back to their output
modules via the communication module.

A rack is referred to as a remote rack when it is located
away from the processor module. To communicate with
the processor, the remote rack uses a special communica-
tions network. Each remote rack requires a unique station
number to distinguish one from another. The remote racks
are linked to the local rack through a communications
module. Cables connect the modules with each other. If
fiber optic cable is used between the CPU and I/O rack,
it is possible to operate I/O points from distances greater
than 20 miles with no voltage drop. Coaxial cable will
allow remote I/O to be installed at distances greater than
two miles. Fiber optic cable will not pick up noise caused
by adjacent high power lines or equipment normally
found in an industrial environment. Coaxial cable is more
susceptible to this type of noise.

The PLC’s memory system stores information about
the status of all the inputs and outputs. To keep track of
all this information, it uses a system called addressing. An
address is a label or number that indicates where a cer-
tain piece of information is located in a PLC’s memory.
Just as your home address tells where you live in your
city, a device’s or a piece of data’s address tells where

Figure 2-2 Remote I/O rack.

Po
w

er

Pr
oc

es
so

r

In
pu

t

O
ut

pu
t

Local I/O

Stop/Start

Hopper

Motor

Po
w

er

In
pu

t

O
ut

pu
t

Remote I/O

Communication

Sensor

On/O�
control

Figure 2-1 Rack-based I/O section.

Power
supply

0 1 2 3 4 5 6 Slot

I/O modules
Processor

module

pet73842_ch02_017-045.indd 18 03/11/15 3:43 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

PLC Hardware Components Chapter 2 19

information about it resides in the PLC’s memory. That
way, if a PLC wants to find out information about a field
device, it knows to look in its corresponding address
location. Examples of addressing schemes include rack/
slot-based, versions of which are used in Allen-Bradley
SLC 500 controllers, tag-based used in Allen-Bradley
ControlLogix controllers, and PC-based control used in
soft PLCs.

In general, rack/slot-based addressing elements include:

Type—The type determines if an input or output is
being addressed.
Slot—The slot number is the physical location of the
I/O module. This may be a combination of the rack
number and the slot number when using expansion
racks.
Word and Slot—The word and slot are used to iden-
tify the actual terminal connection in a particular I/O
module. A discrete module usually uses only one
word, and each connection corresponds to a different
bit that makes up the word.

With a rack/slot address system the location of a
module within a rack and the terminal number of a mod-
ule to which an input or output device is connected will
determine the device’s address.

Figure 2-3 illustrates the Allen-Bradley SLC 500 con-
troller rack/slot addressing format. The address is used by
the processor to identify where the device is located to
monitor or control it. In addition, there is some means of
connecting field wiring on the I/O module housing. Con-
necting the field wiring to the I/O housing allows easier
disconnection and reconnection of the wiring to change
modules. Lights are also added to each module to indicate
the ON or OFF status of each I/O circuit. Most output
modules also have blown fuse indicators. The following
are typical examples of SLC 500 real-world general input
and output addresses:

Every input and output device connected to a discrete I/O
module is addressed to a specific bit in the PLC’s memory.
A bit is a binary digit that can be either 1 or 0. Analog I/O
modules use a word addressing format, which allows the
entire words to be addressed. The bit part of the address is
usually not used; however, bits of the digital representation
of the analog value can be addressed by the programmer
if necessary. Figure 2-4 illustrates bit level and word level
addressing as it applies to an SLC 500 controller.

Tag-based memory structures are the newest type of PLC
memory addressing. Figure 2-5 illustrates the Allen-Brad-
ley ControlLogix and CompactLogix tag-based addressing
format. Memory locations are defined by using base and
alias tags. A base tag defines a memory location where data
are stored. An alias tag is used to create an alternate name
(alias) for a tag. The alias tag is often used to create a tag
name to represent a real world input or output.

Figure 2-6 shows a comparison between rack/slot-
based addressing and tag-based addressing. Input and
output modules, when configured, automatically cre-
ate their own tags like Local:1:I.Data.1. Tag names are
descriptive to the data being stored in them. The alias
tag lets you use names that are more meaningful for the
application. In this example:

• Pressure_switch is used instead of I:1/1
• Temperature_switch is used instead of I:1/2
• Manual_pushbutton is used instead of I:1/3
• Mixer_motor is used instead of O:2/1

Figure 2-3 Allen-Bradley SLC 500 rack/slot-based addressing format.
Source: Image Courtesy of Rockwell Automation, Inc.

Memory
address

Real-world
address

I 1 3 0. /:

File type

File number

Element number

Slot number

Module type

Subelement number

For terminals above #15

0 1

Bit number

Terminal number

O:4/15 Output module in slot 4, terminal 15

I:3/8 Input module in slot 3, terminal 8

O:6.0 Output module, slot 6

I:5.0 Input module, slot 5

pet73842_ch02_017-045.indd 19 03/11/15 3:43 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

20 Chapter 2 PLC Hardware Components

Figure 2-4 SLC 500 bit level and word level addressing. (a) Bit level
addressing. (b) Word level addressing.

1

Inputs
Data files

Program files

Output

I:1/0

0I:1/1

Processor memory
Input

addressing
Output

addressing

I:1/1
I:1/1I:1/0 O:3/0

O:3/0

I:1/0 00:3/0

(a)

Processor

O0:2.0
(address)

Valve
analog
output

Thermocouple
analog input

I:1:2:0
(address)

0

A
na

lo
g

m
od

ul
e

1 2

I 2 0

Type Slot
Address

Word Bit Inputs

O 2 0

Type Slot
Address

Word Bit

0

1

Outputs

0

1

N
ot

 u
se

d

N
ot

 u
se

d

IN 0 +
–

+
–

IN 0

OUT 0
OUT 0

Output Input

Power

Analog

(b)

Figure 2-5 Allen-Bradley ControlLogix tag-based addressing format.
Source: Image Courtesy of Rockwell Automation, Inc.

Start
I_PBO

<Local:6:1.Data.0>

Input instruction

Base address

Alias tag pointing
to base address

Description assigned
to alias tag

pet73842_ch02_017-045.indd 20 03/11/15 3:43 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

PLC Hardware Components Chapter 2 21

PC-based control runs on personal or industrial hard-
ened computers. Also known as soft PLCs, they simulate
the functions of a PLC on a PC, allowing open architecture
systems to replace proprietary PLCs. This implementa-
tion uses an input/output card (Figure 2-7) in conjunction
with the PC as an interface for the field devices.

Combination I/O modules can have both input and
output connections in the same physical module as illus-
trated in Figure 2-8. A module is made up of a printed
circuit board and a terminal assembly. The printed circuit
board contains the electronic circuitry used to interface
the circuit of the processor with that of the input or output
device. Modules are designed to plug into a slot or con-
nector in the I/O rack or directly into the processor. The
terminal assembly, which is attached to the front edge of
the printed circuit board, is used for making field-wiring
connections. Modules contain terminals for each input
and output connection, status lights for each of the inputs
and outputs, and connections to the power supply used to

Figure 2-7 Typical PC interface card.
Source: Photo © Beckhoff Automation GmbH & Co. KG.

Figure 2-8 Typical combination I/O module.
Source: Image Courtesy of Rockwell Automation, Inc.

0

1

2

3

4

5

6

7

Status

Inputs

Status
indicators Input Output

Input
connections

Output
connections

0

1

2

3

4

5

6

7

Outputs

Power supply
connections

Power supply
connections

Figure 2-6 Rack/slot-based versus tag-based addressing.

(b) Equivalent ControlLogix 5000 tag-base addressing(a) SLC 500 rack/slot-based addressing

I:1

I:1

I:1 O:2

121

3

Pressure_switch
<Local:1:I.Data.1>

Temperature_switch
<Local:1:I.Data.2>

Manual_pushbutton
<Local:1:I.Data.3>

Mixer_motor
<Local:2:0.Data.1>

pet73842_ch02_017-045.indd 21 03/11/15 3:43 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

22 Chapter 2 PLC Hardware Components

power the inputs and outputs. Terminal and status light
arrangements vary with different manufacturers.

Most PLC modules have plug-in wiring terminal strips.
The terminal block is plugged into the actual module as
illustrated in Figure 2-9. If there is a problem with a mod-
ule, the entire strip is removed, a new module is inserted,
and the terminal strip is plugged into the new module.
Unless otherwise specified, never install or remove I/O
modules or terminal blocks while the PLC is powered.
A module inserted into the wrong slot could be dam-
aged by improper voltages connected through the wiring
arm. Most faceplates and I/O modules are keyed to pre-
vent putting the wrong faceplate on the wrong module.
In other words, an output module cannot be placed in the
slot where an input module was originally located.

Input and output modules can be placed anywhere in a
rack, but they are normally grouped together for ease of

wiring. I/O modules can be 8, 16, 32, or 64 point cards
(Figure 2-10). The number refers to the number of inputs
or outputs available. The standard I/O module has eight
inputs or outputs. A high-density module may have up to
64 inputs or outputs. The advantage with the high-density
module is that it is possible to install up to 64 inputs or
outputs in one slot for greater space savings. The only dis-
advantage is that the high-density output modules cannot
handle as much current per output.

2.2 Discrete I/O Modules
The most common type of I/O interface module is the
discrete type (Figure 2-11). This type of interface connects
field input devices of the ON/OFF nature such as selec-
tor switches, pushbuttons, and limit switches. Likewise,
output control is limited to devices such as lights, relays,
solenoids, and motor starters that require simple ON/OFF
switching. The classification of discrete I/O covers bit-
oriented inputs and outputs. In this type of input or output,
each bit represents a complete information element in itself
and provides the status of some external contact or advises
of the presence or absence of power in a process circuit.

Each discrete I/O module is powered by some field-
supplied voltage source. Since these voltages can be of
different magnitude or type, I/O modules are available at
various AC and DC voltage ratings, as listed in Table 2-1.

The modules themselves receive their voltage and cur-
rent for proper operation from the backplane of the rack
enclosure into which they are inserted, as illustrated in
Figure 2-12. Backplane power is provided by the PLC
module power supply and is used to power the electronics
that reside on the I/O module circuit board. The relatively
higher currents required by the loads of an output module
are normally provided by user-supplied power. Module
power supplies typically may be rated for 3 A, 4 A, 12 A, or
16 A depending on the type and number of modules used.

Figure 2-9 Plug-in terminal block.

Terminal
block

Module

Figure 2-10 16, 32, and 64 point I/O modules.
Source: (all) Photos courtesy Omron Industrial Automation, www.ia.omron.com.

pet73842_ch02_017-045.indd 22 03/11/15 3:43 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

PLC Hardware Components Chapter 2 23

Figure 2-11 Discrete input and output devices.

Indicator
lights

Signaling
column

Relays Motor
starter

Pushbuttons Selector
switch

Limit
switch

Discrete inputs

Discrete outputs

Proximity
switches

Figure 2-12 Modules receive their voltage and current
from the backplane.

Backplane power

Power
supply

Figure 2-13 Discrete AC input module block diagram.

L1

(120 VAC)
Input
signal

L2

Logic
circuits

To processor
(low VDC)

Input status
indicator

Zener
diode
level

detection

Power

Logic

Opto-electrical
isolation

Bridge
rectifier

Figure 2-13 shows the block diagrams for one input of a
typical alternating current (AC) discrete input module. The
input circuit is composed of two basic sections: the power
section and the logic section. An optical isolator is used to
provide electrical isolation between the field wiring and the
PLC backplane internal circuitry. The input LED turns on or
off, indicating the status of the input device. Logic circuits
process the digital signal to the processor. Internal PLC con-
trol circuitry typically operates at 5 VDC or less volts.

A simplified diagram for a single input of a discrete AC
input module is shown in Figure 2-14. The operation of
the circuit can be summarized as follows:

• The input noise filter consisting of the capacitor and
resistors R1 and R2 removes false signals that are
due to contact bounce or electrical interference.

• When the pushbutton is closed, 120 VAC is applied
to the bridge rectifier input.

• This results in a low-level DC output voltage that is
applied across the LED of the optical isolator.

Input Interfaces Output Interfaces

12 V AC/DC /24 V AC/DC 12–48 V AC

 48 V AC/DC 120 V AC

 120 V AC/DC 230 V AC

 230 V AC/DC 120 V DC

5 V DC (TTL level) 230 V DC

5 V DC (TTL level)

24 V DC

Table 2-1 Common Ratings for Discrete
I/O Interface Modules

pet73842_ch02_017-045.indd 23 03/11/15 3:43 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

24 Chapter 2 PLC Hardware Components

• The zener diode (Z
D
) voltage rating sets the mini-

mum threshold level of voltage that can be detected.
• When light from the LED strikes the phototransistor,

it switches into conduction and the status of the push-
button is communicated in logic to the processor.

• The optical isolator not only separates the higher
AC input voltage from the logic circuits but also
prevents damage to the processor due to line volt-
age transients. In addition, this isolation also helps
reduce the effects of electrical noise, common in
the industrial environment, which can cause erratic
operation of the processor.

• For fault diagnosis, an input state LED indicator is
on when the input pushbutton is closed. This indica-
tor may be wired on either side of the optical isolator.

• An AC/DC type of input module is used for both AC
and DC inputs as the input polarity does not matter.

• A PLC input module will have either all inputs isolated
from each other with no common input connections or
groups of inputs that share a common connection.

Discrete input modules perform four tasks in the PLC
control system. They:

• Sense when a signal is received from a field device.
• Convert the input signal to the correct voltage level

for the particular PLC.
• Isolate the PLC from fluctuations in the input

signal’s voltage or current.
• Send a signal to the processor indicating which sen-

sor originated the signal.

Figure 2-15 shows the block diagram for one output of
a typical discrete output module. Like the input module,
it is composed of two basic sections: the power section
and the logic section, coupled by an isolation circuit. The
output interface can be thought of as an electronic switch
that turns the output load device on and off. Logic circuits
determine the output status. An output LED indicates the
status of the output signal.

A simplified diagram for a single output of a discrete
AC output module is shown in Figure 2-16. The operation
of the circuitsset can be summarized as follows:

• As part of its normal operation, the digital logic
circuitsset of the processor sets the output
status according to the program.

Figure 2-14 Simplified diagram for a single input of a discrete AC input module.

Bridge
rectifier

Input module
terminal strip

FilterFuse

Z

Threshold
detector

Internal module circuit

D

Optical
isolator

LED input
status indicator

Digital
logic

circuit

Common

Field wiring

L2

R3

L1

PB
R2 R1

C

Figure 2-15 Discrete AC output module block diagram.

Digital signal
from processor

Output status
indicator

Logic
circuits

Electronic
switch

Load

120 VAC

Logic

Power

L1

L2

Opto-electrical
isolation

pet73842_ch02_017-045.indd 24 03/11/15 3:43 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

PLC Hardware Components Chapter 2 25

• When the processor calls for an output load to be
energized, a voltage is applied across the LED of
the opto-isolator.

• The LED then emits light, which switches the pho-
totransistor into conduction.

• This in turn triggers the triac AC semiconductor
switch into conduction, allowing current to flow to
the output load.

• Since the triac conducts in either direction, the out-
put to the load is alternating current.

• The triac, rather than having ON and OFF status,
actually has LOW and HIGH resistance levels,
respectively. In its OFF state (HIGH resistance),
a small leakage current of a few milliamperes still
flows through the triac.

• As with input circuits, the output interface is usually
provided with LEDs that indicate the status of each
output.

• Fuses are normally required for the output module,
and they are provided on a per circuit basis, thus al-
lowing for each circuit to be protected and operated
separately. Some modules also provide visual indi-
cators for fuse status.

• The triac cannot be used to switch a DC load.
• For fault diagnosis, the LED output status indica-

tor is on whenever the PLC is commanding that the
output load be switched on.

Individual AC outputs are usually limited by the size
of the triac to 1 A or 2 A. The maximum current load
for any one module is also specified. To protect the out-
put module circuits, specified current ratings should not
be exceeded. For controlling larger loads, such as large

motors, a standard control relay is connected to the out-
put module. The contacts of the relay can then be used
to control a larger load or motor starter, as shown in
Figure 2-17. When a control relay is used in this manner,
it is called an interposing relay.

Discrete output modules are used to turn field output
devices either on or off. These modules can be used to
control any two-state device, and they are available in AC
and DC versions and in various voltage ranges and cur-
rent ratings. Output modules can be purchased with tran-
sistor, triac, or relay output as illustrated in Figure 2-18.
Triac outputs can be used only for control of AC devices,

Figure 2-16 Simplified diagram for a single output of a discrete AC
output module.

Optical
isolator

Field wiring

Triac
switch

Fuse

Output module
terminal strip

L1

Internal module circuit

LED output
status indicator

Digital
logic

circuit

Load L2

Figure 2-17 Interposing relay connection.
Source: Courtesy Tyco Electronics Ltd.

CR

Interposing
relay coil

OL
M

Motor
starter coil

T1 T2

L1

L2

L3

M M

L1 L2

CR

T3

M

Motor

pet73842_ch02_017-045.indd 25 03/11/15 3:43 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

26 Chapter 2 PLC Hardware Components

whereas transistor outputs can be used only for control
of DC devices. The discrete relay contact output module
uses electromechanical as the switching element. These
relay outputs can be used with AC or DC devices, but they
have a much slower switching time compared to solid-
state outputs. Allen-Bradley modules are color-coded for
identification as follows:

thereby allowing it to be set to whatever the field devices
require. Sinking and sourcing terminology applies only to
DC input and output circuits.

Allen-Bradley delineates between the various digi-
tal DC modules by sorting them into two categories:
Sinking and Sourcing. These terms are used to describe
a current signal flow relationship between field input and
output devices. If a device provides current when it is
ON, it is said to be sourcing current. Conversely, if a
device receives current when it is ON, it is said to be
sinking current.

Figures 2-19 and 2-20 show device connections for
both sourcing and sinking configurations:

• Conventional current (+ to −) is assumed.
• In sinking devices, current flows into the device’s

terminal from the module (the module provides, or
sources the current).

• In sourcing devices, current flows out of the
device’s terminal into the module (the module
receives, or sinks, the current).

• A sourcing I/O device or I/O module will always
have a connection directly to the positive side of the
DC power supply.

• A sinking I/O device or I/O module will always
have a connection directly to the negative side of the
DC power supply.

Figure 2-18 Relay, transistor, and triac switching elements.

Contact AC/DC

+

–

Coil

Load

Relay output

AC

Load

Triac output

DC

Load

Transistor output

Figure 2-19 Sinking and sourcing inputs.

0
1
2
3
4
5
6
7
(–)

Common

Sinking input
module

POS (+)

NEG (–)

Power
supply

Sourcing
sensor

Current

0
1
2
3
4
5
6
7

Common

Sourcing input
module

NEG (–)

POS (+) (+)

Power
supply

Sinking
sensor

Current

Color Type of I/O

Red AC inputs/outputs

Blue DC inputs/outputs

Orange Relay outputs

Green Specialty modules

Black I/O wiring; terminal blocks
are not removable

Certain DC I/O modules specify whether the module
is designed for interfacing with current-source or current-
sink devices. If the module is a current-sourcing module,
then the input or output device must be a current-sinking
device. Conversely, if the module is specified as current-
sinking, then the connected device must be current-
sourcing. Some modules allow the user to select whether
the module will act as current sinking or current sourcing,

pet73842_ch02_017-045.indd 26 03/11/15 3:43 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

PLC Hardware Components Chapter 2 27

• Input and output points that are sinking or sourc-
ing only can conduct current in only one direction.
Therefore, it is possible to connect the external sup-
ply and field device to the I/O point with current
trying to flow in the wrong direction, and the circuit
will not operate.

2.3 Analog I/O Modules
Earlier PLCs were limited to discrete or digital I/O in-
terfaces, which allowed only on/off-type devices to be
connected. This limitation meant that the PLC could have
only partial control of many process applications. Today,
however, a complete range of both discrete and analog
interfaces are available that will allow controllers to be
applied to practically any type of control process.

Discrete devices are inputs and outputs that have only
two states: on and off. In comparison, analog devices
represent physical quantities that can have an infinite
number of values. Typical analog inputs and outputs vary
from 0 to 20 mA, 4 to 20 mA, or 0 to 10 V. Figure 2-21
illustrates how PLC analog input and output modules
are used in measuring and displaying the level of fluid
in a tank. The analog input interface module contains the
circuitry necessary to accept an analog voltage or cur-
rent signal from the level transmitter field device. This
input is converted from an analog to a digital value for
use by the processor. The circuitry of the analog output

module accepts the digital value from the processor and
converts it back to an analog signal that drives the field
tank level meter.

Analog input modules normally have multiple input
channels that allow 4, 8, or 16 devices to be interface to
the PLC. The two basic types of analog input modules are
voltage sensing and current sensing. Input modules have
user-selectable dip switch settings to choose whether each
input will be a current or voltage input. Analog sensors
measure a varying physical quantity over a specific range
and generate a corresponding voltage or current signal.
Common physical quantities measured by a PLC analog
module include temperature, speed, level, flow, weight,
pressure, and position. For example, a sensor may measure
temperature over a range of 0 to 500°C, and output a corre-
sponding voltage signal that varies between 0 and 50 mV.

Figure 2-22 illustrates an example of a voltage sensing
input analog module used to measure temperature. The con-
nection diagram applies to an Allen-Bradley MicroLogic
4-channel analog thermocouple input module. A varying DC
voltage in the low millivolt range, proportional to the tem-
perature being monitored, is produced by the thermocouple.
This voltage is amplified and digitized by the analog input
module and then sent to the processor on command from a
program instruction. Because of the low voltage level of the
input signal, a twisted shielded pair cable is used in wiring
the circuit to reduce unwanted electrical noise signals that
can be induced in the conductors from other wiring. When
using an ungrounded thermocouple, the shield must be con-
nected to ground at the module end. To obtain accurate read-
ings from each of the channels, the temperature between the
thermocouple wire and the input channel must be compen-
sated for. A cold junction compensating (CJC) thermistor is
integrated in the terminal block for this purpose.

The transition of an analog signal to digital values is
accomplished by an analog-to-digital (A/D) converter,
the main element of the analog input module. Analog
voltage input modules are available in two types: unipolar

Figure 2-20 Sinking and sourcing outputs.

0
1
2
3
4
5
6
7

Common

Sourcing output
module

Current

Sinking output
module

Current

POS (+)

NEG (–)

Power
supply

Sourcing
field device

NEG (–)

POS (+)

(+)

Power
supply

Sinking
field device

0
1
2
3
4
5
6
7

Common
(–)

Figure 2-21 Analog input and output to a PLC.

Level
transmitter

PLC Level
indicator

Processor
Analog
input

module

Analog
output
module

pet73842_ch02_017-045.indd 27 03/11/15 3:43 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

28 Chapter 2 PLC Hardware Components

and bipolar. Unipolar modules can accept an input signal
that varies in the positive direction only. For example,
if the field device outputs 0 to +10 V, then the unipolar
modules would be used. Bipolar signals swing between a
maximum negative value and a maximum positive value.
For example, if the field device outputs −10 to +10 V a
bipolar module would be used. The resolution of an
analog input channel refers to the smallest change in
input signal value that can be sensed and is based on the
number of bits used in the digital representation. Analog
input modules must produce a range of digital values be-
tween a maximum and minimum value to represent the
analog signal over its entire span. Typical specifications
are as follows:

When connecting voltage sensing inputs, close adher-
ence to specified requirements regarding wire length is
important to minimize signal degrading and the effects of
electromagnetic noise interference induced along the con-
necting conductors. Current input signals, which are not
as sensitive to noise as voltage signals, are typically not
distance limited. Current sensing input modules typically
accept analog data over the range of 4 to 20 mA, but can
accommodate signal ranges of –20 to +20 mA. The loop
power may be supplied by the sensor or may be provided
by the analog output module as illustrated in Figure 2-23.
Shielded twisted pair cable is normally recommended for
connecting any type of analog input signal.

Field devices that provide an analog output as their sig-
nal are usually connected to transmitters, which in turn
send the analog signal to the module, as illustrated in
Figure 2-24. A transducer converts a field device’s vari-
able (e.g., pressure, temperature etc.) into a very low-level
electric signal (current or voltage) that can be amplified
by a transmitter and then input into the analog module.

The method user to wire two-, three-, and four-wire
sensors to an analog input module is illustrated in
Figure 2-25. The module does not provide loop power
for analog inputs. A separate power that matches the
transmitter specifications is used. All analog common

Ungrounded
thermocouple

+

–

+

–

Grounded
thermocoupleIN 0+

IN 0–

IN 1+

IN 1+

IN 3–

IN 3+
IN 2–

IN 2+

CJC–

CJC+

Figure 2-22 MicroLogix 4-channel analog thermocouple input module.
Source: Image Courtesy of Rockwell Automation, Inc.

Figure 2-23 Sensor and analog module supplied power.

Sensor supplied power Module supplied power

Sensor

4–20 mA loop

Power
supply

+ –
–

+ 4–20 mA loop

Sensor
+ –Power

supply

–

+

Span
of

analog
input

Bipolar
10 V −10 to +10 V

 5 V −5 to +5 V

Unipolar
10 V 0 to +10 V

 5 V 0 to +5 V

Resolution 0.3 mV

pet73842_ch02_017-045.indd 28 03/11/15 3:43 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

PLC Hardware Components Chapter 2 29

(ANL COM) points are electrically connected together
inside the module but not to earth ground. When wiring
single-ended analog input devices to the analog input
card, the number of total wires necessary can be limited
by using the ANALOG COMMON terminal, as shown
in Figure 2-26. Note that differential inputs are more
immune to noise than single-ended inputs.

The analog output interface module receives from
the processor digital data, which are converted into a
proportional voltage or current to control an analog field
device. The transition of a digital signal to analog values
is accomplished by a digital-to-analog (D/A) converter,
the main element of the analog output module. An analog
output signal is a continuous and changing signal that is
varied under the control of the PLC program. Common
devices controlled by a PLC analog output module in-
clude instruments, control valves, chart recorder, elec-
tronic drives, and other types of control devices that
respond to analog signals. They employ standard analog
output ranges such as ±5 V, ±10 V, 0 to 5 V, 0 to 10 V,
4 to 20 mA, or 0 to 20 mA.

Figure 2-27 illustrates the use of analog I/O modules
in a typical PLC control system. In this application the

Temperature
probe

Sensor
transducer

Transmitter

0 to 10 V
DC signal

Analog input
modual

Volts
DC

10

0
Time

1

1C

2

2C

3

3C

4

4C

Figure 2-24 Analog input module circuit.

Power
supply

Transmitter

Two-wire
transmitter

Input module

ANL COM

IN+
IN–

Input module
Transmitter

supply signal

Transmitter
supply signal

Three-wire
transmitter

Four-wire
transmitter

GND

ANL COM

IN+
IN–

Input module

ANL COM

IN+
IN–

+
+ –

+
–

+
–

–

Power
supply

+
–

Power
supply

+
–

Figure 2-25 Wiring two-, three-, and four-wire sensors to
an analog input module.

Power
supply

Transmitter
signal

Transmitter

Ground

supply signal

+ +

Transmitter
signal+

Transmitter
signal+

+ +

– IN 0 +

IN 1 +

IN 2 +

IN 3 +

IN 1 –

IN 2 –

IN 3 –

IN 0 –
ALL COM

ALL COM

ALL COM

ALL COM

Figure 2-26 Wiring single-ended analog input devices. Figure 2-27 Typical analog I/O control system.

Valve

Analog output

Analog input

Level
sensor

PLC

pet73842_ch02_017-045.indd 29 03/11/15 3:43 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

30 Chapter 2 PLC Hardware Components

PLC controls the amount of fluid placed in a holding
tank by adjusting the percentage of the valve open-
ing. The analog output from the PLC is used to control
the flow by controlling the amount of the valve open-
ing. The valve is initially open 100%. As the fluid level
in the tank approaches the preset point, the processor
modifies the output, which adjusts the valve to maintain
a set point.

Transducers produce either voltage or current proportional
to some engineering units such as temperature (°C or °F),
pressure (lb/in2), distance (cm), etc. Scaling refers to chang-
ing a quantity from one notation to another and involves:

Engineering units: The units a human uses and
understands
Transducer units: Either a voltage or current
Binary, raw, or machine units: The units the processor
requires

The SCP (Scale with Parameters) instruction in RSLogix
500 is used to produce a scaled output value that has a
linear relationship between the input and scaled values. It
allows you to take an analog input from a sensor and scale
it to the output units you require. Figure 2-28 illustrates
a typical application involving temperature measurement.
Setting up the SCP instruction to calculate the scaled

temperature value in degrees Celsius can be summarized
as follows:

• The Input parameter is the value to be scaled (in this
case analog input I:1.1)

• The Input Min parameter is the value that is read by
the analog card when the input is − 10V (in this
case −32768)

• The Input Max parameter is the value that is read
by the analog card when the input is 10V (in this
case 32767)

• The Scaled Min parameter is the lowest value you
want the SCP to calculate (in this case −100)

• The Scaled Max parameter is the highest value you
want the SCP to calculate (in this case 200)

• The Scaled Output parameter is the address where
you want to store the result of the SCP (in this
case N7:60)

The SCP instruction in Figure 2-29 is used to scale the
analog output to a proportional valve. The instruction di-
rects the analog output to provide a 4 to 20mA signal,
which is scaled to the valve position based on a percent-
age between 0 and 100. The module is scaled to represent
4 mA as the low signal and 20 mA as the high signal.

Degrees centigrade
(engineering units)

200

100

–100

–10

+200

–100

100

0

32,767

–32,768

+10V
+32,767

–10V
–32,768

10

+

–0

Probe

Transducer

Analog
module

Input
Information

stored in
binary units

I:1.1

–32768

–100

200

N7:60

32767

Scale with parameters
SCP
Input

Input_Min

Input_Max

SCP

Scaled_Min

Scaled_Max

Output

Input
maximum

Input
minimum

± DC voltage
 from transducer

Figure 2-28 Measuring temperature.

N7:21

0

6242

31208

O:1.0

100

Scale with parameters
SCP
Input

Input_Min

Input_Max

SCP

Scaled_Min

Scaled_Max

Output

Figure 2-29 Scaling
the analog output to a
proportional valve.

pet73842_ch02_017-045.indd 30 03/11/15 3:43 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

PLC Hardware Components Chapter 2 31

Scaling allows you to configure the module so that 4 mA
returns a value of 0% in engineering units and 20 mA re-
turns a value of 100% in engineering units. The execution
of the instruction can be summarized as follows:

• The proportional valve is connected to the PLC
output O:1.0.

• A 4 to 20 mA signal varies in magnitude to operate
the valve from closed to 100% open.

• The percent of the valve open can be found in loca-
tion N7:21.

• The PLC analog module provides a 4 to 20 mA
output signal for a number from 6,242 to 31,208.

2.4 Special I/O Modules
Many different types of I/O modules have been developed
to meet special needs. These include:

HIGH-SPEED COUNTER MODULE

The high-speed counter module is used to provide an
interface for applications requiring counter speeds
that surpass the capability of the PLC ladder program.
High-speed counter modules are used to count pulses
(Figure 2-30) from sensors, encoders, and switches that
operate at very high speeds. They have the electronics
needed to count independently of the processor. A typi-
cal count rate available is 0 to 100 kHz, which means
the module would be able to count 100,000 pulses
per second.

THUMBWHEEL MODULE

The thumbwheel module allows the use of thumbwheel
switches (Figure 2-31) for feeding information to the PLC
to be used in the control program.

TTL MODULE

The TTL module allows the transmitting and receiving of
TTL (Transistor-Transistor-Logic) signals. This module
allows devices that produce TTL-level signals to commu-
nicate with the PLC’s processor.

ENCODER-COUNTER MODULE

An encoder-counter module allows the user to read the
signal from an encoder (Figure 2-32) on a real-time basis
and stores this information so it can be read later by the
processor.

BASIC OR ASCII MODULE

The BASIC or ASCII module runs user-written BASIC
and C programs. These programs are independent of the
PLC processor and provide an easy, fast interface between
remote foreign devices and the PLC processor. Typical
applications include interfaces to bar code readers, robots,
printers, and displays.

Figure 2-30 High-speed counter module.
Source: Courtesy Control Technology Corporation.

High-speed pulses

Figure 2-31 Thumbwheel switch.
Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

Figure 2-32 Encoder.
Source: Photo courtesy of Allied Motion Technologies, Inc.

pet73842_ch02_017-045.indd 31 03/11/15 3:43 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

32 Chapter 2 PLC Hardware Components

STEPPER-MOTOR MODULE

The stepper-motor module provides pulse trains to a
stepper-motor translator, which enables control of a step-
per motor (Figure 2-33). The commands for the module
are determined by the control program in the PLC.

BCD-OUTPUT MODULE

The BCD-output module enables a PLC to operate devices
that require BCD-coded signals such as seven- segment
displays (Figure 2-34).

Some special modules are referred to as intelligent I/O
because they have their own microprocessors on board
that can function in parallel with the PLC. These include:

PID MODULE

The proportional-integral-derivative (PID) module
(Figure 2-35) is used in process control applications
that incorporate PID algorithms. An algorithm is a
complex program based on mathematical calculations.
A PID module allows process control to take place
outside the CPU. This arrangement prevents the CPU
from being burdened with complex calculations. The
basic function of this module is to provide the control
action required to maintain a process variable such as

Figure 2-34 Seven-segment display.
Source: Courtesy Red Lion Controls.

Figure 2-35 PID module.
Source: Courtesy Red Lion Controls.

Figure 2-36 PLC servo module.

PLC servo module

Outputs

Inputs

Servo
drive

Servo
motor

Encoder

Figure 2-33 Stepper-motor.
Source: Courtesy Sherline Products.

temperature, flow, level, or speed within set limits of a
specified set point.

MOTION AND POSITION CONTROL
MODULE

Motion and position control modules are used in applica-
tions involving accurate high-speed machining and pack-
aging operations. Intelligent position and motion control
modules permit PLCs to control stepper and servo mo-
tors. These systems require a drive, which contains the
power electronics that translate the signals from the PLC
module into signals required by the motor (Figure 2-36).

COMMUNICATION MODULES

Serial communications modules (Figure 2-37) are used to
establish point-to-point connections with other intelligent
devices for the exchange of data. Such connections are
normally established with computers, operator stations,
process control systems, and other PLCs. Communication
modules allow the user to connect the PLC to high-speed
local networks that may be different from the network
communication provided with the PLC.

pet73842_ch02_017-045.indd 32 03/11/15 3:44 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

PLC Hardware Components Chapter 2 33

INPUT THRESHOLD VOLTAGES

This discrete input module specification specifies two val-
ues: a minimum ON-state voltage that is the minimum
voltage at which logic 1 is recognized as absolutely ON;
and a maximum OFF-state voltage which is the voltage at
which logic 0 is recognized as absolutely OFF.

NOMINAL CURRENT PER INPUT

This value specifies the minimum input current that
the discrete input devices must be capable of driving to
operate the input circuit. This input current value, in con-
junction with the input voltage, functions as a threshold
to protect against detecting noise or leakage currents as
valid signals.

AMBIENT TEMPERATURE RATING

This value specifies what the maximum temperature of
the air surrounding the I/O modules should be for best
operating conditions.

INPUT ON/OFF DELAY

Also known as response time, this value specifies the
maximum time duration required by an input module’s
circuitry to recognize that a field device has switched ON
(input ON-delay) or switched OFF (input OFF-delay).
This delay is a result of filtering circuitry provided to pro-
tect against contact bounce and voltage transients. This
input delay is typically in the 9 to 25 ms range.

OUTPUT VOLTAGE

This AC or DC value specifies the magnitude (e.g., 5 V,
115 V, 230 V) and type (AC or DC) of user-supplied
voltage at which a discrete output module is designed to
operate. The output field device that the module interfaces
to the PLC must be matched to this specification. Output
modules are typically designed to operate within a range
of plus or minus 10% of the nominal output voltage rating.

OUTPUT CURRENT

These values specify the maximum current that a single
output and the module as a whole can safely carry under
load (at rated voltage). This rating is a function of the
module’s components and heat dissipation characteris-
tics. A device drawing more than the rated output current
results in overloading, causing the output fuse to blow. As
an example, the specification may give each output a cur-
rent limit of 1 A. The overall rating of the module current
will normally be less than the total of the individuals. The
overall rating might be 6 A because each of the eight de-
vices would not normally draw their 1 A at the same time.
Other names for the output current rating are maximum
continuous current and maximum load current.

2.5 I/O Specifications
Manufacturers’ specifications provide information about
how an interface device is correctly and safely used.
These specifications place certain limitations not only on
the I/O module but also on the field equipment that it can
operate. Some PLC systems support hot swappable I/O
modules designed to be changed with the power on and
the PLC operating. The following is a list of some typi-
cal manufacturers’ I/O specifications, along with a short
description of what is specified.

Typical Discrete I/O Module
Specifications

NOMINAL INPUT VOLTAGE

This discrete input module voltage value specifies the
magnitude (e.g., 5, 24, 230 V) and type (AC or DC)
of user-supplied voltage that a module is designed to
accept. Input modules are typically designed to operate
correctly without damage within a range of plus or minus
10% of the input voltage rating. With DC input modules,
the input voltage may also be expressed as an operating
range (e.g., 24 to 60 V DC) over which the module will
operate.

Figure 2-37 Serial communications module.
Source: Photo courtesy Automation Direct, www.automationdirect.com.

pet73842_ch02_017-045.indd 33 03/11/15 3:44 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

34 Chapter 2 PLC Hardware Components

Typical Analog I/O Module
Specifications

CHANNELS PER MODULE

Whereas individual circuits on discrete I/O modules are
referred to as points, circuits on analog I/O modules
are often referred to as channels. These modules nor-
mally have 4, 8, or 16 channels. Analog modules may
allow for either single-ended or differential connections.
Single-ended connections use a single ground terminal for
all channels or for groups of channels. Differential con-
nections use a separate positive and negative terminal for
each channel. If the module normally allows 16 single-
ended connections, it will generally allow only 8 differ-
ential connections. Single-ended connections are more
susceptible to electrical noise.

INPUT CURRENT/VOLTAGE RANGE(S)

These are the voltage or current signal ranges that an ana-
log input module is designed to accept. The input ranges
must be matched accordingly to the varying current or
voltage signals generated by the analog sensors.

OUTPUT CURRENT/VOLTAGE RANGE(S)

This specification defines the current or voltage signal
ranges that a particular analog output module is designed
to output under program control. The output ranges must
be matched according to the varying voltage or current
signals that will be required to drive the analog output
devices.

INPUT PROTECTION

Analog input circuits are usually protected against acci-
dentally connecting a voltage that exceeds the specified
input voltage range.

RESOLUTION

The resolution of an analog I/O module specifies how ac-
curately an analog value can be represented digitally. This
specification determines the smallest measurable unit of
current or voltage. The higher the resolution (typically
specified in bits or mV), the more accurately an analog
value can be represented.

INPUT IMPEDANCE AND CAPACITANCE

For analog I/Os, these values must be matched to the ex-
ternal device connected to the module. Typical ratings are
in Megohm (MΩ) and picofarads (pF).

COMMON-MODE REJECTION

Noise is generally caused by electromagnetic interference,
radio frequency interference, and ground loops. Common-
mode noise rejection applies only to differential inputs and

INRUSH CURRENT

An inrush current is a momentary surge of current that an
AC or DC output circuit encounters when energizing in-
ductive, capacitive, or filament loads. This value specifies
the maximum inrush current and duration (e.g., 20 A for
0.1 s) for which an output circuit can exceed its maximum
continuous current rating.

SHORT CIRCUIT PROTECTION

Short circuit protection is provided for AC and DC output
modules by either fuses or some other current-limiting
circuitry. This specification will designate whether the
particular module’s design has individual protection for
each circuit or if fuse protection is provided for groups
(e.g., 4 or 8) of outputs.

LEAKAGE CURRENT

This value specifies the amount of current still conducting
through an output circuit even after the output has been
turned off. Leakage current is a characteristic exhibited
by solid-state switching devices such as transistors and
triacs and is normally 1 to 2 mA. Leakage current is nor-
mally not large enough to falsely trigger an output device
but must be taken into consideration when switching very
low current sensitive devices.

ELECTRICAL ISOLATION

Recall that I/O module circuitry is electrically isolated to
protect the low-level internal circuitry of the PLC from
high voltages that can be encountered from field device
connections. The specification for electrical isolation,
typically 1500 or 2500 V AC, rates the module’s capacity
for sustaining an excessive voltage at its input or output
terminals.

POINTS PER MODULE

This specification defines the number of field inputs or
outputs that can be connected to a single module. Most
commonly, a discrete module will have 8, 16, or 32 cir-
cuits; however, low-end controllers may have only 2 or
4 circuits. Modules with 32 or 64 input or output bits are
referred to as high-density modules. Some modules pro-
vide more than one common terminal, which allows the
user to use different voltage ranges on the same card as
well as to distribute the current more effectively.

BACKPLANE CURRENT DRAW

This value indicates the amount of current the module
requires from the backplane. The sum of the backplane
current drawn for all modules in a chassis is used to select
the appropriate chassis power supply rating.

pet73842_ch02_017-045.indd 34 03/11/15 3:44 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

PLC Hardware Components Chapter 2 35

The CPU contains the similar type of microprocessor
found in a personal computer. The difference is that the
program used with the microprocessor is designed to facil-
itate industrial control rather than provide general-purpose
computing. The CPU executes the operating system, man-
ages memory, monitors inputs, evaluates the user logic
(ladder program), and turns on the appropriate outputs.

The CPU of a PLC system may contain more than one
processor. One advantage of using multiprocessing is that
the overall operating speed is improved. Each processor
has its own memory and programs, which operate simulta-
neously and independently. In such configurations the scan
of each processor is parallel and independent thus reducing
the total response time. Fault-tolerant PLC systems sup-
port dual processors for critical processes. These systems
allow the user to configure the system with redundant
(two) processors, which allows transfer of control to the
second processor in the event of a processor fault.

Associated with the processor unit will be a number of
status LED indicators to provide system diagnostic infor-
mation to the operator (Figure 2-40). Also, a keyswitch
may be provided that allows you to select one of the fol-
lowing three modes of operation: RUN, PROG, and REM.

RUN Position
• Places the processor in the Run mode
• Executes the ladder program and energizes output

devices
• Prevents you from performing online program edit-

ing in this position
• Prevents you from using a programmer/operator in-

terface device to change the processor mode

PROG Position
• Places the processor in the Program mode
• Prevents the processor from scanning or executing

the ladder program, and the controller outputs are
de-energized

refers to an analog module’s ability to prevent noise from
interfering with data integrity on a single channel and from
channel to channel on the module. Noise that is picked up
equally in parallel wires is rejected because the difference
is zero. Twisted pair wires are used to ensure that this type
of noise is equal on both wires. Common-mode rejection
is normally expressed in decibels or as a ratio.

2.6 The Central Processing
Unit (CPU)
The central processing unit (CPU) is built into single-unit
fixed PLCs while modular rack types typically use a plug-
in module. CPU, controller, and processor are all terms
used by different manufacturers to denote the same mod-
ule that performs basically the same functions. Processors
vary in processing speed and memory options. A processor
module can be divided into two sections: the CPU section
and the memory section (Figure 2-38). The CPU section
executes the program and makes the decisions needed by
the PLC to operate and communicate with other modules.
The memory section electronically stores the PLC pro-
gram along with other retrievable digital information.

The PLC power supply provides the necessary power
(typically 5 VDC) to the processor and I/O modules plugged
into the backplane of the rack (Figure 2-39). Power sup-
plies are available for most voltage sources encountered.
The power supply converts 115 VAC or 230 VAC into the
usable DC voltage required by the CPU, memory, and I/O
electronic circuitry. PLC power supplies are normally de-
signed to withstand momentary losses of power without
affecting the operation of the PLC. Hold-up time, which
is the length of time a PLC can tolerate a power loss, typi-
cally ranges from 10 ms to 3 s.

Figure 2-38 Sections of a PLC processor module.
Source: Courtesy Mitsubishi Automation.

Communication
interface

Processor module

Discrete
I/O

devices

Analog
I/O

devices

I/O modules

MemoryCPU
Power
supply

Figure 2-39 PLC power supply.

BackplanePower

Power
supply

pet73842_ch02_017-045.indd 35 03/11/15 3:44 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

36 Chapter 2 PLC Hardware Components

• Allows you to perform program entry and editing
• Prevents you from using a programmer/operator in-

terface device to change the processor mode

REM Position
• Places the processor in the Remote mode: either the

REMote Run, REMote Program, or REMote Test mode
• Allows you to change the processor mode from a

programmer/operator interface device
• Allows you to perform online program editing

The processor module also contains circuitry to com-
municate with the programming device. Somewhere on
the module you will find a connector that allows the PLC
to be connected to an external programming device. The
decision-making capabilities of PLC processors go far
beyond simple logic processing. The processor performs
other functions such as timing, counting, latching, com-
paring, motion control and complex math functions.

PLC processors have changed constantly due to ad-
vancements in computer technology and greater demand
from applications. Today, processors are faster and have
additional instructions added as new models are intro-
duced. Because PLCs are microprocessor based, they can
be made to perform tasks that a computer can do. In ad-
dition to their control functions, PLCs can be networked
to do supervisory control and data acquisition (SCADA).

Many electronic components found in processors and
other types of PLC modules are sensitive to electrostatic
voltages that can degrade their performance or damage

them. The following static control procedures should be
followed when handling and working with static-sensitive
devices and modules:

• Ground yourself by touching a conductive surface
before handling static-sensitive components.

• Wear a wrist strap that provides a path to bleed off
any charge that may build up during work.

• Be careful not to touch the backplane connector or
connector pins of the PLC system (always handle
the circuit cards by the edge if possible).

• Be careful not to touch other circuit components in
a module when you configure or replace its internal
components.

• When not in use, store module in its static-shield bag.
• If available, use a static-safe work station.

2.7 Memory Design
Memory is the element that stores information, pro-
grams, and data in a PLC. The user memory of a PLC
includes space for the user program as well as address-
able memory locations for storage of data. Data are
stored in memory locations by a process called writing.
Data are retrieved from memory by what is referred to
as reading.

The complexity of the program determines the amount
of memory required. Memory elements store individual
pieces of information called bits (for binary digits). The
amount of memory capacity is specified in increments of

Figure 2-40 Typical processor module.

Keyswitch

Memory
module

Hardware
address

Battery (battery provides
backup power for the

CMOS RAM)

FORCE

SLC 5/05 CPU

Front viewSide view

RUN

ENETFLT

RS232BATT

PROGRUN REM

Channel 0
RS232
(DH485, DF1,
or ASCII)

Channel 1
ethernet
(10/100Base-T)

pet73842_ch02_017-045.indd 36 03/11/15 3:44 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

PLC Hardware Components Chapter 2 37

1000 or in “K” increments, where 1 K is 1024 bytes of
memory storage (a byte is 8 bits).

The program is stored in the memory as 1s and 0s,
which are typically assembled in the form of 16-bit
words. Memory sizes are commonly expressed in thou-
sands of words that can be stored in the system; thus 2 K
is a memory of 2000 words, and 64 K is a memory of
64,000 words. The memory size varies from as small as
1 K for small systems to 32 MB for very large systems
(Figure 2-41). Memory capacity is an important prereq-
uisite for determining whether a particular processor will
handle the requirements of the specific application.

Memory location refers to an address in the CPU’s
memory where a binary word can be stored. A word usu-
ally consists of 16 bits. Each binary piece of data is a bit
and eight bits make up one byte (Figure 2-42). Memory

utilization refers to the number of memory locations re-
quired to store each type of instruction. A rule of thumb
for memory locations is one location per coil or contact.
One K of memory would then allow a program contain-
ing 1000 coils and contacts to be stored in memory.

The memory of a PLC may be broken into sections
that have specific functions. Sections of memory used
to store the status of inputs and outputs are called input
status files or tables and output status files or tables
(Figure 2-43). These terms simply refer to a location
where the status of an input or output device is stored.
Each bit is either a 1 or 0, depending on whether the
input is open or closed. A closed contact would have
a binary 1 stored in its respective location in the input
table, whereas an open contact would have a 0 stored.
A lamp that is ON would have a 1 stored in its respec-
tive location in the output table, whereas a lamp that
is OFF would have a 0 stored. Input and output image
tables are constantly being revised by the CPU. Each
time a memory location is examined, the table changes
if the contact or coil has changed state.

PLCs execute memory-checking routines to be sure
that the PLC memory has not been corrupted. This
memory checking is undertaken for safety reasons.
It helps ensure that the PLC will not execute if memory
is corrupted.

2.8 Memory Types
Memory can be placed into two general categories: vola-
tile and nonvolatile. Volatile memory will lose its stored
information if all operating power is lost or removed.
Volatile memory is easily altered and is quite suitable for
most applications when supported by battery backup.

Nonvolatile memory has the ability to retain stored
information when power is removed accidentally or in-
tentionally. As the name implies, programmable logic
controllers have programmable memory that allows users

Figure 2-41 Typical PLC memory sizes.

MicroLogic 1000
Controller
1 K memory
Up to 20 inputs
Up to 14 outputs

1 K

SLC 500
Controller
Up to 64 K memory
Up to 4096 inputs
and outputs

64 K

ControlLogix
Controller
2 to 32 M memory
Up to 128,000 inputs
and outputs

32 M

Figure 2-42 Memory bit, byte, and word.

Bit

1 1 1 10 0 00 0 0 0 0 0 0 00

Word

Byte

Figure 2-43 Input and output tables.

Processor memory

Input image table

Input
module

Input devices

0000000000000010
0000000000000000
0000000000000000
0000000000000000
0000000000000000

Processor memory

Output image table

Output
module

0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000010000000

Output OFF

Output ON

Closed

Open

pet73842_ch02_017-045.indd 37 03/11/15 3:44 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

38 Chapter 2 PLC Hardware Components

UV EPROMs (ultraviolet erasable programmable read-
only memory) can only be erased with an ultraviolet light.
EPROM memory is used to back up, store, or transfer
PLC programs.

Electrically erasable programmable read-only
memory (EEPROM) is a nonvolatile memory that offers
the same programming flexibility as does RAM. The
EEPROM can be electrically overwritten with new data
instead of being erased with ultraviolet light. Because the
EEPROM is nonvolatile memory, it does not require bat-
tery backup. It provides permanent storage of the program
and can be changed easily using standard programming
devices. Typically, an EEPROM memory module is used
to store, back up, or transfer PLC programs (Figure 2-45).

Flash EEPROMs are similar to EEPROMs in that they
can only be used for backup storage. The main difference
comes in the flash memory: they are extremely fast at sav-
ing and retrieving files. In addition, they do not need to
be physically removed from the processor for reprogram-
ming; this can be done using the circuitry within the pro-
cessor module in which they reside. Flash memory is also
sometimes built into the processor module (Figure 2-46),
where it automatically backs up parts of RAM. If power
fails while a PLC with flash memory is running, the PLC
will resume running without having lost any working data
after power is restored.

to develop and modify control programs. This memory is
made nonvolatile so that if power is lost, the PLC holds
its programming.

Read Only Memory (ROM) stores programs, and
data cannot be changed after the memory chip has been
manufactured. ROM is normally used to store the pro-
grams and data that define the capabilities of the PLC.
ROM memory is nonvolatile, meaning that its contents
will not be lost if power is lost. ROM is used by the PLC
for the operating system. The operating system is burned
into ROM by the PLC manufacturer and controls the sys-
tem software that the user uses to program the PLC. When
Allen Bradley burns the operating system into memory it
is called PROM (programmable read-only memory).

Random Access Memory (RAM), sometimes re-
ferred to as read-write (R/W) memory, is designed so that
information can be written into or read from the memory.
RAM is used as a temporary storage area of data that may
need to be quickly changed. RAM is volatile, meaning
that the data stored in RAM will be lost if power is lost. A
battery backup is required to avoid losing data in the event
of a power loss (Figure 2-44). Most PLCs use CMOS-
RAM technology for user memory. CMOS-RAM chips
have very low current draw and can maintain memory
with a lithium battery for an extended time, two to five
years in many cases. Some processors have a capacitor
that provides at least 30 minutes of battery backup when
the battery is disconnected and power is OFF.

Erasable Programmable Read-Only Memory
(EPROM) provides some level of security against unau-
thorized or unwanted changes in a program. EPROMs are
designed so that data stored in them can be read, but not
easily altered without special equipment. For example,

Figure 2-44 Battery used to back up processor RAM.

+

–

Figure 2-45 EEPROM memory module is used to store,
back up, or transfer PLC programs.

EEPROM
(nonvolatile)

Program
backup

Parameters

RAM
(volatile)

Executed
program

Current
data

Memory
bits,

timers,
counters

Figure 2-46 Flash memory card installed in a socket on
the processor.

Flash
Card

Processor Module

pet73842_ch02_017-045.indd 38 03/11/15 3:44 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

PLC Hardware Components Chapter 2 39

2.9 Programming Terminal Devices
A programming terminal device is needed to enter, mod-
ify, and troubleshoot the PLC program. PLC manufac-
turers use various types of programming devices. The
simplest type is the hand-held type programmer shown
in Figure 2-47. This proprietary programming device has
a connecting cable so that it can be plugged into a PLC’s
programming port. Certain controllers use a plug-in panel
rather than a hand-held device.

Hand-held programmers are compact, inexpensive,
and easy to use. These units contain multifunction keys
and a liquid-crystal display (LCD) or light-emitting
diode (LED) window. There are usually keys for instruc-
tion entering and editing, and navigation keys for mov-
ing around the program. Hand-held programmers have
limited display capabilities. Some units will display only
the last instruction that has been programmed, whereas
other units will display from two to four rungs of ladder
logic. So-called intelligent hand-held programmers are
designed to support a certain family of PLCs from a spe-
cific manufacturer.

The most popular method of PLC programming is to
use a personal computer (PC) in conjunction with the
manufacturer’s programming software (Figure 2-48).
Typical capabilities of the programming software include
online and offline program editing, online program moni-
toring, program documentation, diagnosing malfunctions
in the PLC, and troubleshooting the controlled system.
Hard-copy reports generated in the software can be
printed on the computer’s printer. Most software pack-
ages will not allow you to develop programs on another
manufacturer’s PLC. In some cases, a single manufac-
turer will have multiple PLC families, each requiring its
own software to program.

2.10 Recording and Retrieving Data
Printers are used to provide hard-copy printouts of the
processor’s memory in ladder program format. Lengthy
ladder programs cannot be shown completely on a screen.
Typically, a screen shows a maximum of five rungs at a
time. A printout can show programs of any length and
analyze the complete program.

The PLC can have only one program in memory at
a time. To change the program in the PLC, it is neces-
sary either to enter a new program directly from the key-
board or to download one from the computer hard drive.
Some CPUs support the use of a memory cartridge that
provides portable EEPROM storage for the user program
(Figure 2-49). The cartridge can be used to copy a pro-
gram from one PLC to another similar type PLC.

2.11 Human Machine Interfaces
(HMIs)
In the past, the typical user interface to a control system
consisted of a panel with switches, pushbuttons, pilot lights,
gauges, analog meters, and the like. With the advent of

Figure 2-47 Hand-held programming terminal.

Figure 2-48 Personal computer used as the programming
device.

Serial port

Laptop computer

Processor

Software

Figure 2-49 Memory cartridge provides portable storage
for user program.

Memory cartridge

pet73842_ch02_017-045.indd 39 03/11/15 3:44 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

40 Chapter 2 PLC Hardware Components

digital control systems, larger hard-wired panels have been
replaced by a computer screen with process graphics and
operator commands entered via a keyboard (Figure 2-50).

Human machine interfaces give the ability to the op-
erator and to management to view the operation in real
time. Through personal computer–based setup software,
you can configure display screens to:

• Replace hardwired pushbuttons and pilot lights
with realistic-looking icons. The machine operator
need only touch the display panel to activate the
pushbuttons.

• Show operations in graphic format for easier viewing.
• Allow the operator to change timer and counter pre-

sets by touching the numeric keypad graphic on the
touch screen.

• Show alarms, complete with time of occurrence and
location.

• Display variables as they change over time.

The Allen-Bradley Pico GFX-70 controller, shown in
Figure 2-51, serves as a controller with HMI capabili-
ties. This device consists of three modular parts: an HMI,
 processor/power supply, and I/O modules.

The display/keypad can be used as an operator inter-
face or can be linked to control operations to provide real-
time feedback. It has the ability to show text, date and
time, as well as custom messages and bitmap graphics,

Figure 2-51 Allen-Bradley Pico GFX-70 controller.
Source: Image Courtesy of Rockwell Automation, Inc.

HMI Package

I/O
Server

Graphic
Screen

Communication
ports

PLC

Tag Database

Start Stop

Figure 2-52 General structure of a HMI package.

Figure 2-50 Human Machine Interface (HMI).
Source: Courtesy of Nercon.

allowing operators to acknowledge fault messages, enter
values, and initiate actions. Users can create both the
control program and HMI functionality using a personal
computer with PicoSoft Pro software installed or the con-
troller’s on-board display buttons.

Human Machine Interfaces (HMIs), are also referred to
as User Interface, Operator Panel, or Terminal and provide a
means of controlling, monitoring, managing, and/or visual-
izing device processes. They can be located on the machine
or in centralized control rooms. The general structure of an
HMI package is shown in Figure 2-52. The tag database vari-
ables are programmed to interact with the graphic screen ob-
jects and communicate with the PLC through the I/O server.

The design of the HMI application plays a critical role
in determining the operator’s ability to effectively man-
age the operation, particularly in response to abnormal
situations. The major tasks in the development of an HMI
application are:

• Set up the communication with the PLC. This
involves configuring all necessary software and
hardware components.

pet73842_ch02_017-045.indd 40 03/11/15 3:44 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

PLC Hardware Components Chapter 2 41

• Create the tag database. Most HMI packages pro-
vide a way to import tags from the PLC program-
ming software.

• Insert the graphical objects on the screen. Graphics
are drawn or imported from a library of common
objects.

• Animate the objects. There are two basic types
of animation: user input and display. User input
types allow an operator to change tag values. A
display animation allows a value to be displayed
and also allows an object to change shape, position,
and color.

Many different types of HMI hardware and software
features are available. These include:

HMI MONITOR AND ENCLOSURE

HMI operator panels typically contain monochrome or
256 color display screens. These systems often commu-
nicate directly with the PLC to read or write memory
locations.

• A monochrome monitor uses one color for the back-
ground and another to display text or images on the
screen.

• Color displays enable clearer process representation
and in general brighten up their systems. The color
convention for status and alarms should follow the
same convention as their hardwired equivalents,
namely:
 - Red—for alarm, danger, and stop
 - Yellow—for caution and risk of danger
 - Green—for ready, running, and safe condition

• Screen resolution is expressed as width × height,
with the units in pixels.

• Screen memory is expressed in Megabytes (MB).
• The environmental certification refers to the type

of electrical enclosure used to protect their contents
from troublesome operating conditions such as
dust, liquids, and extreme variations in temperature
(Figure 2-53).

• The screen may or may not be touch-sensitive. The
touch-sensitive screen allows for more devices and
data to be displayed in a smaller area. Detailed in-
formation about an object can be accessed by touch-
ing the object.

ALARMS

Alarms are messages which indicate that a fault condition
is present (Figure 2-54). An alarm summary can present a
complete list of timestamped active alarms. Typically an
alarm can exist in the following states:

Figure 2-53 HMI installed in an industrial environment.
Source: Photo Courtesy PC Enclosures, http://www.pcenclosures.net.

ALARM STATUS

System pump-1 flow System pump-2 flow

Tank low levelRecirc-1 flow

Fluid high temp Fluid low temp

Figure 2-54 Typical alarm status screen.

• Inactive—The condition being monitored does not
have any faults present, and there is no associated
alarm message waiting to be acknowledged.

• Active—A fault condition is present, and the alarm
message has not been acknowledged by the operator.

• Acknowledged—The fault condition is present, and
the operator has acknowledged the alarm message.

• OK - The fault condition is no longer present,
but the operator has not acknowledged the alarm
message yet.

EVENT HISTORY

An event history presents a time-stamped list of all sig-
nificant events that have occurred in the process. Many
problems within the plant or equipment may occur when
no one is monitoring the system, and intermittent prob-
lems may be difficult to diagnose without a history of pre-
vious issues.

TREND

Values of important process variables, such as flow, tem-
perature, and production rate, over a period of time are
shown by this type of display. This type of display pro-
vides the ability to chart the progress of the process in
real time, providing the same function as a strip chart

pet73842_ch02_017-045.indd 41 03/11/15 3:44 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

42 Chapter 2 PLC Hardware Components

recorder. For example, suppose you are monitoring pres-
sure of a Pounds per Square Inch Gauge (psig) as shown
in Figure 2-55. According to the table, you can see that it’s
OK right now, but that’s all you know. This trend shows
the pressure oscillating around a known good level. We
may want to check on the cause of oscillation, but there
appears to be no immediate problem.

START
MOTER

STOP
MOTER

CONFIG
SCREEN

AUTO Running

MOTOR
SPEED

SELECT MODE

MOTOR STATUS

MODE STATUS
MANUAL

AUTOMATIC

Figure 2-56 Typical motor control graphics.

Current Pressure

235.2 psig

300

250

200

150

100

50

psig
2 Hrs.

250 psig 300 psig

Alarm Level

Alarm

Shutdown Level

Shutdown

Figure 2-55 Trend monitoring of a pressure gauge.

GRAPHICS LIBRARY

The graphics library contained within an HMI develop-
ment package provides buttons, lights, switches, sliders,
meters, fills, and other graphic objects (Figure 2-56). It
saves design time by providing graphics and faceplates
for numerous industrial control devices that would other-
wise have to be created manually. Librarian applications
may include easy-to-use features for resizing, changing
color scheme, and orientation of objects, as well as build-
ing your own graphics into the library.

pet73842_ch02_017-045.indd 42 03/11/15 3:44 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

PLC Hardware Components Chapter 2 43

CHAPTER 2 REVIEW QUESTIONS

1. What is the function of a PLC input interface
module?

2. What is the function of a PLC output interface
module?

3. With reference to a PLC rack:
a. What is a remote rack?
b. Why are remote racks used?

4. How does the processor identify the location of a
specific input or output device?

5. List the three basic elements of rack/slot-based
addressing.

6. Compare bit level and word level addressing.

7. In what way does tag-based addressing differ from
rack/slot-based addressing?

8. What do PC-based control systems use to interface
with field devices?

9. What type of I/O modules have both inputs and
outputs connected to them?

10. In addition to field devices, what other connections
are made to a PLC module?

11. Most PLC modules use plug-in wiring terminal
strips. Why?

12. What are the advantage and the disadvantage of
using high-density modules?

13. With reference to PLC discrete input modules:
a. What types of field input devices are suitable for

use with them?
b. List three examples of discrete input devices.

14. With reference to PLC discrete output modules:
a. What types of field output devices are suitable

for use with them?
b. List three examples of discrete output devices.

15. Explain the function of the backplane of a PLC
rack.

16. What is the function of the optical isolator circuit
used in discrete I/O module circuits?

17. Name the two distinct sections of an I/O module.

18. List four tasks performed by a discrete input
module.

19. What electronic element can be used as the switch-
ing device for a 120 VAC discrete output interface
module?

20. With reference to discrete output module current
ratings:

a. What is the maximum current rating for a typical
120 VAC output module?

b. Explain one method of handling outputs with
larger current requirements.

21. What electronic element can be used as the switch-
ing device for DC discrete output modules?

22. A discrete relay type output module can be used to
switch either AC or DC load devices. Why?

23. With reference to sourcing and sinking I/O modules:
a. What current relationship are the terms sourcing

and sinking used to describe?
b. If an I/O module is specified as a current-sinking

type, then which type of field device (sinking or
sourcing) it is electrically compatible with?

24. Compare discrete and analog I/O modules with
respect to the type of input or output devices with
which they can be used.

25. Explain the function of the analog-to-digital (A/D)
converter circuit used in analog input modules.

26. Explain the function of the digital-to-analog (D/A)
converter circuit used in analog output modules.

27. Name the two general sensing classifications for
analog input modules.

28. List five common physical quantities measured by
a PLC analog input module.

29. What type of cable is used when connecting a ther-
mocouple to a voltage sensing analog input mod-
ule? Why?

30. Explain the difference between a unipolar and bi-
polar analog input module.

31. The resolution of an analog input channel is speci-
fied as 0.3 mV. What does this tell you?

32. In what two ways can the loop power for current
sensing input modules be supplied?

33. List three field devices that are commonly con-
trolled by a PLC analog output module.

34. State one application for each of the following
special I/O modules:
a. High-speed counter module
b. Thumbwheel module
c. TTL module
d. Encoder-counter module
e. BASIC or ASCII module
f. Stepper-motor module
g. BCD-output module

pet73842_ch02_017-045.indd 43 03/11/15 3:44 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

44 Chapter 2 PLC Hardware Components

d. location
e. utilization

45. With reference to the I/O image tables:
a. What information is stored in PLC input and

output tables?
b. What is the input status of a closed switch

stored as?
c. What is the input status of an open switch

stored as?
d. What is the status of an output that is ON

stored as?
e. What is the status of an output that is OFF

stored as?

46. Why do PLCs execute memory-checking
routines?

47. Compare the memory storage characteristics of
volatile and nonvolatile memory elements.

48. What information is normally stored in the ROM
memory of a PLC?

49. What information is normally stored in the RAM
memory of a PLC?

50. What information is normally stored in an
EEPROM memory module?

51. What are the advantages of a processor that utilizes
a flash memory card?

52. List three functions of a PLC programming termi-
nal device.

53. Give one advantage and one limitation to the use of
hand-held programming devices.

54. What is required for a personal computer to be used
as a PLC programming terminal?

55. List four important capabilities of PLC program-
ming software.

56. How many programs can a PLC have stored in
memory at any one time?

57. Outline four functions that an HMI interface screen
can be configured to perform.

58. List the four major tasks in the development of an
HMI application.

59. What information does an HMI trend display
convey?

60. Define the term scaling as it applies to PLC inputs
and outputs.

61. What is the function of a transducer?

62. In a tag based PLC memory structure, what is the
function of a base tag and an alias tag?

35. List one application for each of the following intel-
ligent I/O modules:
a. PID module
b. Motion and position control module
c. Communication module

36. Write a short explanation for each of the following
discrete I/O module specifications:
a. Nominal input voltage
b. Input threshold voltages
c. Nominal current per input
d. Ambient temperature rating
e. Input ON/OFF delay
f. Output voltage
g. Output current
h. Inrush current
i. Short circuit protection
j. Leakage current
k. Electrical isolation
l. Points per module
m. Backplane current draw

37. Write a short explanation for each of the following
analog I/O module specifications:
a. Channels per module
b. Input current/voltage range(s)
c. Output current/voltage range(s)
d. Input protection
e. Resolution
f. Input impedance and capacitance
g. Common-mode rejection

38. Compare the function of the CPU and memory sec-
tions of a PLC processor.

39. With reference to the PLC chassis power supply:
a. What conversion of power takes place within the

power supply circuit?
b. Explain the term hold-up time as it applies to the

power supply.

40. Explain the purpose of a redundant PLC processor.

41. Describe three typical modes of operation that can
be selected by the keyswitch of a processor.

42. State five other functions, in addition to simple
logic processing, that PLC processors are capable
of performing.

43. List five important procedures to follow when han-
dling static-sensitive PLC components.

44. Define each of the following terms as they apply to
the memory element of a PLC:
a. writing
b. reading
c. bits

pet73842_ch02_017-045.indd 44 03/11/15 3:44 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

PLC Hardware Components Chapter 2 45

CHAPTER 2 PROBLEMS

1. A discrete 120 VAC output module is to be used to
control a 230 VDC solenoid valve. Draw a diagram
showing how this could be accomplished using an
interposing relay.

2. Assume a thermocouple, which supplies the input
to an analog input module, generates a linear volt-
age of from 20 to 50 mV when the temperature
changes from 750 to 1250°F. How much voltage
will be generated when the temperature of the
thermocouple is at 1000°F?

3. With reference to I/O module specifications:
a. If the ON-delay time of a given discrete input

module is specified as 12 ms, how much is this
expressed in seconds?

b. If the output leakage current of a discrete output
module is specified as 950 μA, how much is this
expressed in amperes?

c. If the ambient temperature rating for an I/O
module is specified as 60°C, how much is this
expressed in degrees Fahrenheit?

4. Create a five-digit code using the SLC 500 rack/
slot-based addressing format for each of the
following:
a. A pushbutton connected to terminal 5 of module

group 2 located on rack 1.
b. A lamp connected to terminal 3 of module

group 0 located on rack 2.

5. Assume the triac of an AC discrete output module
fails in the shorted state. How would this affect the
device connected to this output?

6. A personal computer is to be used to program sev-
eral different PLCs from different manufacturers.
What would be required?

pet73842_ch02_017-045.indd 45 03/11/15 3:44 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

46

Photo Courtesy Baumer Electric.

3
Number Systems and Codes

Chapter Objectives

After completing this chapter, you will be able to:

• Define the decimal, binary, octal, and hexadecimal
numbering systems and be able to convert from one
numbering or coding system to another

• Explain the BCD, Gray, and ASCII code systems

• Define the terms bit, byte, word, least significant bit
(LSB), and most significant bit (MSB) as they apply to
binary memory locations

• Add, subtract, multiply, and divide binary numbers

Using PLCs requires us to become familiar with
other number systems besides decimal. Some
PLC models and individual PLC functions use
other numbering systems. This chapter deals
with some of these numbering systems, includ-
ing binary, octal, hexadecimal, BCD, Gray, and
ASCII codes. The basics of each system, as well
as conversion from one system to another, are
explained.

0111
0110

0101
0100

1100

1101

1111

1110

1010
10111001

1000

0000

0001

0011

0010

1
1

1
0

Light source

Sensors

pet73842_ch03_046-060.indd 46 03/11/15 3:50 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Number Systems and Codes Chapter 3 47

3.1 Decimal System
Knowledge of different number systems and digital codes
is quite useful when working with PLCs or with almost
any type of digital computer. This is true because a basic
requirement of these devices is to represent, store, and op-
erate on numbers. In general, PLCs work on binary num-
bers in one form or another; these are used to represent
various codes or quantities.

The decimal system, which is most common to us, has
a base of 10. The radix or base of a number system de-
termines the total number of different symbols or digits
used by that system. For instance, in the decimal system,
10 unique numbers or digits—i.e., the digits 0 through 9—
are used: the total number of symbols is the same as the base,
and the symbol with the largest value is 1 less than the base.

The value of a decimal number depends on the dig-
its that make up the number and the place value of each
digit. A place (weight) value is assigned to each position
that a digit would hold from right to left. In the decimal
system the first position, starting from the rightmost po-
sition, is 0; the second is 1; the third is 2; and so on up
to the last position. The weighted value of each position
can be expressed as the base (10 in this case) raised to
the power of the position. For the decimal system then,
the position weights are 1, 10, 100, 1000, and so on.
Figure 3-1 illustrates how the value of a decimal number
can be calculated by multiplying each digit by the weight
of its position and summing the results.

3.2 Binary System
The binary system uses the number 2 as the base. The
only allowable digits are 0 and 1. With digital circuits it is
easy to distinguish between two voltage levels (i.e., +5 V
and 0 V), which can be related to the binary digits 1 and 0
(Figure 3-2). Therefore, the binary system can be applied
quite easily to PLCs and computer systems.

Since the binary system uses only two digits, each
position of a binary number can go through only two

changes, and then a 1 is carried to the immediate left po-
sition. Table 3-1 shows a comparison among four com-
mon number systems: decimal (base 10), octal (base 8),
hexadecimal (base 16), and binary (base 2). Note that all
numbering systems start at zero.

The decimal equivalent of a binary number can be de-
termined in a manner similar to that used for a decimal
number. This time the weighted values of the positions
are 1, 2, 4, 8, 16, 32, 64, and so on. The weighted value,
instead of being 10 raised to the power of the position, is
2 raised to the power of the position. Figure 3-3 illustrates
how the binary number 10101101 is converted to its deci-
mal equivalent: 173.

Each digit of a binary number is known as a bit. In a
PLC the processor-memory element consists of hundreds
or thousands of locations. These locations, or registers,

Decimal Octal Hexadecimal Binary

 0 0 0 0

 1 1 1 1

 2 2 2 10

 3 3 3 11

 4 4 4 100

 5 5 5 101

 6 6 6 110

 7 7 7 111

 8 10 8 1000

 9 11 9 1001

 10 12 A 1010

 11 13 B 1011

 12 14 C 1100

 13 15 D 1101

 14 16 E 1110

 15 17 F 1111

 16 20 10 10000

17 21 11 10001

18 22 12 10010

19 23 13 10011

20 24 14 10100

Table 3-1 Number System Comparisons

Figure 3-1 Weighted value in the decimal system.

21 9 6

03 2 1

2

60

900

1000

1962

2 × 100 =
6 × 101 =
9 × 102 =
1 × 103 =

=
=
=
=

2 × 1

6 × 10

9 × 100

1 × 1000

10

(Sum of products)

Decimal
number

10

Figure 3-2 Digital signal waveform.

+5

0

Volts

Time

High (H) (1)

Low (L) (0)

pet73842_ch03_046-060.indd 47 03/11/15 3:50 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

48 Chapter 3 Number Systems and Codes

there is a remainder, it is placed in the LSB of the binary
number. If there is no remainder, a 0 is placed in the LSB.
The result of the division is brought down and the pro-
cess is repeated until the result of successive divisions has
been reduced to 0.

Even though the binary system has only two digits, it
can be used to represent any quantity that can be repre-
sented in the decimal system. All PLCs work internally in
the binary system. The processor, being a digital device,
understands only 0s and 1s, or binary.

Computer memory is, then, a series of binary 1s and 0s.
Figure 3-7 shows the output status file for an Allen-Bradley
SLC 500 modular chassis, which is made up of single
bits grouped into 16-bit words. One or more 16-bit out-
put file word is reserved for each slot in the chassis. Each
bit represents the ON or OFF state of one output point.

are referred to as words. Each word is capable of storing
data in the form of binary digits, or bits. The number of
bits that a word can store depends on the type of PLC sys-
tem used. Sixteen-bit and 32-bit words are the most com-
mon. Bits can also be grouped within a word into bytes.
A group of 8 bits is a byte, and a group of 2 or more bytes
is a word. Figure 3-4 illustrates a 16-bit word made up
of 2 bytes. The least significant bit (LSB) is the digit that
represents the smallest value, and the most significant bit
(MSB) is the digit that represents the largest value. A bit
within the word can exist only in two states: a logical 1 (or
ON) condition, or a logical 0 (or OFF) condition.

PLC memory is organized using bytes, single words,
or double words. Older PLCs use 8-bit or 16-bit memory
words while newer systems, such as the ControlLogix plat-
form from Allen-Bradley, use 32-bit double words. The
size of the programmable controller memory relates to the
amount of user program that can be stored. If the mem-
ory size is 1 K word (Figure 3-5), it can store 1024 words
or 16,384 (1024 × 16) bits of information using 16-bit
words, or 32,768 (1024 × 32) bits using 32-bit words.

To convert a decimal number to its binary equivalent,
we must perform a series of divisions by 2. Figure 3-6
illustrates the conversion of the decimal number 47 to
binary. We start by dividing the decimal number by 2. If

Figure 3-3 Converting a binary number to a decimal number.

11 1 0

1

0

4

8

0

32

0

128

173

1 × 20 =
0 × 21 =
1 × 22 =
1 × 23 =
0 × 24 =
1 × 25 =
0 × 26 =
1 × 2

7 =

=
=
=
=
=
=
=
=

1 × 1

0 × 2

1 × 4

1 × 8

0 × 16

1 × 32

0 × 64

1 × 128

10

(Sum of products)

1010

07 2 13456

2

Decimal number

Binary
number

Figure 3-4 A 16-bit word.

16-bit word

Upper byte Lower byte

10 1 1 0 0 1 1 0 0 0 1 1 1 0 1

LSBBitMSB

Figure 3-5 1-K word memory.

0 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1

15

Bits

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0000

0001

0002

0003

0004

0005

1018

1019

1020

1021

1022

1023

Word
Addresses

Figure 3-6 Converting a decimal number to a binary
number.

1

1

1

1

0

1

÷ 2 = 23 with a remainder of

÷ 2 = 11 with a remainder of

÷ 2 = 5 with a remainder of

÷ 2 = 2 with a remainder of

÷ 2 = 1 with a remainder of

÷ 2 =

23

11

5

2

1

47 LSB

MSB

101111

with a remainder of

Decimal number

Binary number

pet73842_ch03_046-060.indd 48 03/11/15 3:50 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Number Systems and Codes Chapter 3 49

These points are numbered 0 through 15 across the top
row from right to left. The column on the far right lists the
output module address. Although the table in Figure 3-7
illustrates sequentially addressed output status file words,
in reality a word is created in the table only if the proces-
sor finds an output module residing in a particular slot. If
the slot is empty, no word will be created.

3.3 Negative Numbers
If a decimal number is positive, it has a plus sign; if a
number is negative, it has a minus sign. In binary number
systems, such as used in a PLC, it is not possible to use
positive and negative symbols to represent the polarity of
a number. One method of representing a binary number as
either a positive or negative value is to use an extra digit,
or sign bit, at the MSB side of the number. In the sign bit
position, a 0 indicates that the number is positive, and a
1 indicates a negative number (Table 3-2).

Another method of expressing a negative number in
a digital system is by using the complement of a binary
number. To complement a binary number, change all the
1s to 0s and all the 0s to 1s. This is known as the 1’s
complement form of a binary number. For example, the
1’s complement of 1001 is 0110.

The most common way to express a negative binary
number is to show it as a 2’s complement number. The
2’s complement is the binary number that results when
1 is added to the 1’s complement. This system is shown
in Table 3-3. A zero sign bit means a positive number,
whereas a 1 sign bit means a negative number.

Using the 2’s complement makes it easier for the PLC
to perform mathematical operations. The correct sign bit
is generated by forming the 2’s complement. The PLC
knows that a number retrieved from memory is a nega-
tive number if the MSB is 1. Whenever a negative num-
ber is entered from a keyboard, the PLC stores it as a 2’s
complement. What follows is the original number in true
binary followed by its 1’s complement, its 2’s comple-
ment, and finally, its decimal equivalent.

3.4 Octal System
To express the number in the binary system requires
many more digits than in the decimal system. Too many
binary digits can become cumbersome to read or write.
To solve this problem, other related numbering systems
are used.

The octal numbering system, a base 8 system, is used
because 8 data bits make up a byte of information that
can be addressed. Octal is a convenient means of handling
large binary numbers. As shown in Table 3-4, one octal
digit can be used to express three binary digits. As in all
other numbering systems, each digit in an octal number
has a weighted decimal value according to its position.
Figure 3-8 illustrates how the octal number 462 is con-
verted to its decimal equivalent: 306.

Octal converts easily to binary equivalents. For example,
the octal number 462 is converted to its binary equivalent
by assembling the 3-bit groups, as illustrated in Figure 3-9.

Figure 3-7 SLC 500 output status file.

15

1

0

1

0

1

14

1

0

0

0

1

13

0

1

1

0

1

12

0

1

0

0

0

11

0

0

1

0

1

10

0

1

1

0

0

9

1

0

0

0

0

8

0

0

0

0

1

7

1

0

1

0

1

6

1

0

1

1

1

5

1

0

1

0

0

4

1

0

0

0

0

3

0

1

0

1

1

2

0

1

0

0

1

1

0

1

0

0

0

0

1

1

1

0

1

Address

O:1

O:2

O:3

O:4

O:5

Magnitude
Sign

Decimal
Value

Same as
binary
numbers

0111 +7

0110 +6

0101 +5

0100 +4

0011 +3

0010 +2

0001 +1

0000 0

1001 −1

1010 −2

1011 −3

1100 −4

1101 −5

1110 −6

1111 −7

Table 3-2 Signed Binary Numbers

pet73842_ch03_046-060.indd 49 03/11/15 3:50 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

50 Chapter 3 Number Systems and Codes

Notice the simplicity of the notation: the octal 462 is much
easier to read and write than its binary equivalent is.

3.5 Hexadecimal System
The hexadecimal (hex) numbering system is used in pro-
grammable controllers because a word of data consists of
16 data bits, or two 8-bit bytes. The hexadecimal system
is a base 16 system, with A to F used to represent decimal
numbers 10 to 15 (Table 3-5). The hexadecimal number-
ing system allows the status of a large number of binary
bits to be represented in a small space, such as on a com-
puter screen or PLC programming device display.

The techniques used when converting hexadecimal
to decimal and decimal to hexadecimal are the same as
those used for binary and octal. To convert a hexadecimal

Signed
Decimal

1’s
Complement

2’s
Complement

2’s
Complement-16 bit

 +7 0111 0111 0000 0000 0000 0111

 +6 0110 0110 0000 0000 0000 0110

 +5 0101 0101 0000 0000 0000 0101

 +4 0100 0100 0000 0000 0000 0100

 +3 0011 0011 0000 0000 0000 0011

 +2 0010 0010 0000 0000 0000 0010

 +1 0001 0001 0000 0000 0000 0001

 0 0000 0000 0000 0000 0000 0000

 −1 1110 1111 1111 1111 1111 1111

 −2 1101 1110 1111 1111 1111 1110

 −3 1100 1101 1111 1111 1111 1101

 −4 1011 1100 1111 1111 1111 1100

 −5 1010 1011 1111 1111 1111 1011

 −6 1001 1010 1111 1111 1111 1010

 −7 1000 1001 1111 1111 1111 1001

Same as
binary
numbers

Table 3-3 1’s and 2’s Complement Representation
of Positive and Negative Numbers

Binary Octal

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

Table 3-4 Binary and Related Octal
Code

Figure 3-8 Converting an octal number to a decimal
number.

24 6

2

48

256

306

2 × 80 =

6 × 81 =

4 × 82 =

2 × 1 =

6 × 8 =

4 × 64 =

8

(Sum of products)

Decimal number 10

Octal
number

Figure 3-9 Converting an octal number to a binary number.

00 1

24 6

01 0 01 1 Binary
number

Octal
number

pet73842_ch03_046-060.indd 50 03/11/15 3:50 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Number Systems and Codes Chapter 3 51

Hexadecimal Binary Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

Table 3-5 Hexadecimal Numbering
System

Figure 3-10 Converting a hexadecimal number to a
decimal number.

71 B

7

176

256

439

7 × 160 =

11 × 161 =

1 × 162 =

=

=

=

7 × 1

11 × 16

1 × 256

(Sum of products)

Decimal number 10

Hex
number

number to its decimal equivalent, the hexadecimal digits
in the columns are multiplied by the base 16 weight, de-
pending on digit significance. Figure 3-10 illustrates how
the conversion would be done for the hex number 1B7.

Hexadecimal numbers can easily be converted to bi-
nary numbers. Conversion is accomplished by writing the
4-bit binary equivalent of the hex digit for each position,
as illustrated in Figure 3-11.

Figure 3-11 Converting a hexadecimal number to a binary
number.

10 1

71 B

10 0 11 0

Hex number

0 1 1
Binary
number

3.6 Binary Coded Decimal (BCD)
System
The binary coded decimal (BCD) system provides a
convenient way of handling large numbers that need to be
input to or output from a PLC. As you can see from look-
ing at the various number systems, there is no easy way
to go from binary to decimal and back. The BCD system
provides a means of converting a code readily handled
by humans (decimal) to a code readily handled by the
equipment (binary). PLC thumbwheel switches and LED
displays are examples of PLC devices that make use of
the BCD number system. Table 3-6 shows examples of
numeric values in decimal, binary, BCD, and hexadeci-
mal representation.

The BCD system uses 4 bits to represent each deci-
mal digit. The 4 bits used are the binary equivalents of
the numbers from 0 to 9. In the BCD system, the larg-
est decimal number that can be displayed by any four
digits is 9.

The BCD representation of a decimal number is ob-
tained by replacing each decimal digit by its BCD equiva-
lent. To distinguish the BCD numbering system from a
binary system, a BCD designation is placed to the right
of the units digit. The BCD representation of the decimal
number 7863 is shown in Figure 3-12.

A thumbwheel switch is one example of an input de-
vice that uses BCD. Figure 3-13 shows a single-digit
BCD thumbwheel. The circuit board attached to the
thumbwheel has one connection for each bit’s weight
plus a common connection. The operator dials in a dec-
imal digit between 0 and 9, and the thumbwheel switch
outputs the equivalent 4 bits of BCD data. In this
example, the number eight is dialed to produce the input
bit pattern of 1000. A four-digit thumbwheel switch,
similar to the one shown, would control a total of
16 (4 × 4) PLC inputs.

Scientific calculators are available to convert num-
bers back and forth between decimal, binary, octal, and
hexadecimal. In addition, PLCs contain number conver-
sion functions such as illustrated in Figure 3-14. BCD-
to-binary conversion is required for the input while
binary-to-BCD conversion is required for the output. The
Convert-to-BCD instruction will convert the binary bit
pattern at the source address, N7:23, into a BCD bit pat-
tern of the same decimal value and store it at the destina-
tion address, O:20. The instruction executes every time it
is scanned, and the instruction is true.

Many PLCs allow you to change the format of the data
that the data monitor displays. For example, the change
radix function found on Allen-Bradley controllers allows

pet73842_ch03_046-060.indd 51 03/11/15 3:50 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

52 Chapter 3 Number Systems and Codes

Decimal Binary BCD Hexadecimal

 0 0 0000 0

 1 1 0001 1

 2 10 0010 2

 3 11 0011 3

 4 100 0100 4

 5 101 0101 5

 6 110 0110 6

 7 111 0111 7

 8 1000 1000 8

 9 1001 1001 9

 10 1010 0001 0000 A

 11 1011 0001 0001 B

 12 1100 0001 0010 C

 13 1101 0001 0011 D

 14 1110 0001 0100 E

 15 1111 0001 0101 F

 16 1 0000 0001 0110 10

 17 1 0001 0001 0111 11

 18 1 0010 0001 1000 12

 19 1 0011 0001 1001 13

 20 1 0100 0010 0000 14

 126 111 1110 0001 0010 0110 7E

 127 111 1111 0001 0010 0111 7F

 128 1000 0000 0001 0010 1000 80

 510 1 1111 1110 0101 0001 0000 1FE

 511 1 1111 1111 0101 0001 0001 1FF

 512 10 0000 0000 0101 0001 0010 200

Table 3-6 Numeric Values in Decimal, Binary, BCD,
and Hexadecimal Representation

Figure 3-12 The BCD representation of a decimal number.

37 8

10 0

4 bits used for
each decimal digit

10 1 0 0 1 0

6

11 0 10 1 BCDBCD
number

Decimal number

pet73842_ch03_046-060.indd 52 03/11/15 3:50 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Number Systems and Codes Chapter 3 53

Figure 3-13 BCD thumbwheel switch interfaced to a PLC.

1
2
4
8
C

1s Input = 0

2s Input = 0
4s Input = 0
8s Input = 1

+ –

Input
module Gray Code Binary

0000 0000

0001 0001

0011 0010

0010 0011

0110 0100

0111 0101

0101 0110

0100 0111

1100 1000

1101 1001

1111 1010

1110 1011

1010 1100

1011 1101

1001 1110

1000 1111

Table 3-7 Gray Code and Binary
Equivalent

Figure 3-14 PLC number conversion.

Thumbwheel or
other input

Input
module

BCD
to binary

PLC

Processor Binary
to BCD

Decimal
readout

1 7 6 5

Output
module

Convert-to-BCD instruction

Destination

N7:23

O:20

TOD
To BCD
Source

Input A

4 1 96

you to change the display format of data to binary, octal,
decimal, hexadecimal, or ASCII.

3.7 Gray Code
The Gray code is a special type of binary code that does
not use position weighting. In other words, each position
does not have a definite weight. The Gray code is set up
so that as we progress from one number to the next, only
one bit changes. This can be quite confusing for count-
ing circuits, but it is ideal for encoder circuits. For ex-
ample, absolute encoders are position transducers that use
the Gray code to determine angular position. The Gray
code has the advantage that for each “count” (each transi-
tion from one number to the next) only one digit changes.
Table 3-7 shows the Gray code and the binary equivalent
for comparison.

In binary, as many as four digits could change for a
single “count.” For example, the transition from binary
0111 to 1000 (decimal 7 to 8) involves a change in all
four digits. This kind of change increases the possibil-
ity for error in certain digital circuits. For this reason,
the Gray code is considered to be an error-minimizing
code.

Gray codes are used with position encoders for accu-
rate control of the motion of robots, machine tools, and
servomechanisms. Figure 3-15 shows an optical encoder
disk that uses a 4-bit Gray code to detect changes in

pet73842_ch03_046-060.indd 53 03/11/15 3:50 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

54 Chapter 3 Number Systems and Codes

memory to represent the alphanumeric, function, or
control data represented by the specific keyboard key
that was depressed. ASCII input modules convert
ASCII code input information from an external device
to alphanumeric information that the PLC can pro-
cess. The communication interfacing is done through
either an RS-232 or RS-422 protocol. Modules are
available that will transmit and receive ASCII files
and that can be used to create an operator interface.
The user writes a program in the BASIC language that
operates in conjunction with the ladder logic as the
program runs.

3.9 Parity Bit
Some PLC communication systems use a binary bit to
check the accuracy of data transmission. For example,
when data are transferred between PLCs, one of the bi-
nary digits may be accidentally changed from a 1 to a 0.
This can happen because of a transient or a noise or be-
cause of a failure in some portion of the transmission net-
work. A parity bit is used to detect errors that may occur
while a word is moved.

Parity is a system in which each character transmitted
contains one additional bit. That bit is known as a par-
ity bit. The bit may be a binary 0 or binary 1, depend-
ing on the number of 1s and 0s in the character itself.
Two systems of parity are normally used: odd and even.
Odd parity means that the total number of binary 1 bits in
the character, including the parity bit, is odd. Even parity
means that the number of binary 1 bits in the character, in-
cluding the parity bit, is even. Examples of odd and even
parity are shown in Table 3-9.

angular position. In this example, the encoder disk is at-
tached to a rotating shaft and outputs a digital Gray code
signal that is used to determine the position of the shaft.
A fixed array of photo diodes senses the reflected light
from each of the cells across a row of the encoder path.
Depending on the amount of light reflected, each cell
will output a voltage corresponding to a binary 1 or 0.
Thus, a different 4-bit word is generated for each row of
the disk.

3.8 ASCII Code
ASCII stands for American Standard Code for Informa-
tion Interchange. It is an alphanumeric code because it in-
cludes letters as well as numbers. The characters accessed
by the ASCII code include 10 numeric digits; 26 lower-
case and 26 uppercase letters of the alphabet; and about
25 special characters, including those found on a standard
typewriter. Table 3-8 shows a partial listing of the ASCII
code. It is used to interface the PLC CPU with alphanu-
meric keyboards and printers.

The ASCII code is a seven-bit code in which the deci-
mal digits are represented by the 8-4-2-1 BCD code pre-
ceded by 011. Uppercase letters are preceded by 100 or
101. Lowercase letters are preceded by 110 or 111. Char-
acter symbols are preceded by 010, 011, 101, and 111.
This seven-bit code provides all possible combinations of
characters used when communicating with peripherals or
interfaces in a PLC system.

The keystrokes on the keyboard of a computer are
converted directly into ASCII for processing by the
computer. Each time you press a key on a computer
keyboard, a 7- or 8-bit word is stored in computer

Figure 3-15 Optical encoder disk.
Source: Photo courtesy Baumer Electric.

0111
0110

0101
0100

1100

1101

1111

1110

1010
10111001

1000

0000

0001

0011

0010

1
1

1
0

Light source

Sensors

pet73842_ch03_046-060.indd 54 03/11/15 3:50 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Number Systems and Codes Chapter 3 55

Character 7-Bit ASCII Character 7-Bit ASCII

A 100 0001 X 101 1000

B 100 0010 Y 101 1001

C 100 0011 Z 101 1010

D 100 0100 0 011 0000

E 100 0101 1 011 0001

F 100 0110 2 011 0010

G 100 0111 3 011 0011

H 100 1000 4 011 0100

I 100 1001 5 011 0101

J 100 1010 6 011 0110

K 100 1011 7 011 0111

L 100 1100 8 011 1000

M 100 1101 9 011 1001

N 100 1110 blank 010 0000

O 100 1111 010 1110

P 101 0000 , 010 1100

Q 101 0001 + 010 1011

R 101 0010 − 010 1101

S 101 0011 # 010 0011

T 101 0100 (010 1000

U 101 0101 % 010 0101

V 101 0110 = 011 1101

W 101 0111

Table 3-8 Partial Listing of ASCII Code

Character

Even
Parity Bit

Odd
Parity Bit

0000 0 1

0001 1 0

0010 1 0

0011 0 1

0100 1 0

0101 0 1

0110 0 1

0111 1 0

1000 1 0

1001 0 1

Table 3-9 Odd and Even Parity 3.10 Binary Arithmetic
Arithmetic circuit units form a part of the CPU. Mathe-
matical operations include addition, subtraction, multipli-
cation, and division. Binary addition follows rules similar
to decimal addition. When adding with binary numbers,
there are only four conditions that can occur:

0 1 0 1
+0 +0 +1 +1

0 1 1 0 carry 1

The first three conditions are easy because they are
like adding decimals, but the last condition is slightly
different. In decimal, 1 + 1 = 2. In binary, a 2 is writ-
ten 10. Therefore, in binary, 1 + 1 = 0, with a carry of
1 to the next most significant place value. When add-
ing larger binary numbers, the resulting 1s are carried

pet73842_ch03_046-060.indd 55 03/11/15 3:50 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

56 Chapter 3 Number Systems and Codes

There are other methods available for doing subtraction:

1’s complement
2’s complement

The procedure for subtracting numbers using the 1’s
complement is as follows:

Step 1 Change the subtrahend to 1’s complement.
Step 2 Add the two numbers.
Step 3 Remove the last carry and add it to the number

(end-around carry).

Decimal Binary
10 1010 1010

− 6 −0110 +1001
4 100 10011

      +1
 100

When there is a carry at the end of the result, the result
is positive. When there is no carry, then the result is nega-
tive and a minus sign has to be placed in front of it.

End-around carry

1’s complement

into higher-order columns, as shown in the following
examples.

Decimal Equivalent binary
5 101

+2 + 10
7 111

10 10 10
+ 3 + 11

13 11 01

26 1 1010
+12 + 1100

38 1 0 0110

In arithmetic functions, the initial numeric quantities
that are to be combined by subtraction are the minuend
and subtrahend. The result of the subtraction process is
called the difference, represented as:

A (minuend)
−B (subtrahend)

C (difference)

To subtract from larger binary numbers, subtract col-
umn by column, borrowing from the adjacent column
when necessary. Remember that when borrowing from
the adjacent column, there are now two digits, i.e., 0 bor-
row 1 gives 10.

carry

1

carry

1

carry

1

Subtract 1001 from 1101.

1101
−1001

0100

Subtract 0111 from 1011.

1011
−0111

0100

EXAMPLE 10 -1

Binary numbers can also be negative. The procedure
for this calculation is identical to that of decimal num-
bers because the smaller value is subtracted from the
larger value and a negative sign is placed in front of
the result.

Subtract 111 from 100.

111
−100
−011

Subtract 11011 from 10111.

11011
−10111
−00100

EXAMPLE 10 -2

Subtract 11011 from 01101.

01101
+ − 00100 The 1’s complement

10001 There is no carry,
so we take the 1’s
complement and add
the minus sign:
−01110

EXAMPLE 10 -3

For subtraction using the 2’s complement, the 2’s com-
plement is added instead of subtracting the numbers.

pet73842_ch03_046-060.indd 56 03/11/15 3:50 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Number Systems and Codes Chapter 3 57

The process for dividing one binary number by an-
other is the same for both binary and decimal numbers, as
shown in the following example.

Decimal Equivalent binary
 7 111
2 q
_

 14 10q
_

 1110
10
11
10
10
10
00

The basic function of a comparator is to compare the
relative magnitude of two quantities. PLC data compari-
son instructions are used to compare the data stored in
two words (or registers). At times, devices may need to
be controlled when they are less than, equal to, or greater
than other data values or set points used in the applica-
tion, such as timer and counter values. The basic compare
instructions are as follows:

A = B (A equals B)
A > B (A is greater than B)

A < B (A is less than B)

3.11 Floating Point Arithmetic
Certain PLC-related computations are performed using
floating point arithmetic. The term floating point refers
to the fact that the decimal point can float or be placed
anywhere relative to the significant digits of the number.
The main features of floating-point representation are:

• Floating point can support a much wider range of
values. It can represent numbers that are very small
or numbers that are very large.

• Floating point provides an easy method of dealing
with fractions. Without floating point, a PLC word
can only represent an integer or whole number.

An example of a floating point number system is shown
in Figure 3-16. The representations shown in this example

In the result, if the carry is a 1, then the result is positive;
if the carry is a 0, then the result is negative and requires
a minus sign.

Subtract 101 from 111.

111
+ − 011 The 2’s complement

1010 The first 1 indicates that
the result is positive, so it
is disregarded:
010

EXAMPLE 10 -4

Binary numbers are multiplied in the same manner
as decimal numbers. When multiplying binary numbers,
there are only four conditions that can occur:

0 × 0 = 0
0 × 1 = 0
1 × 0 = 0
1 × 1 = 1

To multiply numbers with more than one digit, form
partial products and add them together, as shown in the
following example.

Decimal Equivalent binary
5 101

×6 ×110
30 000

 101
101
11110

Subtract 11011 from 01101.

01101
+ − 00101 The 2’s complement

10010 There is no carry, so the result is
negative; therefore a 1 has to be
subtracted and the 1’s complement
taken to give the result:

subtract 1 10010 − 1 = 10001
1’s complement −01110

EXAMPLE 10 -5

×
×
×
×
×
×
× 10–2

10–1

101

102

103

1040.4234
4.234
42.34
423.4

4,234.0
42,340.0

423,400.0

4,234Floating point representation of

10

Figure 3-16 Example of a floating point number system.

pet73842_ch03_046-060.indd 57 03/11/15 3:50 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

58 Chapter 3 Number Systems and Codes

Floating point numbers are also known as real num-
bers. The IEEE 754 Standard is the most commonly used
standard for representing these numbers and includes:

• Single precision: 32 bits, consisting of
 - Sign bit (1 bit)
 - Exponent (8 bits)
 - Mantissa (23 bits)

• Double precision: 64 bits, consisting of
 - Sign bit (1 bit)
 - Exponent (11 bits)
 - Mantissa (52 bits)

Figure 3-18 is an example of how the decimal num-
ber 23.5 would be represented in a single precision 32-bit
floating point binary format.

vary based on the position of the decimal point, which
floats to the left or right, with a corresponding change in
the exponent value.

• The numbers shown on the left side represent the
significand, or mantissa, and the numbers shown on
the right indicate the exponent value.

• A significand contains the number’s digits and an
exponent indicates where the decimal (or binary)
point is located relative to the beginning of the
significand.

• Decimal floating-point numbers usually take the
form of scientific notation with a decimal point al-
ways between the 1st and 2nd digits.

Floating point numbers have three basic components:
the sign, the exponent, and the mantissa, as shown in
Figure 3-17.

• The sign of a binary floating-point number is rep-
resented by a single bit. A 1 bit indicates a negative
number, and a 0 bit indicates a positive number.

• The mantissa, always a positive number, holds the
significant digits of the floating-point number.

• The exponent indicates the positive or negative
power of the radix that the mantissa and sign should
be multiplied by.

32 bits

Mantissa (23 bits)

Exponent (8 bits)

Mantissa sign (1 bit)

Figure 3-17 Basic components of a floating point number.

0 0

Exponent
(8 bits)

Mantissa
(23 bits)Si

gn
 b

it

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000001 1 1 1 1 101Figure 3-18 Decimal number 23.5
represented in a single precision 32-bit
floating point binary format.

pet73842_ch03_046-060.indd 58 03/11/15 3:50 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Number Systems and Codes Chapter 3 59

1. Convert each of the following binary numbers to
decimal numbers:
a. 10
b. 100
c. 111
d. 1011
e. 1100
f. 10010
g. 10101
h. 11111
i. 11001101
j. 11100011

2. Convert each of the following decimal numbers to
binary numbers:
a. 7
b. 19
c. 28
d. 46
e. 57
f. 86
g. 94
h. 112
i. 148
j. 230

3. Convert each of the following octal numbers to
decimal numbers:
a. 36
b. 104
c. 120
d. 216
e. 360
f. 1516

4. Convert each of the following octal numbers to
binary numbers:
a. 74
b. 130
c. 250
d. 1510
e. 2551
f. 2634

5. Convert each of the following hexadecimal num-
bers to decimal numbers:
a. 5A
b. C7
c. 9B5
d. 1A6

6. Convert each of the following hexadecimal num-
bers to binary numbers:
a. 4C
b. E8
c. 6D2
d. 31B

7. Convert each of the following decimal numbers to
BCD:
a. 146
b. 389
c. 1678
d. 2502

8. What is the most important characteristic of the
Gray code?

9. What makes the binary system so applicable to
computer circuits?

10. Define the following as they apply to the binary
memory locations or registers:
a. Bit
b. Byte
c. Word
d. LSB
e. MSB

11. State the base used for each of the following num-
ber systems:
a. Octal
b. Decimal
c. Binary
d. Hexadecimal

12. Define the term sign bit.

13. Explain the difference between the 1’s complement
of a number and the 2’s complement.

14. What is ASCII code?

15. Why are parity bits used?

16. Add the following binary numbers:
a. 110 + 111
b. 101 + 011
c. 1100 + 1011

17. Subtract the following binary numbers:
a. 1101 − 101
b. 1001 − 110
c. 10111 − 10010

CHAPTER 3 REVIEW QUESTIONS

pet73842_ch03_046-060.indd 59 03/11/15 3:50 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

60 Chapter 3 Number Systems and Codes

19. Divide the following unsigned binary numbers:
a. 1010 ÷ 10
b. 1100 ÷ 11
c. 110110 ÷ 10

18. Multiply the following binary numbers:
a. 110 × 110
b. 010 × 101
c. 101 × 11

CHAPTER 3 PROBLEMS

1. The following binary PLC coded information is
to be programmed using the hexadecimal code.
Convert each piece of binary information to the
appropriate hexadecimal code for entry into the
PLC from the keyboard.
a. 0001 1111
b. 0010 0101
c. 0100 1110
d. 0011 1001

2. The encoder circuit shown in Figure 3-19 is used
to convert the decimal digits on the keyboard to a
binary code. State the output status (HIGH/LOW)
of A-B-C-D when decimal number
a. 2 is pressed.
b. 5 is pressed.
c. 7 is pressed.
d. 8 is pressed.

3. If the bits of a 16-bit word or register are numbered
according to the octal numbering system, beginning
with 00, what consecutive numbers would be used
to represent each of the bits?

4. Express the decimal number 18 in each of the fol-
lowing number codes:
a. Binary
b. Octal
c. Hexadecimal
d. BCD

5. Add the binary number 110 to the negative binary
number −101.

6. Subtract 10112 − 1102.

7. Multiply the following unsigned binary numbers:
101.1 and 10.11.

8. Divide the following unsigned binary numbers:
1110 by 10.

9. State two instances that might call for the use of a
floating-point numbering system.

10. What are the three basic components of a floating-
point number?

Figure 3-19 Diagram for Problem 2.

Decimal
number
pressed

Binary-coded
0100 output

High

High

Low

Low

Low

Encoder

A

B

C

D

4 input
High

7 8 9

4 5 6

1 2

0

3

0

1

2

3

4

5

6

7

8

9

pet73842_ch03_046-060.indd 60 03/11/15 3:50 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

61

4
Fundamentals of Logic

Chapter Objectives

After completing this chapter, you will be able to:

 • Describe the binary concept and the functions
of gates

 • Draw the logic symbol, construct a truth table, and
state the Boolean equation for the AND, OR, and NOT
functions

 • Construct circuits from Boolean expressions and derive
Boolean equations for given logic circuits

 • Convert relay ladder schematics to ladder logic
programs

 • Develop elementary programs based on logic gate
functions

 • Program instructions that perform logical operations

This chapter gives an overview of digital logic
gates and illustrates how to duplicate this type
of control on a PLC. Boolean algebra, which is a
shorthand way of writing digital gate diagrams,
is discussed briefly. Some small hand-held pro-
grammers have digital logic keys, such as AND,
OR, and NOT, and are programmed using Bool-
ean expressions.

SOLLS1 LS2 B YA

Relay schematic Ladder logic program

Inputs

SOLLS2LS1 Output

A

B
Y

Gate logic

Boolean equation: AB = Y

pet73842_ch04_061-073.indd 61 03/11/15 3:52 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

62 Chapter 4 Fundamentals of Logic

the outcome and a symbol that represents the operation.
For the purpose of this discussion, the outcome or out-
put is called Y and the signal inputs are called A, B, C,
and so on. Also, binary 1 represents the presence of a
signal or the occurrence of some event, and binary 0
represents the absence of the signal or nonoccurrence
of the event.

The AND Function
The symbol drawn in Figure 4-3 is that of an AND
gate. An AND gate is a device with two or more in-
puts and one output. The AND gate output is 1 only
if all inputs are 1. The AND truth table in Figure 4-3
shows the resulting output from each of the possible
input combinations.

Logic gate truth tables show each possible input to the
gate or circuit and the resultant output depending upon the
combination of the input(s).

Since logic gates are digital ICs (Integrated Circuits)
their input and output signals can be in only one of two
possible digital states, i.e., logic 0 or logic 1. Thus, the
logic state of the output of a logic gate depends on the
logic states of each of its individual inputs. Figure 4-4

4.1 The Binary Concept
The PLC, like all digital equipment, operates on the binary
principle. The term binary principle refers to the idea that
many things can be thought of as existing in only one of
two states. These states are 1 and 0. The 1 and 0 can rep-
resent ON or OFF, open or closed, true or false, high or
low, or any other two conditions. The key to the speed and
accuracy with which binary information can be processed
is that there are only two states, each of which is distinctly
different. There is no in-between state so when informa-
tion is processed the outcome is either yes or no.

A logic gate is a circuit with several inputs but only
one output that is activated by particular combinations of
input conditions. The two-state binary concept, applied
to gates, can be the basis for making decisions. The high
beam automobile lighting circuit of Figure 4-1 is an ex-
ample of a logical AND decision. For this application,
the high beam light can be turned on only when the light
switch AND the high beam switch are closed.

The dome light automobile circuit of Figure 4-2 is an
example of a logical OR decision. For this application, the
dome light will be turned on whenever the passenger door
switch OR the driver door switch is activated.

Logic is the ability to make decisions when one or
more different factors must be taken into account before
an action is taken. This is the basis for the operation of
the PLC, where it is required for a device to operate when
certain conditions have been met.

4.2 AND, OR, and NOT Functions
The operations performed by digital equipment are
based on three fundamental logic functions: AND, OR,
and NOT. Each function has a rule that will determine

Figure 4-1 The logical AND.

High beam
light

Light switch

High beam
switch

Inputs Output

AND

Figure 4-2 The logical OR.

Dome light

Passenger
door switch

Driver
door switch

Inputs Output

OR

Figure 4-3 AND gate.

A

B Output
Y

Two-input AND
gate symbol

Inputs
0
0
1
1

0
1
0
1

0
0
0
1

A B Y

Inputs

AND truth table

Output

Figure 4-4 AND logic gate digital signal states.

Truth table

0
0
1
1

A

0
1
0
1

B

0
0
0
1

Y

1
Output (Y) = 1

1

0 Output (Y) = 0

0

1 Output (Y) = 0

0

0
Output (Y) = 0

1

B

A

B

A

B

A

B

A

pet73842_ch04_061-073.indd 62 03/11/15 3:52 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Fundamentals of Logic Chapter 4 63

Figure 4-7 illustrates the four possible combinations of
inputs for a 2-input OR gate. The basic rules that apply to
an OR gate are:

• If one or more inputs are 1, the output is 1.
• If all inputs are 0, the output will be 0.

The OR logic gate operates similarly to control devices
connected in parallel, as illustrated in Figure 4-8. The
light will be on if switch A or switch B or both are closed.

illustrates the four possible combinations of inputs for a
2-input AND gate. The basic rules that apply to an AND
gate are:

• If all inputs are 1, the output will be 1.
• If any input is 0, the output will be 0.

The AND logic gate operates similarly to control
devices connected in series, as illustrated in Figure 4-5.
The light will be on only when both switch A and switch
B are closed.

The OR Function
The symbol drawn in Figure 4-6 is that of an OR gate. An
OR gate can have any number of inputs but only one out-
put. The OR gate output is 1 if one or more inputs are 1.
The truth table in Figure 4-6 shows the resulting output Y
from each possible input combination.

Figure 4-5 AND logic gate operates similarly to control devices connected in series.

Truth table

SW-
Open
Open
Closed
Closed

(0)
(0)
(1)
(1)

Open
Closed
Open
Closed

(0)
(1)
(0)
(1)

SW- A B Light
O�
O�
O�
On

(0)
(0)
(0)
(1)

Hardwired circuit

Light

SW-A SW-B
SW-A

Light

SW-B

Logic representation

Figure 4-6 OR gate.

0
0
1
1

0
1
0
1

0
1
1
1

A B Y
Inputs Output

OR truth table

B Output
YInputs

Two-input OR
gate symbol

A

Figure 4-8 OR logic gate operates similarly to control devices connected in parallel.

Open
Open
Closed
Closed

(0)
(0)
(1)
(1)

Open
Closed
Open
Closed

(0)
(1)
(0)
(1)

O�
On
On
On

(0)
(1)
(1)
(1)

SW- A SW- B Light

Truth table

Hardwired circuit

SW-B

SW-A

Light

Logic representation

SW-A
Light

SW-B

Figure 4-7 OR logic gate digital signal states.

A B Y
Inputs Output

Truth table

0
0
1
1

0
1
0
1

0
1
1
1

1

1

Output (Y) = 0

Output (Y) = 1

Output (Y) = 1

Output (Y) = 1
B

A

1

0
B

A

0

1
B

A

0

0
B

A

pet73842_ch04_061-073.indd 63 03/11/15 3:52 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

64 Chapter 4 Fundamentals of Logic

normally closed pushbutton in series with a lamp.
When the input pushbutton is not actuated, the output
lamp is ON. When the input pushbutton is actuated,
the output lamp switches OFF.

The NOT function is most often used in conjunction
with the AND or the OR gate. Figure 4-11 shows the NOT
function connected to one input of an AND gate for a low-
pressure indicator circuit. If the power is on (1) and the
pressure switch is not closed (0), the warning light will
be on (1).

The NOT symbol placed at the output of an AND gate
would invert the normal output result. An AND gate with
an inverted output is called a NAND gate. The NAND
gate symbol and truth table are shown in Figure 4-12. The
NAND function is often used in integrated circuit logic
arrays and can be used in programmable controllers to
solve complex logic.

The same rule about inverting the normal output result
applies if a NOT symbol is placed at the output of the OR
gate. The normal output is inverted, and the function is re-
ferred to as a NOR gate. The NOR gate symbol and truth
table are shown in Figure 4-13.

The NOT Function
The symbol drawn in Figure 4-9 is that of a NOT function.
Unlike the AND and OR functions, the NOT function can
have only one input. The NOT output is 1 if the input is 0.
The output is 0 if the input is 1. The result of the NOT opera-
tion is always the inverse of the input, and the NOT function
is, therefore, called an inverter. The NOT function is often
depicted by using a bar across the top of the letter, indicat-
ing an inverted output. The small circle at the output of the
inverter is referred to as a bubble and indicates that an inver-
sion of the logical function has taken place.

The logical NOT function can be performed on
a contact input simply by using a normally closed
instead of a normally open contact. Figure 4-10 shows
an example of the NOT function constructed using a

Figure 4-9 NOT function.

OutputInput
A

0
1

NOT A

1
0

NOT truth table

A
A (NOT A)

Figure 4-10 NOT function constructed using a normally closed pushbutton.

Light

Not pressed
Pressed

On
O�

(1)
(0)

(0)
(1)

Truth table Logic representation

Hardwired circuit

Pushbutton
N.C. pushbutton

+

– Light

Single input

Light

Figure 4-11 NOT function is most often used in
conjunction with an AND gate.

Low-pressure
indicator o� (0)

(0)

(Pressure
switch closed)

(Power on)

Low-pressure
indicator on (1)

(1)

A = 1

B = 1

(Pressure
switch open)

(Power on)

Pressure
switch Power

Pressure
indicator

0
1

1
1

1
0

Truth table

A = 1

B = 0

Figure 4-12 NAND gate symbol and truth table.

Inputs Output

0
0
1
1

0
1
0
1

1
1
1
0

NAND truth table

A B Y

Output
Inputs

Two-input
NAND gate

B
Y

A

Figure 4-13 NOR gate symbol and truth table.

Inputs Output

0
0
1
1

0
1
0
1

1
0

NOR truth table

0
0

A B Y

Output
Inputs

Two-input
NOR gate

B
Y

A

pet73842_ch04_061-073.indd 64 03/11/15 3:52 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Fundamentals of Logic Chapter 4 65

the NOT operation. The Boolean equations are used to
express the mathematical function of the logic gate.

PLC digital systems may be designed using Boolean al-
gebra. Circuit functions are represented by Boolean equa-
tions. Figure 4-16 illustrates how logic operators AND,
NAND, OR, NOR, and NOT are used singly to form logi-
cal statements. Figure 4-17 illustrates how basic logic op-
erators are used in combination to form Boolean equations.

An understanding of the technique of writing simpli-
fied Boolean equations for complex logical statements is
a useful tool when creating PLC control programs. Some
laws of Boolean algebra are different from those of ordi-
nary algebra. These three basic laws illustrate the close
comparison between Boolean algebra and ordinary alge-
bra, as well as one major difference between the two:

The Exclusive-OR (XOR) Function
An often-used combination of gates is the exclusive-OR
(XOR) function. The XOR gate symbol and truth table are
shown in Figure 4-14. The output of this circuit is HIGH
only when one input or the other is HIGH, but not both.
The exclusive-OR gate is commonly used for the com-
parison of two binary numbers.

4.3 Boolean Algebra
The mathematical study of the binary number system
and logic is called Boolean algebra. The purpose of this
algebra is to provide a simple way of writing complicated
combinations of logic statements. There are many appli-
cations where Boolean algebra could be applied to solv-
ing PLC programming problems.

Figure 4-15 summarizes the basic operators of Bool-
ean algebra as they relate to the basic AND, OR, and
NOT functions. Inputs are represented by capital letters
A, B, C, and so on, and the output by a capital Y. The
dot (•), or no symbol, represents the AND operation,
an addition sign (+) represents the OR operation, the
circle with an addition sign ∙ represents the exclusive-
OR operation, and a bar over the letter

__
 A represents

Figure 4.14 The XOR gate symbol and truth table.

Truth table

Inputs Output

0
0
1
1

0
1
0
1

0
1

0
1

A B Y

Output
Inputs

B
Y

A

Figure 4-15 Boolean algebra as related to AND, OR, and NOT functions.

Logic symbol Logic statement Boolean equation Boolean notations

A

B

A

B

A Y

Y

Y Y = A + B

Y = A

Y = A • B
or

Y = AB

Y is 1 if
A and B are 1

Y is 1 if
A or B is 1

Y is 1 if A is 0
Y is 0 if A is 1

Symbol

•

+

–

°

=

Meaning

and

or

not

invert

result in

A

B

A

B

A

B

A

B
AB

AB

A + B

A + B

NOT AA

AND

NAND

OR

NOR

Figure 4-16 Logic operators used singly to form logical
statements.

COMMUTATIVE LAW

A + B = B + A
A ⋅ B = B ⋅ A

pet73842_ch04_061-073.indd 65 03/11/15 3:52 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

66 Chapter 4 Fundamentals of Logic

1 - OR gate with input C and output from previous
AND gate

Figure 4-19 shows a logic gate circuit developed from
the Boolean expression Y = A(BC + D). The procedure
is as follows:

Boolean expression: Y = A(BC + D)
Gates required: (by inspection)

1 - AND gate with inputs B and C
1 - OR gate with inputs BC and D
1 - AND gate with input A and the output from the

OR gate

4.5 Producing the Boolean Equation
for a Given Logic Gate Circuit
A simple logic gate is quite straightforward in its opera-
tion. However, by grouping these gates into combinations,
it becomes more difficult to determine which combinations
of inputs will produce an output. The Boolean equation for
the logic circuit of Figure 4-20 is determined as follows:

• The output of the OR gate is A + B
• The output of the inverter is D

–

• Based on the input combination applied to the AND
gate the Boolean equation for the circuit is Y = C
D
–
 (A +B)

4.4 Developing Logic Gate Circuits
from Boolean Expressions
As logic gate circuits become more complex, the need to
express these circuits in Boolean form becomes greater.
Figure 4-18 shows a logic gate circuit developed from the
Boolean expression Y = AB + C. The procedure is as
follows:

Boolean expression: Y = AB + C
Gates required: (by inspection)

1 - AND gate with input A and B

AB

AB
Y = AB + C

A + B
Y = (A + B) C

A + B
Y = (A + B) C

A

B
C

AND
AND

AND
NAND

OR
OR

NORY = AB + C

A

B
C

OR

A

B
C

A

B
C

Figure 4-17 Logic operators used in combination to form Boolean equations.

A

B

C
Inputs

Output
Y

Figure 4-18 Logic gate circuit developed from the Boolean
expression Y = AB + C.

B

C

D

Output
Y

A
Inputs

Figure 4-19 Logic gate circuit developed from the Boolean
expression Y = A(BC + D).

ASSOCIATIVE LAW

(A + B) + C = A + (B + C)
(A ⋅ B) ⋅ C = A ⋅ (B ⋅ C)

DISTRIBUTIVE LAW

A ⋅ (B + C) = (A ⋅ B) + (A ⋅ C)
A + (B ⋅ C) = (A + B) ⋅ (A + C)
This law holds true only in
Boolean algebra.

pet73842_ch04_061-073.indd 66 03/11/15 3:52 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Fundamentals of Logic Chapter 4 67

relays and relay ladder schematics. Relay ladder sche-
matics are universally used and understood in industry.
Figure 4-22 shows a typical relay ladder schematic of a
motor stop/start control station with pilot lights. The control
scheme is drawn between two vertical supply lines. All the
components are placed between these two lines, called rails
or legs, connecting the two power lines with what look like
rungs of a ladder—thus the name, relay ladder schematic.

Hardwired logic is fixed; it is changeable only by
altering the way devices are electrically interconnected. In
contrast, programmable control is based on the basic logic
functions, which are programmable and easily changed.
These functions (AND, OR, NOT) are used either singly
or in combinations to form instructions that will determine
if a device is to be switched on or off. The form in which
these instructions are implemented to convey commands
to the PLC is called the language. The most common
PLC language is ladder logic. Figure 4-23 shows a typi-
cal ladder logic program for the motor start/stop circuit.
The instructions used are the relay equivalent of normally
open (NO) and normally closed (NC) contacts and coils.

The Boolean equation for the logic circuit of
Figure 4-21 is determined as follows:

• The output of AND gate 1 is A–B
• The output of AND gate 2 is AB–
• Based on the combination of inputs applied to the

OR gate the Boolean equation for the circuit is
Y = A–B + AB–

4.6 Hardwired Logic versus
Programmed Logic
The term hardwired logic refers to logic control functions
that are determined by the way devices are electrically in-
terconnected. Hardwired logic can be implemented using

Output

Inputs

C

D

Y

A

B

C

D

A + B

Figure 4-20 Determining the Boolean equation for a logic circuit.

Inputs
Output

B

Y

A

AB

AB

B

A
1

2

Figure 4-21 Determining the Boolean equation for a logic circuit.

Figure 4-22 Motor stop/start relay ladder schematic.

STOP
START

M

M

M

L2L1

Rung
Rail

OL

R

G

M

Input
module

Output
module L2

STOP

STOP

START

PROGRAM

START

Relay contact
equivalent

Rung 1

Rung 2

Rung 3

Relay coil
equivalent

OL

OL

M

M

M

M

G

R

L1

R

G

M

Figure 4-23 Motor stop/start ladder logic program.

pet73842_ch04_061-073.indd 67 03/11/15 3:52 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

68 Chapter 4 Fundamentals of Logic

Because the PLC uses ladder logic diagrams, the con-
version from any existing relay logic to programmed
logic is simplified. Each rung is a combination of input
conditions (symbols) connected from left to right, with
the symbol that represents the output at the far right.
The symbols that represent the inputs are connected in
series, parallel, or some combination of the two to obtain
the desired logic. The following group of examples
illustrates the relationship between the relay ladder sche-
matic, the ladder logic program, and the equivalent logic
gate circuit.

PLC contact symbolism is a simple way of expressing
the control logic in terms of symbols. These symbols are
basically the same as those used for representing hard-
wired relay control circuits. A rung is the contact sym-
bolism required to control an output. Some PLCs allow
a rung to have multiple outputs while others allow only
one output per rung. A complete ladder logic program then
consists of several rungs, each of which controls an output.
In programmed logic all mechanical switch contacts are
represented by a software contact symbol and all electro-
magnetic coils are represented by a software coil symbol.

SOLLS1 LS2 B YA

Relay schematic Ladder logic program

Inputs

SOLLS2LS1 Output

A

B
Y

Gate logic

Boolean equation: AB = Y

Example 4-1 Two limit switches connected in series and used to control a solenoid valve.

SOLLS1

LS1

LS2

SOL

Boolean equation: A + B = Y

A Y

Relay schematic Ladder logic program
Gate logic

LS2
B

Inputs
Output

A
Y

B

Example 4-2 Two limit switches connected in parallel and used to control a solenoid valve.

PSLS1

Boolean equation: (A + B)C = Y

PL A C

Relay schematic Ladder logic program Gate logic

LS2
B

G
Y

Inputs
Output

A � B
A

C
YBLS1 PS PL

LS2

Example 4-3 Two limit switches connected in parallel with each other and in series with a pressure switch.

FS2

LS1

LS1

LS2 FS1

FS1 PL

Boolean equation: (A + B) (C + D) = Y

PL
FS1

Relay schematic Gate logic

LS2

R

Inputs

Output

C + D

A + BA

B

C

D

Y

A

B

C

D

Y

Ladder logic program

Example 4-4 Two limit switches connected in parallel with each other and in series with two sets of flow
switches (that are connected in parallel with each other), and used to control a pilot light.

pet73842_ch04_061-073.indd 68 03/11/15 3:52 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Fundamentals of Logic Chapter 4 69

Boolean equation: (AB) + C = Y

Horn

Relay schematic Ladder logic program
Gate logic

LS1

LS1 LS2

LS3

Horn

LS2

LS3

A B

C

Y

Inputs

Y

Output

ABA

C
B

Example 4-5 Two limit switches connected in series with each other and in parallel with a third limit
switch, and used to control a warning horn.

Boolean equation: (AB) + (CD) = Y

PL

Relay schematic

Gate logic

LS1

LS3

LS2

LS4
LS1

LS3 LS4

LS2 PL

R
A

C

B

D

Y

Ladder logic program

Inputs

Output

A

B
Y

C

D

Example 4-6 Two limit switches connected in series with each other and in parallel with two other limit
switches (that are connected in series with each other), and used to control a pilot light.

PB SOL

LS1 PB SOL

Boolean equation: AB = Y

Relay schematic Ladder logic program Gate logic

LS1 A B Y

Inputs
OutputA

B
B

Y

Example 4-7 One limit switch connected in series with a normally closed pushbutton and used to control
a solenoid valve. This circuit is programmed so that the output solenoid will be turned on when the limit switch
is closed and the pushbutton is not pushed.

Relay schematic Ladder logic program Gate logic

A B

A B

Boolean equation: AB + AB = Y
 A + B = Y

Y

Y

Inputs
PL

PB1

PB1
PB2 PL

PB2 Output

A

B

Y

Example 4-8 Exclusive-OR circuit. The output lamp of this circuit is ON only when pushbutton A or B is pressed, but not both.
This circuit has been programmed using only the normally open A and B pushbutton contacts as the inputs to the program.

pet73842_ch04_061-073.indd 69 03/11/15 3:52 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

70 Chapter 4 Fundamentals of Logic

4.7 Programming Word Level Logic
Instructions
Most PLCs provide word-level logic instructions as
part of their instruction set. Table 4-1 shows how to
select the correct word logic instruction for different
situations.

Figure 4-24 illustrates the operation of the AND in-
struction to perform a word-level AND operation using
the bits in the two source addresses. This instruction tells
the processor to perform an AND operation on B3:5 and
B3:7 and to store the result in destination B3:10 when
input device A is true. The destination bits are a result of
the logical AND operation.

Figure 4-25 illustrates the operation of a word-level
OR instruction, which ORs the data in Source A, bit by
bit, with the data in Source B and stores the result at the
destination address. The address of Source A is B3:1,
the address of Source B is B3:2, and the destination
address is B3:20. The instruction may be programmed
conditionally, with input instruction(s) preceding it, or
unconditionally, as shown, without any input instruc-
tions preceding it.

Figure 4-26 illustrates the operation of a word-level
XOR instruction. In this example, data from input I:1.0
are compared, bit by bit, with data from input I:3.0.

Relay schematic Ladder logic program Gate logic

AC D

C D A

B

B
M

Motor

Motor

M

PB3 PB4
PB1

PB2
PB3 PB4 PB1

PB2

Motor

Starts
Starts

Stops
StopsMotor

Stops

A

B
M

Starts

C

D

M
M

Example 4-9 A motor control circuit with two start/stop buttons. When either start button is depressed, the motor runs. By use of
a seal-in contact, it continues to run when the start button is released. Either stop button stops the motor when it is depressed.

Figure 4-24 Word-level AND instruction.

Source A
B3:5

Source B
B3:7

Destination
B3:10

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

Input A

1100110000000000
Destination
1111111100000000
Source B
1100110011001100

BITWISE AND
Source A

B3:10

B3:7

B3:5

MOV

Compare Compute/Math Move/Logical File/Misc

MVM AND OR XOR NOT CLR

AND

If you want to . . .
. . . use this
instruction.

Know when matching bits in two different
words are both ON

AND

Know when one or both matching bits in two
different words are ON

OR

Know when one or the other bit of matching
bits in two different words is ON

XOR

Reverse the state of bits in a word NOT

Table 4-1 Selecting Logic Instructions

Figure 4-25 Word-level OR instruction.

Source A
B3:1

BITWISE INCLUS OR
Source A B3:1

Source B

Destination

Source B
B3:2

Destination
B3:20

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0

B3:2

B3:20

MOV

Compare Compute/Math Move/Logical File/Misc

MVM AND OR XOR NOT CLR

OR

pet73842_ch04_061-073.indd 70 03/11/15 3:52 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Fundamentals of Logic Chapter 4 71

Any mismatches energize the corresponding bit in word
O:4.0. As you can see, there is a 1 in every bit location in
the destination corresponding to the bit locations where
Source A and Source B are different, and a 0 in the
destination where Source A and Source B are the same.
The XOR is often used in diagnostics, where real-world
inputs, such as rotary cam limit switches, are compared
with their desired states.

Figure 4-27 illustrates the operation of a word-level
NOT instruction. This instruction inverts the bits from the
source word to the destination word. The bit pattern in
B3:10 is the result of the instruction being true and is the
inverse of the bit pattern in B3:9.

For 32-bit PLCs, such as the Allen-Bradley Control-
Logix controller, the source and destination may be a
SINT (one-byte integer), INT (two-byte integer), or DINT
(four-byte integer). Figure 4-27 Word-level NOT operation.

NOT

NOT

Source
Destination B3:10

Source
B3:9

Destination
B3:10

Input A

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1

B3:9

MOV

Compare Compute/Math Move/Logical File/Misc

MVM AND OR XOR NOT CLR

Rotating cam limit switch

Source A
Ι:1.0

XOR

Ι:1.0

O:4.0

Ι:3.0

Destination

Source B

Source A
BITWISE EXCLUS OR

Source B
Ι:3.0

Destination
O:4.0

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

MOV

Compare Compute/Math Move/Logical File/Misc

MVM AND OR XOR NOT CLR

Figure 4-26 Word-level XOR instruction.
Source: Image Courtesy of Rockwell Automation, Inc.

pet73842_ch04_061-073.indd 71 03/11/15 3:52 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

72 Chapter 4 Fundamentals of Logic

CHAPTER 4 REVIEW QUESTIONS

1. Explain the binary principle.

2. What is a logic gate?

3. Draw the logic symbol, construct a truth table, and
state the Boolean equation for each of the
following:
a. Two-input AND gate
b. NOT function
c. Three-input OR gate
d. XOR function

4. Express each of the following equations as a ladder
logic program:
a. Y = (A + B)CD
b. Y = A

__
 B C +

__
 D + E

c. Y = [(
__

 A +
__

 B)C] + DE
d. Y = (

__
 A B

__
 C) + (D

__
 E F)

5. Write the ladder logic program, draw the logic gate
circuit, and state the Boolean equation for the two
relay ladder diagrams in Figure 4-28.

6. Develop a logic gate circuit for each of the follow-
ing Boolean expressions using AND, OR, and NOT
gates:
a. Y = ABC + D
b. Y = AB + CD
c. Y = (A + B)(

__
 C + D)

d. Y =
__

 A (B + CD)

e. Y =
__

 A B + C
f. Y =(ABC + D)(E

__
 F)

7. State the logic instruction you would use when you
want to:
a. Know when one or both matching bits in two

different words are 1.
b. Reverse the state of bits in a word.
c. Know when matching bits in two different words

are both 1.
d. Know when one or the other bit of matching

bits, but not both, in two different words is 1.

8. For the logic gate circuit shown in Figure 4-29:
a. Determine the Boolean equation.
b. Draw an equivalent ladder logic program for the

gate circuit.

9. For the logic gate circuit shown in Figure 4-30:
a. Determine the Boolean equation.
b. Draw an equivalent ladder logic program for the

gate circuit.

Figure 4-28 Question 5 relay ladder diagrams.

(a) (b)

LS1 LS2

LS3

R

PB1 PB2
H

LS1

PS1

Figure 4-29

BC (B+C)

B+C

BC

AB PL

C (S3)

B (S2)

A (S1)

Y

Figure 4-30

PL
Y

D (S4)

C (S3)

B (S2)

A (S1)

CHAPTER 4 PROBLEMS

1. It is required to have a pilot light come on when all
of the following circuit requirements are met:
• All four circuit pressure switches must be closed.
• At least two out of three circuit limit switches

must be closed.
• The reset switch must not be closed.

 Using AND, OR, and NOT gates, design a
logic circuit that will solve this hypothetical
problem.

2. Write the Boolean equation for each of the logic
gate circuits in Figure 4-31a–f.

pet73842_ch04_061-073.indd 72 03/11/15 3:52 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Fundamentals of Logic Chapter 4 73

3. The logic circuit of Figure 4-32 is used to activate an
alarm when its output Y is logic HIGH or 1. Draw a
truth table for the circuit showing the resulting out-
put for all 16 of the possible input conditions.

4. What will be the data stored in the destination
address of Figure 4-33 for each of the following
logical operations?
a. AND operation
b. OR operation
c. XOR operation

5. Write the Boolean expression and draw the gate
logic diagram and typical PLC ladder logic dia-
gram for a control system wherein a fan is to run
only when all of the following conditions are met:
• Input A is OFF
• Input B is ON or input C is ON, or both B and C

are ON
• Inputs D and E are both ON
• One or more of inputs F, G, or H are ON

(c)

A

C
Y

B

A

C

E

(d)

B

D Y

(e)

A

Y
B

C

D

(f)

A

C

E

Y

B

D

F

Figure 4-32 Logic circuit for Problem 3.

Alarm

A

Y

C

D

B

Figure 4-33 Data for Problem 4.

Source A

Source B

Destination

0 00 0 0 0 0 0 0 1 1 0 1 0 10

0 10 0 0 0 0 0 0 1 1 1 0 1 0 1

Figure 4-31 Logic gate circuits for Problem 2.

Figure 4-31 (Continued)

(a)

A

C
D

Y

B

(b)

A

C Y

B

D

pet73842_ch04_061-073.indd 73 03/11/15 3:52 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

74

Chapter Objectives

After completing this chapter, you will be able to:

 • Define and identify the functions of a PLC memory
map

 • Describe input and output image table files and types of
data files

 • Describe the PLC program scan sequence

 • Understand how ladder diagram language, Boolean
language, and function chart programming language are
used to communicate information to the PLC

 • Define and identify the function of internal relay
instructions

 • Identify the common operating modes found in PLCs

 • Write and enter ladder logic programs

Each input and output PLC module terminal is
identified by a unique address. In PLCs, the in-
ternal symbol for any input is a contact. Similarly,
in most cases, the internal PLC symbol for all
outputs is a coil. This chapter shows how these
contact/coil functions are used to program a
PLC for circuit operation. This chapter covers
only the basic set of instructions that perform
functions similar to relay functions. You will also
learn more about the program scan cycle and
the scan time of a PLC.

5
Basics of PLC Programming

Symbol Name

XIC
0 FALSE

FALSE

TRUE

TRUE

1

0

1
XIO

Bit status Instruction status

pet73842_ch05_074-097.indd 74 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Basics of PLC Programming Chapter 5 75

• System functions (file 0)—This file is always included
and contains various system-related information and
user-programmed information such as processor type,
I/O configuration, processor file name, and password.

• Reserved (file 1)—This file is reserved by the pro-
cessor and is not accessible to the user.

• Main ladder program (file 2)—This file is always
included and contains user-programmed instructions
that define how the controller is to operate.

• Subroutine ladder program (files 3–255)—These
files are user-created and are activated according to
subroutine instructions residing in the main ladder
program file.

Data Files
The data file portion (Figure 5-3) of the processor’s memory
stores input and output status, processor status, the status
of various bits, and numerical data. All this information is
accessed via the ladder logic program. These files are or-
ganized by the type of data they contain and may include:

• Output (file 0)—This file stores the state of the out-
put terminals for the controller.

• Input (file 1)—This file stores the status of the
input terminals for the controller.

• Status (file 2)—This file stores controller operation
information and is useful for troubleshooting con-
troller and program operation.

• Bit (file 3)—This file is used for internal relay logic
storage.

• Timer (file 4)—This file stores the timer accumu-
lated and preset values and status bits.

• Counter (file 5)—This file stores the counter accu-
mulated and preset values and status bits.

• Control (file 6)—This file stores the length, pointer
position, and status bit for specific instructions such
as shift registers and sequencers.

• Integer (file 7)—This file is used to store whole
number values or bit information.

• Float (file 8)—The floating point file is used to
store fractional numerical data or numerical values
greater than 32,767. This file applies to selected
PLC processors.

The I/O address format for the SLC family of PLCs is
shown in Figure 5-4. The format consists of the following
three parts:

Part 1: I for input, and a colon to separate the module
type from the slot.
O for output and a colon to separate the module type
from the slot.

5.1 Processor Memory Organization
While the fundamental concepts of PLC programming are
common to all manufacturers, differences in memory orga-
nization, I/O addressing, and instruction set mean that PLC
programs are never perfectly interchangeable among different
makers. Even within the same product line of a single manu-
facturer, different models may not be directly compatible.

The memory map or structure for a PLC processor con-
sists of several areas, some of these having specific roles.
Allen-Bradley PLCs have two different memory structures
identified by the terms rack-based systems and tag-based
systems. The SLC 500 family of controllers uses a rack-
based fixed memory structure. The I/O addresses are de-
rived using the slot location of the input and output modules
within the PLC rack. In comparison, the ControlLogix 5000
series of controllers uses a tag-based memory structure for
assigning and referencing memory locations. A tag is a
friendly name for a memory location. In tag-based memory
structures there are no fixed areas of memory allocated for
I/O addresses or other types of data. The memory organiza-
tion for rack-based systems will be covered in detail in this
chapter and that for tag-based systems in Chapter 15.

Memory organization takes into account the way a
PLC divides the available memory into different sections.
The memory space can be divided into two broad catego-
ries: program files and data files. Individual sections, their
order, and the sections’ length will vary and may be fixed
or variable, depending on the manufacturer and model.

Program files are the part of the processor memory
that stores the user ladder logic program. The program
accounts for most of the total memory of a given PLC
system. It contains the ladder logic that controls the ma-
chine operation. This logic consists of instructions that
are programmed in a ladder logic format. Most instruc-
tions require one word of memory.

The data files store the information needed to carry out
the user program. This includes information such as the
status of input and output devices, timer and counter val-
ues, data storage, and so on. Contents of the data table can
be divided into two categories: status data and numbers or
codes. Status is ON/OFF type of information represented
by 1s and 0s, stored in unique bit locations. Number or
code information is represented by groups of bits that are
stored in unique byte or word locations.

Figure 5-1 shows the program and data file organiza-
tion for the SLC 500 controller. The contents of each file
are as follows.

Program Files
Program files (Figure 5-2) are the areas of processor memory
where ladder logic programming is stored. They may include:

pet73842_ch05_074-097.indd 75 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

76 Chapter 5 Basics of PLC Programming

User defined

0

O
ut

pu
t fi

le

In
pu

t fi
le

St
at

us
 fi

le

B
it

fil
e

Ti
m

er
 fi

le

C
ou

nt
er

 fi
le

C
on

tr
ol

 fi
le

In
te

ge
r

fil
e

Fl
oa

tin
g

po
in

t fi
le

1

2

3

4

5

6

0

1

2

3 to 255

pr
og

ra
m

 fi
le

s
3

to
 2

5
5

P
ro

gr
am

 fi
le

 2

Sy
st

em
 fi

le
 1

Sy
st

em
 fi

le
 0

7

8

9 to 255

Main program

Subroutines

Designated

B
T
C
R
N
F
ST
A

Bit
Timer
Counter
Control
Integer
Floating Pt.
String
ASCII

Data
files

Program
files

Figure 5-1 Program and data file organization for the SLC 500 controller. Figure 5-2 Program file tree.

Program Files–

SYS 0 –

SYS 1 –

LAD 2 –

Part 2: The module slot number and a forward slash
to separate the slot from the terminal screw.
Part 3: The screw terminal number.

The SLC 500 stores data in data tables that are based
on 16-bit words. The input image table file is that part of the
program memory allocated to storing the on/off status of con-
nected discrete inputs. Figure 5-5 shows the connection of an
open and closed switch to the input image table file through
the input module. Its operation can be summarized as follows.

• For the switch that is closed, the processor detects a
voltage at the input terminal and records that infor-
mation by storing a binary 1 in its bit location.

• For the switch that is open, the processor detects no
voltage at the input terminal and records that infor-
mation by storing a binary 0 in its bit location.

• Each connected input has a bit in the input image
table file that corresponds exactly to the terminal to
which the input is connected.

• The input image table file is changed to reflect the
current status of the switch during the I/O scan
phase of operation.

• If the input is on (switch closed), its corresponding
bit in the table is set to 1.

• If the input is off (switch open), the corresponding
bit is cleared, or reset to 0.

pet73842_ch05_074-097.indd 76 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Basics of PLC Programming Chapter 5 77

• The processor continually reads the current input
status and updates the input image table file.

The output image table file is that part of the program
memory allocated to storing the actual on/off status of con-
nected discrete outputs. Figure 5-6 shows a typical connection
of two pilot lights to the output image table file through the
output module. Its operation can be summarized as follows.

• The status of each light (ON/OFF) is controlled by
the user program and is indicated by the presence of
1 (ON) and 0 (OFF).

• Each connected output has a bit in the output image
table file that corresponds exactly to the terminal to
which the output is connected.

Figure 5-4 I/O address format for the SLC family of PLCs.
Source: Image Courtesy of Rockwell Automation, Inc.

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

I:1

0 1 2 3

I : 1/2

SeparatorInput or
output

Slot
number

Bit
number

Bit
designator

00

01

02

03

04

05

06

07

08

09

10

12

13

14

15

O:2

11

O : 2/11

–

Cross reference

Data Files

O0 – Output

I1 – Input

S2 – Status

B3 – Binary

T4 – Timer

C5 – Counter

R6 – Control

N7 – Integer

F8 – Float

Figure 5-3 Data file tree.
Figure 5-5 Connection of an open and closed switch to the
input image table file through the input module.

Input image

Word corresponding
to input module

ON

(closed)

(open)

Input module

OFF

L1

1 0

Data table
files

Figure 5-6 Connections of pilot lights to the output image
table file through the output module.

Output module

Output image

Word corresponding
to output module

OFF

L2

10

Data table
files

ON

pet73842_ch05_074-097.indd 77 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

78 Chapter 5 Basics of PLC Programming

5.2 Program Scan
When a PLC executes a program, it must know—in real
time—when external devices controlling a process are
changing. During each operating cycle, the processor reads
all the inputs, takes these values, and energizes or de-
energizes the outputs according to the user program. This
process is known as a program scan cycle. Figure 5-8 illus-
trates a single PLC operating cycle consisting of the input
scan, program scan, output scan, and housekeeping duties.
Because the inputs can change at any time, it constantly
repeats this cycle as long as the PLC is in the RUN mode.

The time it takes to complete a scan cycle is called the
scan cycle time and indicates how fast the controller can
react to changes in inputs. The time required to make a

• If the program calls for a specific output to be ON,
its corresponding bit in the table is set to 1.

• If the program calls for the output to be OFF, its
corresponding bit in the table is set to 0.

• The processor continually activates or deactivates the
output status according to the output table file status.

Typically, micro PLCs have a fixed number of inputs
and outputs. Figure 5-7 shows the MicroLogix controller
from the Allen-Bradley MicroLogix 1000 family of con-
trollers. The controller has 20 discrete inputs with pre-
defined addresses I/0 through I/19 and 12 discrete outputs
with predefined addresses O/0 through O/11. Some units
also contain analog inputs and outputs embedded into the
base unit or available through add-on modules.

Figure 5-7 Typical micro PLC with predefined addresses.
Source: Image Courtesy of Rockwell Automation, Inc.

Figure 5-8 PLC program scan cycle.

Internal checks
on memory, speed,

and operation.
Service any

communication
requests.

The output image
date is transferred

to the external output
circuits, turning the

output device
ON or OFF.

Each ladder rung
is scanned and solved
using the date in the
input file. The resulting
logic is written to the
output image table
(file or register).

The status of
external inputs
is written to the
input image table
(file or register).

HOUSE-
KEEPING

START INPUT
SCAN

PROGRAM
SCAN

OUTPUT
SCAN

AC
COM

I/0 AC
COM

I/4 I/5 I/6 I/7 I/8 I/9 I/10 I/11 I/12 I/13 I/14 I/15 I/16 I/17 I/18 I/19I/1 I/2 I/3

VAC
VDC

VAC
VDC

VAC
VDC

VAC
VDCO/4 O/2 O/3 O/4 O/5 O/6 O/7 O/8 O/9 O/10 O/11VAC

VDC O/0

L2

L2

L1

L1

VAC 2 VDC 1 VDC 2

VAC 2
COM

VDC 1
COM

VDC 2
COM

VDC 3
COM

VDC 3

L2 Discrete Inputs

Discrete Outputs

L1

CR CR CR CR CRCR CR CR CR CR

pet73842_ch05_074-097.indd 78 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Basics of PLC Programming Chapter 5 79

electrical continuity), the corresponding bit in the
input image table will be set to a 1.

In a rung of any hardwired circuit there must be electrical
continuity in order for the load to energize. The rung has
electrical continuity only when the current flow is estab-
lished in a path from one side of the power rail to the other.
There is no electrical continuity in the PLC ladder logic
program. Instead, the rung must be evaluated in terms of
logical continuity rather than electrical continuity. When
there is a continuous path of true conditional instructions
in a rung, logical continuity exists; accordingly the output
instruction is true and the status bit will be set to a 1 (ON).

The controller evaluates ladder logic rung instructions
based on the rung condition preceding the instruction
(rung-condition-in), as illustrated in Figure 5-10.

• If the rung-condition-in to an input instruction is
true, the controller evaluates the instruction and sets
the rung-condition-out to match the results of the
evaluation.

• If the instruction evaluates to true, the rung-
condition-out is true.

• If the instruction evaluates to false, the rung-
condition-out is false.

• If the rung-condition-in to an output instruction is
true, the rung-condition-out is set to true.

• If the rung-condition-in to an output instruction is
false, the rung-condition-out is set to false.

Figure 5-11 illustrates the scan process applied to a
simple single rung program. The operation of the scan
process can be summarized as follows:

• If the input device connected to address I:3/6 is
closed, the input module circuitry senses voltage at
the input terminal and a 1 (ON) condition is entered
into the input image table bit I:3/6.

• During the program scan, the processor examines
bit I:3/6 for a 1 (ON) condition.

• In this case, because input I:3/6 is 1, the rung is said
to be TRUE or have logic continuity.

single scan can vary from about 1 to 20 ms. If a controller
has to react to an input signal that changes states twice dur-
ing the scan time, it is possible that the PLC will never be
able to detect this change. For example, if it takes 8 ms for
the CPU to scan a program, and an input contact is opening
and closing every 4 ms, the program may not respond to the
contact changing state. The CPU will detect a change if it
occurs during the update of the input image table file, but
the CPU will not respond to every change. The scan time is
a function of the following:

• The speed of the processor module
• The length of the ladder program
• The type of instructions executed
• The actual ladder true/false conditions

The actual scan time is calculated and stored in the
PLC’s memory. The PLC computes the scan time each
time the END instruction is executed. Scan time data can
be monitored via the PLC programming. Typical scan
time data include the maximum scan time and the last
scan time.

The scan is normally a continuous and sequential pro-
cess of reading the status of inputs, evaluating the control
logic, and updating the outputs. Figure 5-9 shows an over-
view of the data flow during the scan process. For each
rung executed, the PLC processor will:

• Examine the status of the input image table bits.
• Solve the ladder logic in order to determine logical

continuity.
• Update the appropriate output image table bits, if

necessary.
• Copy the output image table status to all of the output

terminals. Power is applied to the output device if the
output image table bit has been previously set to a 1.

• Copy the status of all of the input terminals to the
input image table. If an input is active (i.e., there is

Figure 5-9 Overview of the data flow during the scan
process.

Input
modules

Input
data

Output
data

Input
image
table
file

Output
image
table
file

Return
result

Take some action

Examine
data

Check/compare/examine
specific conditions

Output
modules

Program

Figure 5-10 Evaluating ladder logic rung conditions.

Input
instructions

Rung-in
condition

Rung-out
condition

Output
instructions

PL1

PL1

PL2

S1

S2 PL2

S1

L2L1

S2

pet73842_ch05_074-097.indd 79 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

80 Chapter 5 Basics of PLC Programming

any input devices changes when the processor
is in step 2 or 3, the output condition will not
react to them until the next processor scan.

Each instruction entered into a program requires a cer-
tain amount of time for the instruction to be executed.
The amount of time required depends on the instruction.
For example, it takes less time for a processor to read the
status of an input contact than it does to read the accumu-
lated value of a timer or counter. The time taken to scan
the user program is also dependent on the clock frequency
of the microprocessor system. The higher the clock fre-
quency, the faster is the scan rate. Typical processor clock
frequencies range between 1 to 10 MHz.

There are two basic scan patterns that different PLC
manufacturers use to accomplish the scan function

• The processor then sets the output image table bit
O:4/7 to 1.

• The processor turns on output O:4/7 during the next
I/O scan, and the output device (light) wired to this
terminal becomes energized.

• This process is repeated as long as the processor is
in the RUN mode.

• If the input device opens, electrical continuity is
lost, and a 0 would be placed in the input image
table. As a result, the rung is said to be FALSE due
to loss of logic continuity.

• The processor would then set the output image table
bit O:4/7 to 0, causing the output device to turn off.

Ladder programs process inputs at the beginning of a scan
and outputs at the end of a scan, as illustrated in Figure 5-12.
For each rung executed, the PLC processor will:

Step 1 Update the input image table by sensing the
voltage of the input terminals. Based on the
absence or presence of a voltage, a 0 or a 1 is
stored into the memory bit location designated
for a particular input terminal.

Step 2 Solve the ladder logic in order to determine
logical continuity. The processor scans the lad-
der program and evaluates the logical continu-
ity of each rung by referring to the input image
table to see if the input conditions are met. If
the conditions controlling an output are met, the
processor immediately writes a 1 in its memory
location, indicating that the output will be
turned ON; conversely, if the conditions are not
met a 0 indicating that the device will be turned
OFF is written into its memory location.

Step 3 The final step of the scan process is to update
the actual states of the output devices by trans-
ferring the output table results to the output
module, thereby switching the connected out-
put devices ON (1) or OFF (0). If the status of

Figure 5-11 Scan process applied to a single rung program.

Input
module

Input
device

Output
device

Input
image
table
file

Output
image
table
file

Output
module

Program

Data
Processor memory

O:4/7 O:4/7

I:3/6 O:4/7

I:3/6 I:3/6
Field-device

power supply
Field-device

power supply

Figure 5-12 Scan process applied to a multiple
rung program.

START

Input image table
0 0 0 0 0 0 0 0 0 0 01 1 1 1 0

Output image table

END

0 0 0 0 0 0 0 0 1 0 00 0 0 1 0

Step 3
Transfer
to output
module

Step 1
Read
input
module

Step 2
Solve the
ladder program

pet73842_ch05_074-097.indd 80 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

m

Basics of PLC Programming Chapter 5 81

established to standardize the multiple languages associ-
ated with PLC programming by defining the following
five standard languages:

• Ladder Diagram (LD)—a symbolic depiction of
instructions arranged in rungs similar to ladder-
formatted schematic diagrams.

• Function Block Diagram (FBD)—a graphical de-
piction of process flow using simple and complex
interconnecting blocks.

• Sequential Function Chart (SFC)—a graphical
depiction of interconnecting steps, actions, and
transitions.

• Instruction List (IL)—a low-level, text-based
language that uses mnemonic instructions.

• Structured Text (ST)—a high-level, text-based lan-
guage such as BASIC, C, or PASCAL specifically
developed for industrial control applications.

Ladder diagram language is the most commonly used
PLC language and is designed to mimic relay logic. The
ladder diagram is popular for those who prefer to define
control actions in terms of relay contacts and coils, and
other functions as block instructions. Figure 5-15 shows
a comparison of ladder diagram programming and in-
struction list programming. Figure 5-15a shows the orig-
inal relay hardwired control circuit. Figure 5-15b shows
the equivalent logic ladder diagram programmed into
a controller. Note how closely the ladder diagram pro-
gram resembles the hardwired relay circuit. The input/
output addressing is generally different for each PLC

(F igure 5-13). Allen-Bradley PLCs use the horizontal
scan by rung method. In this system, the processor exam-
ines input and output instructions from the first com-
mand, top left in the program, horizontally, rung by rung.
Modicon PLCs use the vertical scan by column method.
In this system, the processor examines input and output
instructions from the top left command entered in the lad-
der diagram, vertically, column by column and page by
page. Pages are executed in sequence. Both methods are
appropriate; however, misunderstanding the way the PLC
scans a program can cause programming bugs.

5.3 PLC Programming Languages
The term PLC programming language refers to the
method by which the user communicates information
to the PLC. The standard IEC 61131 (Figure 5-14) was

Figure 5-13 Scanning can be vertical or horizontal.

Horizontal scanning order

End of ladder

Vertical
scanning
order Return

for next
scan

Figure 5-14 Standard IEC 61131 languages associated with PLC programming.

PLC programming languages

Textural language

Instruction
list

Structured
text

Sequential
function chart

Functional
block diagram

Ladder
diagram

Graphical language

Figure 5-15 Comparison of ladder diagram and instruction list programming.

PB1 CR CR SOL

LS 1

1 2

(a) Hardwired relay control circuit

SOL

A B D Y

(LS1)

SOL

PB 1

CR 1

CR 2

START

AND

OR

AND NOT

OUT

LS1

(CR2)(CR1)(PB1)

(b) Equivalent ladder diagram (LD) program (c) Equivalent instruction

list (IL) program

C

pet73842_ch05_074-097.indd 81 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

82 Chapter 5 Basics of PLC Programming

The function block solution consists of a logic Boolean
And function block with two input references tags for the
sensors and a single output reference tag for the pilot light.
Note there are no power rails in the function block diagram.

Sequential function chart programming language is
similar to a flowchart of your process. SFC programming
is designed to accommodate the programming of more
advanced processes. This type of program can be split
into steps with multiple operations happening in paral-
lel branches. The basic elements of a sequential function
chart program are shown in Figure 5-18.

manufacturer. Figure 5-15c shows how the original hard-
wired circuit could be programmed using the instruction
list programming language. Note that the instructional
list consists of a series of instructions that refer to the
basic AND, OR, and NOT logic gate functions.

Functional block diagram programming uses instructions
that are programmed as blocks wired together on screen
to accomplish certain functions. Typical types of func-
tion blocks include logic, timers, and counters. Functional
block diagrams are similar in layout to electrical/electronic
block diagrams used to simplify complex systems by show-
ing blocks of functionality. The primary concept behind a
functional block diagram is data flow. Function blocks are
linked together to complete a circuit that satisfies a control
requirement. Data flow on a path from inputs, through func-
tion blocks or instructions, and then to outputs.

The use of function blocks for programming of pro-
grammable logic controllers (PLCs) is gaining wider
acceptance. Rather than the classic contact and coil repre-
sentation of ladder diagram or relay ladder logic program-
ming, function blocks present a graphical image to the
programmer with underlying algorithms already defined.
The programmer simply completes needed information
within the block to complete that phase of the program.
Figure 5-16 shows function block diagram equivalents to
ladder logic contacts.

Figure 5-17 illustrates how ladder diagram and func-
tional block diagram programming could be used to pro-
duce the same logical output. For this application, the
objective is to turn on caution pilot light PL 1 whenever
both sensor switch 1 and sensor switch 2 are closed. The
ladder logic consists of a single rung across the power rails.
This rung contains the two input sensor instructions pro-
grammed in series with the pilot light output instruction.

Figure 5-16 Function block diagram equivalents to ladder
logic contacts.

Figure 5-17 PLC ladder and equivalent function block
diagram.

Caution

Sensor 1 Sensor 2
Caution

PL 1

Ladder diagram

Function block diagram

BAND_01

BAND

0
Boolean And

Out PL 1
0

Sensor 1 In1

0
Sensor 2 In2

Figure 5-18 Major elements of a sequential function chart
program.

Initial
Step 1

Step 2 Action

Step 3 Action

Action

Transition

Wire

Wire
loop

Transition

Transition

Stop

AND_BOOL

Functional block
diagram equivalentLadder logic

A
A B

B

AND_BOOL

A

B

OR_BOOL

A

B

BA

A

B

pet73842_ch05_074-097.indd 82 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Basics of PLC Programming Chapter 5 83

relay contacts. Instead, they operate as commands that
examine the value (0 or 1) of a bit of data to determine
its true or false logical condition.

The symbol for the Examine If Closed (XIC) instruc-
tion is shown in Figure 5-20. The XIC instruction is also
called the Examine-on instruction. Associated with each
XIC instruction is a memory bit linked to the status of
an input device or an internal logical condition in a rung.
This instruction asks the PLC’s processor to examine if
the contact is closed. It does this by examining the bit at
the memory location specified by the address in the fol-
lowing manner:

• The memory bit is set to 1 or 0 depending on the
status of the input (physical) device or internal
(logical) relay address associated with that bit.

• A 1 corresponds to a true status or on condition.
• A 0 corresponds to a false status or off condition.
• When the Examine-on instruction is associated

with a physical input, the instruction will be set to
1 when a physical input is present (voltage is ap-
plied to the input terminal), and 0 when there is no
physical input present (no voltage applied to the
input terminal).

• When the Examine-on instruction is associated by
address with an internal relay, then the status of the
bit is dependent on the logical status of the internal
bit with the same address as the instruction.

Structured text is a high-level text language primarily
used to implement complex procedures that cannot be
easily expressed with graphical languages. Structured text
uses statements to define what to execute. Figure 5-19 il-
lustrates how structured text and ladder diagram program-
ming could be used to produce the same logical output.
For this application, the objective is to energize SOL 1
whenever either one of the two following circuit condi-
tions exists:

• Sensor 1 and Sensor 2 switches are both closed.
• Sensor 3 and Sensor 4 switches are both closed and

Sensor 5 switch is open.

5.4 Bit-Level Logic Instructions
The ladder diagram language is basically a symbolic set
of instructions used to create the controller program. Bit-
level symbolic instructions fall into two separate catego-
ries: instructions that examine data and instructions that
control data. Each symbolic instruction is a command
to perform a specific operation. These ladder instruction
symbols are arranged to obtain the desired control logic
that is to be entered into the memory of the PLC.

Representations of contacts and coils are the basic
symbols of the logic ladder diagram instruction set. The
three fundamental symbols that are used to translate
relay control logic to contact symbolic logic are Exam-
ine If Closed (XIC), Examine If Open (XIO), and Out-
put Energize (OTE). Each of these instructions relates
to a single bit of PLC memory that is specified by the
instruction’s address. While the XIO and XIC are rep-
resented by symbols that resemble a normally-open and
normally-closed relay contact, they do not operate like

Figure 5-19 PLC ladder and equivalent structured text
program.

Structured text (ST) program

IF Sensor_1 AND Sensor_2 THEN
 SOL_1 := 1;
ELSEIF Sensor_3 AND Sensor_4 AND NOT Sensor_5 THEN
 SOL_1 := 1;
END_IF;

Sensor 1

Sensor 3 Sensor 4 Sensor 5

Sensor 2

Ladder diagram (LD) program

SOL 1

Figure 5-20 Examine If Closed (XIC) instruction.

Bit
number

I:1/4

I:1/4

I:1/4

I:1/4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0

Status

Instruction interpreted
as true

Instruction interpreted
as false

1

Symbol
Examine if closed (XIC)
Examine-on

pet73842_ch05_074-097.indd 83 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

84 Chapter 5 Basics of PLC Programming

interpreted as true when there is no physical input
present (the bit is 0).

• If the Examine-off instruction were associated by
address with an internal relay, then the status of
the bit would be dependent on the logical status
of the internal bit with the same address as the
instruction.

• Like the Examine-on instruction, the status of the
instruction (true or false) determines if the instruc-
tion will allow rung continuity through itself, like a
closed relay contact.

• The memory bit always follows the status (true 5 1
or false 5 0) of the input address or internal address
assigned to it. The interpretation of that bit, how-
ever, is determined by which instruction is used to
examine it.

• Examine-on instructions always interpret a 1 status
as true and a 0 status as false, while Examine-off in-
structions interpret a 1 status as false and a 0 status
as true, as illustrated in Figure 5-22.

The symbol for the Output Energize (OTE) instruc-
tion is shown in Figure 5-23. The OTE instruction
looks and operates like a relay coil and is associated
with a memory bit. This instruction signals the PLC
to energize (switch on) or de-energize (switch off)
the output. The processor makes this instruction true
(analogous to energizing a coil) when there is a logical
path of true XIC and XIO instructions in the rung. The
operation of the Output Energize instruction can be
summarized as follows:

• The status bit of the addressed Output Energize in-
struction is set to 1 to energize the output and to 0 to
de-energize the output.

• If a true logic path is established with the input
instructions in the rung, the OTE instruction is ener-
gized and the output device wired to its terminal is
energized.

• If a true logic path cannot be established or
rung conditions go false, the OTE instruction is
de-energized and the output device wired to it is
switched off.

• If the instruction memory bit is a 1 (true) this instruc-
tion will allow rung continuity through itself, like a
closed relay contact.

• If the instruction memory bit is a 0 (false) this
instruction will not allow rung continuity through
itself and will assume a normally open state just like
an open relay contact.

The symbol for the Examine If Open (XIO) instruc-
tion is shown in Figure 5-21. The XIO instruction, which
is also called the Examine-off instruction, looks and oper-
ates like a normally closed relay contact. Associated with
each XIO instruction is a memory bit linked to the status
of an input device or an internal logical condition in a
rung. This instruction asks the PLC’s processor to exam-
ine if the contact is open. It does this by examining the
bit at the memory location specified by the address in the
following manner:

• As with any other input the memory bit is set to 1
or 0 depending on the status of the input (physical)
device or internal (logical) relay address associated
with that bit.

• A 1 corresponds to a true status or on condition.
• A 0 corresponds to a false status or off condition.
• When the Examine-off instruction is used to ex-

amine a physical input, then the instruction will
be interpreted as false when there is a physical
input (voltage) present (the bit is 1) and will be

Figure 5-21 Examine If Open (XIO) instruction.

Symbol

Bit
number

I:1/4

I:1/4

I:1/4

I:1/4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

0

Examine If Open (XIO)
Examine-o�

Status

Instruction interpreted
as false

Instruction interpreted
as true

Figure 5-22

Figure 5-22 Interpreting Examine-on and Examine-off
instructions.

Symbol Name

XIC
0 FALSE

FALSE

TRUE

TRUE

1

0

1
XIO

Bit status Instruction status

pet73842_ch05_074-097.indd 84 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Basics of PLC Programming Chapter 5 85

the concept. A better approach is to separate the action
of the field device from the action of the PLC bits as
illustrated in Figure 5-24. A signal present makes the
NO bit (1) true; a signal absent makes the NO bit (0)
false. The reverse is true for an NC bit. A signal present
makes the NC bit (1) false; a signal absent makes the
NC bit (0) true.

The main function of the ladder logic diagram pro-
gram is to control outputs based on input conditions, as
illustrated in Figure 5-25. This control is accomplished
through the use of what is referred to as a ladder rung. In
general, a rung consists of a set of input conditions, rep-
resented by contact instructions, and an output instruction
at the end of the rung, represented by the coil symbol.

Sometimes beginner programmers who are used to
thinking in terms of hardwired relay control circuits
tend to use the same type of contact (NO or NC) in the
ladder logic program that corresponds to the type of
field switch wired to the discrete input. While this is
true in many instances, it is not the best way to think of

Figure 5-23 Output Energize (OTE) instruction.

Symbol

Output energize

Output
data

Input
data

Program

I:1/1

I:1/4

I:1/1

O:2/1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ON

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

1 1

Output
module

Input
module

I:1/4 O:2/1

Figure 5-24 Separating the action of the field device and
PLC bit.

A

A A

FALSE

Button not actuated

TRUE

OUTPUT

Input
module

Ladder logic program

Bit
status

OFF

A

ON

0

A

FALSE

Button actuated

TRUE
OUTPUT

Input
module

Ladder logic program

Bit
status

ON

1

OFF

A

Figure 5-25 Ladder logic diagram rungs.

I/3I/2I/1 O/1

Inputs

Rung 0

Rung 1

Outputs

I/4I/2 O/2

O/1

pet73842_ch05_074-097.indd 85 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

86 Chapter 5 Basics of PLC Programming

having logical continuity. When logical continuity exists
in at least one path, the rung condition and Output Ener-
gize instruction are said to be true. The rung condition and
OTE instruction are false if no logical continuity path has
been established. During controller operation, the proces-
sor evaluates the rung logic and changes the state of the
outputs according to the logical continuity of rungs.

5.5 Instruction Addressing
To complete the entry of a relay-type instruction, you
must assign an address to each instruction. This ad-
dress indicates what PLC input is connected to what
input device and what PLC output will drive what out-
put device.

The addressing of real inputs and outputs, as well as in-
ternals, depends on the PLC model used. Addressing for-
mats can vary from one PLC family to another as well as
for different manufacturers. These addresses can be repre-
sented in decimal, octal, or hexadecimal depending on the
number system used by the PLC. The address identifies
the function of an instruction and links it to a particular
bit in the data table portion of the memory. Figure 5-27
shows the addressing format for an Allen-Bradley SLC
500 controller. Addresses contain the slot number of the
module where input or output devices are connected. Ad-
dresses are formatted as file type, file number, slot num-
ber, and bit.

Each contact or coil symbol is referenced with an address
that identifies what is being evaluated and what is being
controlled. The same contact instruction can be used
throughout the program whenever that condition needs
to be evaluated. While this is true for the XIO and XIC
contact instructions, the same cannot be said for the OTE
coil instruction. A common mistake for the novice pro-
grammer is to place the same addressed OTE instruction
on multiple rungs within the same program. This practice
is to be avoided since it will lead to unpredictable pro-
gram outcomes. The number of ladder logic relays and
input and output instructions is limited only by memory
size. Most PLCs allow more than one output per rung.

For an output to be activated or energized, at least one
left-to-right true logical path must exist, as illustrated
in Figure 5-26. A complete closed path is referred to as

Figure 5-27 Addressing format for an Allen-Bradley SLC 500 controller.

Closed
switch

Energized
output

Output image table
file 0

User-programmed rung

O:4/6
Bit address

612

I:3 O:4

I:3/12

Input file (I)
Slot (3)
Bit (12)

L1

Input image table
file 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

I:3/12
Bit address

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

O:4/6

Output file (O)
Slot (4)
Bit (6)

L2

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Figure 5-26 Logical continuity.

Rung 0

Rung 1

Rung 2

FTTF

TTTF

TT

T
T

pet73842_ch05_074-097.indd 86 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Basics of PLC Programming Chapter 5 87

illustrated in Figure 5-31. When there is a true logic rung
path, all parallel outputs become true. In the example
shown, either A or B provides a true logical path to all
three output instructions: C, D, and E.

Additional input logic instructions (conditions) can be
programmed in the output branches to enhance conditional
control of the outputs. When there is a true logic path, in-
cluding extra input conditions on an output branch, that
branch becomes true. In the example shown in Figure 5-32,
either A and D or B and D provide a true logic path to E.

Input and output branches can be nested to avoid re-
dundant instructions and to speed up processor scan time.
Figure 5-33 illustrates nested input and output branches.
A nested branch starts or ends within another branch.

In some PLC models, the programming of a branch
circuit within a branch circuit or a nested branch can-
not be done directly. It is possible, however, to program

Allen-Bradley Logix 5000 controllers offer a more
flexible method of addressing memory space. Instead of
a fixed device with a fixed address space, tags are used
for assigning and referencing memory spaces. Tags are a
pure text based addressing scheme and a departure from
the more conventional ways of programming PLCs.

The assignment of an I/O address can be included in
the I/O connection diagram, as shown in Figure 5-28. In-
puts and outputs are typically represented by squares and
diamonds, respectively.

5.6 Branch Instructions
Branch instructions are used to create parallel paths of
input condition instructions. This allows more than one
combination of input conditions (OR logic) to establish
logic continuity in a rung. Figure 5-29 illustrates a typical
branch instruction. The rung will be true if either instruc-
tion A or B is true.

Input branching by formation of parallel branches can
be used in your application program to allow more than
one combination of input conditions. If at least one of these
parallel branches forms a true logic path, the rung logic is
true and the output will be energized. If none of the parallel
branches complete a logical path, logic rung continuity is
not established and the output will be de-energized. In the
example shown in Figure 5-30, either A and B, or C pro-
vides logical continuity and energizes output D.

On most PLC models, branches can be established at
both input and output portions of a rung. With output
branching, you can program parallel outputs on a rung
to allow a true logic path to control multiple outputs, as

Figure 5-28 I/O connection diagram.

O:3/6

Outputs

LL

Inputs

LS1

LL
PB1

SOL1
O:2/3

1 2 1

PL1

2

I:4/5

I:4/6 R

Figure 5-29 Typical branch instruction.

A

B

C

Figure 5-30 Parallel input branches.

B D

C

A

Figure 5-31 Parallel output branches.

B
D

E

CA

Figure 5-32 Parallel output branching with conditions.

B D E

CA

Figure 5-33 Nested input and output branches.

pet73842_ch05_074-097.indd 87 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

88 Chapter 5 Basics of PLC Programming

limitation diagram for a typical PLC. A maximum of seven
parallel lines and 10 series contacts per rung is possible.

Another limitation to branch circuit programming is
that the PLC will not allow for programming of vertical
contacts. A typical example of this limitation is contact
C of the user program drawn in Figure 5-37. To obtain
the required logic, the circuit would be reprogrammed as
shown in Figure 5-38.

The processor examines the ladder logic rung for logic
continuity from left to right only. The processor never al-
lows for flow from right to left. This situation presents a

a logically equivalent branching condition. Figure 5-34
shows an example of a circuit that contains a nested con-
tact D. To obtain the required logic, the circuit would be
programmed as shown in Figure 5-35. The duplication of
contact C eliminates the nested contact D. Nested branch-
ing can be converted into non-nested branches by repeat-
ing instructions to make parallel equivalents.

Some PLC manufacturers have virtually no limitations
on allowable series elements, parallel branches, or outputs.
For others, there may be limitations to the number of series
contact instructions that can be included in one rung of a lad-
der diagram as well as limitations to the number of parallel
branches. Also, there is an additional limitation with some
PLCs: only one output per rung and the output must be lo-
cated at the end of the rung. The only limitation on the num-
ber of rungs is memory size. Figure 5-36 shows the matrix

Figure 5-34 Nested contact program.

A branch within
a branch

YA B C

D

E

Figure 5-35 Program required to eliminate nested
contact.

A B C Y

CD

E

Contact
instruction C
repeated

Figure 5-36 PLC matrix limitation diagram.

Maximum 7
parallel lines

Maximum 10 contacts

Figure 5-37 Program with vertical contact.

Boolean equation: Y = (AD) + (BCD) + (BE) + (ACE)

A D

B E

C

Y

Figure 5-38 Reprogrammed to eliminate vertical contact.

YDA

C DB

C EA

EB

21 3 4 5

98 10 11 12

6 7

Internal
relay
coil

B3:1/3

Discrete
output

Discrete inputs

Discrete inputs

Rung 1

Rung 2

Internal
relay

contact

B3:1/3

pet73842_ch05_074-097.indd 88 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Basics of PLC Programming Chapter 5 89

not directly control an output field device. The internal
output operates just like any output that is controlled by
programmed logic; however, the output is used strictly
for internal purposes.

The advantage of using internal outputs is that there
are many situations in which an output instruction is re-
quired in a program but no physical connection to a field
device is needed. If there are no physical outputs wired
to a bit address, the address can be used as an internal
storage point. Internal storage bits or points can be pro-
grammed by the user to perform relay functions without
occupying a physical output. In this way internal outputs
can minimize output module point requirements when-
ever practical.

Internal outputs are single-bit storage locations in
memory and are addressed as such. SLC 500 control-
lers use bit file B3 for storage and addressing of internal
output bits. The addressing for bit B3:1/3 illustrated in
Figure 5-41 consists of the file number followed by word
and bit numbers.

An internal control relay can be used when a pro-
gram requires more series contacts than the rung allows.
Figure 5-42 shows a circuit that allows for only 7 series
contacts when 12 are actually required for the pro-
grammed logic. To solve this problem, the contacts are
split into two rungs. Rung 1 contains seven of the re-
quired contacts and is programmed to control internal
relay coil B3:1/3. The address of the first programmed
contact on Rung 2 is B3:1/3 followed by the remain-
ing five contacts and the discrete output. When the logic
controlling the internal output is true, the referenced bit
B3:1/3 is turned on or set to 1. The advantage of an in-
ternal storage bit in this manner is that it saves an output
bit from being used.

problem for user program circuits similar to that shown in
Figure 5-39. If programmed as shown, contact combination
FDBC would be ignored. To obtain the required logic, the
circuit would be reprogrammed as shown in Figure 5-40.

5.7 Internal Relay Instructions
Most PLCs have an area of the memory allocated for
what are known as internal storage bits. These storage
bits are also called internal outputs, internal coils, in-
ternal control relays, or simply internal bits. Internal
outputs are on/off signals generated by programmed
logic. Unlike a discrete output, an internal output does

Figure 5-39 Original circuit.

Boolean equation: Y = (ABC) + (ADE) + (FE) + (FDBC)

A

E

B

D

F

C Y

Figure 5-40 Reprogrammed circuit.

CB

A D E

C

A

EF

F D B

Y

Figure 5-41 SLC 500 controllers use bit file B3 for internal bit addressing.

0O
utput File

1Input File

2Status File

File (B3)
Word (1)

Bit (3)

B3:0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B3:1

B3:2

B3:3

B3:4

B3:5

B3:6

B
it File

3

Address
B3:1/3

Data File B3 (bin) -- BINARY

O�set 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3B
it File

4Tim
er File

5C
ounter File

6C
ontrol Files

7Integer Files

pet73842_ch05_074-097.indd 89 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

90 Chapter 5 Basics of PLC Programming

same results. You will note that both the NO and the NC
pushbuttons are represented by the Examine If Closed
symbol. This is because the normal state of an input (NO
or NC) does not matter to the controller. What does matter
is that if contacts need to close to energize the output, then
the Examine If Closed instruction is used. Since both PB1
and PB2 must be closed to energize the pilot light, the
Examine If Closed instruction is used for both.

A simple program using the Examine If Open (XIO)
instruction is shown in Figure 5-44. Both the hardwired
circuit and user program are shown. In the hardwired cir-
cuit, when the pushbutton is open relay coil CR is de-
energized and its NO contact closes to switch the pilot
light on. When the pushbutton is closed, relay coil CR
is energized and its NC contact opens to switch the pilot
light off. The pushbutton is represented in the user pro-
gram by an Examine If Open instruction. This is because

5.8 Programming Examine If Closed
and Examine If Open Instructions
A simple program using the Examine If Closed (XIC)
instruction is shown in Figure 5-43. This figure shows a
hardwired circuit and a user program that provides the

Figure 5-43 Simple program that uses the Examine If
Closed (XIC) instruction.

Hardwired circuit

PL

PLPB_2PB_1PB2
PB1

User program providing
the same results

Figure 5-44 Simple program that uses the Examine If
Open (XIO) instruction.

Hardwired circuit

CR

PB1

CR
PL

User program providing
the same results

PB_1 PL

Figure 5-45 Simple program using both the XIC and XIO instructions.

The status of the instruction is

If the data table bit
is

XIC
EXAMINE IF CLOSED

False

FalseTrue

False False

False

False

False

True

True

False

False

TrueLogic 0

Logic 1

XIO
EXAMINE IF OPEN

OTE
OUTPUT ENERGIZE

XIC

Instruction outcome

Time

t1 (initial)

t2

t3

t4

Input bit status

XIO OTE XIC XIO OTE

0 0 0

1 0 1

1 1 0

0 1 0

True

True Goes true

Goes false

Remains false

XIC XIO OTE

Input instructions Output instruction

Figure 5-42 Programmed internal relay control.

21 3 4 5

98 10 11 12

6 7

Internal
relay
coil

B3:1/3

Discrete
output

Discrete inputs

Discrete inputs

Rung 1

Rung 2

Internal
relay

contact

B3:1/3

pet73842_ch05_074-097.indd 90 05/11/15 4:17 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Basics of PLC Programming Chapter 5 91

Figure 5-47 shows a typical instruction toolbar with bit
instructions selected. To place an instruction on a rung,
click its icon on the toolbar and simply drag the instruc-
tion straight off the toolbar onto the rung of the ladder.
Drop points are shown on the ladder to help position the
instruction. In addition, instructions can also be dragged
from other rungs in the project. There are several different
methods that you can use to address instructions. You can
enter an address by manually typing it in or by dragging
the address from data files or other instructions.

Some of the windows you will need to use when work-
ing with RSLogix 500 software include:

• Main Window—This window opens each time you
create a new project or open an existing one. Some
of the features associated with this window include
the following:
 - Window Title Bar—The title bar is located at the

topmost strip of the window and displays the name
of the program as well as that of the opened file.

 - Menu Bar—The menu bar is located below the title
bar. The menu contains key words associated with
menus that are opened by clicking on the key word.

 - Windows Toolbar—The Windows toolbar buttons
execute standard Windows commands when you
click on them.

 - Program/Processor Status Toolbar—This toolbar
contains four drop-down lists that identify the
current processor operating mode, current online

the rung must be true when the external pushbutton is
open and false when the pushbutton is closed. Using an
Examine If Open instruction to represent the pushbutton
satisfies these requirements. The NO or NC mechanical
action of the pushbutton is not a consideration. It is im-
portant to remember that the user program is not an elec-
trical circuit but a logic circuit. In effect, we are interested
in logic continuity when establishing an output.

Figure 5-45 shows a simple program using both the
XIC and XIO instructions. The logic states (0 or 1) indi-
cate whether an instruction is true or false and is the basis
of controller operation. The figure summarizes the on/off
state of the output as determined by the changing states
of the inputs in the rung. The time aspect relates to the
repeated scans of the program, wherein the input table is
updated with the most current status bits.

5.9 Entering the Ladder Diagram
Most of today’s PLC programming packages operate in
the Windows environment. For example, Allen-Bradley’s
RSLogix software packages are Windows programming
packages used to develop ladder logic programs. This soft-
ware, in various versions, can be used to program the SLC
500, ControlLogix, and MicroLogic family of processors.

Entering the ladder diagram, or actual programming,
is usually accomplished with a computer keyboard or
hand-held programming device. Because hardware and
programming techniques vary with each manufacturer, it
is necessary to refer to the programming manual for a spe-
cific PLC to determine how the instructions are entered.

One method of entering a program is through a hand-
held keyboard. Keyboards usually have relay symbol
and special function keys along with numeric keys for
addressing. Some also have alphanumeric keys (letters
and numbers) for other special programming functions.
In hand-held units, the keyboard is small and the keys
have multiple functions. Multiple-function keys work like
second-function keys on calculators.

A personal computer is most often used today as the
programmer. The computer is adapted to the particular
PLC model through the use of the relevant programmable
controller software.

Figure 5-46 shows the RSLogix SLC 500 main win-
dow. Different screens, toolbars, and dialog boxes are
used to navigate through the Windows environment. It is
important that you understand the purpose of the various
screens, toolbars, and windows to make the most effective
use of the software. This information is available from the
software reference manual for the particular PLC family
and will become more familiar to you as you develop pro-
grams using the software.

Figure 5-46 RSLogix SLC 500 main window.
Source: Image Courtesy of Rockwell Automation, Inc.

Figure 5-47 Typical instruction toolbar with bit
instructions selected.

OSR

BitUser Timer/Counter Input/Output Compare

L U

pet73842_ch05_074-097.indd 91 05/11/15 4:18 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

92 Chapter 5 Basics of PLC Programming

the different processors that the RSLogix software
can program. You simply scroll down the list until
you find the processor you are using and select it.

• I/O Configuration—The I/O Configuration screen
(Figure 5-49) lets you click or drag-and-drop a
module from an all-inclusive list to assign it to a slot
in your configuration.

• Data Files—Data File screens contain data that are
used in conjunction with ladder program instruc-
tions and include input and output files as well as
timer, counter, integer, and bit files. Figure 5-50
shows an example of the bit file B3, which is used
for internal relays. Note that all the addresses from
this file start with B3.

Relay ladder logic is a graphical programming lan-
guage designed to closely represent the appearance of
a wired relay system. It offers considerable advantages

edit status, and whether forces are present and
enabled.

 - Project Window—This window displays the file
folders listed in the project tree.

 - Project Tree—The project tree is a visual repre-
sentation of all folders and their associated files
contained in the current project. From the project
tree, you can open files, create files, modify file
parameters, copy files, hide or unhide files, delete
files, and rename files.

 - Result Window—This window displays the re-
sults of either a search or a verify operation. The
verify operation is used to check the ladder pro-
gram for errors.

 - Active Tab—This tab identifies which program is
currently active.

 - Status Bar—This bar contains information rel-
evant to the current file.

 - Split Bar—The split bar is used to split the ladder
window to display two different program files or
groups of ladder rungs.

 - Tabbed Instruction Toolbar—This toolbar displays
the instruction set as a group of tabbed categories.

 - Instruction Palette—This tool contains all the
available instructions displayed in one table to
make the selection of instructions easier.

 - Ladder Window—This window displays the cur-
rently open ladder program file and is used to
develop and edit ladder programs.

 - Ladder Window Properties—This window allows
you to change the display of your ladder program
and its associated addressing and documentation.

• Select Processor Type—The programming soft-
ware needs to know what processor is being used in
conjunction with the user program. The Select Pro-
cessor Type screen (Figure 5-48) contains a list of

Figure 5-48 Select processor type screen.
Source: Image Courtesy of Rockwell Automation, Inc.

Figure 5-49 I/O configuration screen.
Source: Image Courtesy of Rockwell Automation, Inc.

Figure 5-50 Data bit file B3 screen.
Source: Courtesy of TheLearningPit.

pet73842_ch05_074-097.indd 92 05/11/15 4:18 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Basics of PLC Programming Chapter 5 93

Program Mode The program mode is used to enter
a new program, edit or update an existing program,
upload files, download files, document (print out) pro-
grams, or change any software configuration file in the
program. When the PLC is switched into the program
mode, all outputs from the PLC are forced off regard-
less of their rung logic status, and the ladder I/O scan
sequence is halted.
Run Mode The run mode is used to execute the user
program. Input devices are monitored and output de-
vices are energized accordingly. After all instructions
have been entered in a new program or all changes
made to an existing program, the processor is put in
the run mode.
Test Mode The test mode is used to operate or
monitor the user program without energizing any
outputs. The processor still reads inputs, executes
the ladder program, and updates the output status
table files, but without energizing the output cir-
cuits. This feature is often used after developing
or editing a program to test the program execu-
tion before allowing the PLC to operate real-world
outputs. Variations of the test mode can include
the single-step test mode, which directs the proces-
sor to execute a selected single rung or group of
rungs; the single-scan test mode, which executes
a single processor operating scan or cycle; and the
continuous-scan test mode, which directs the pro-
cessor to continuously run the program for checking
or troubleshooting.
Remote Mode Some processors have a three-
position switch to change the processor operating
mode. In the Run position, all logic is solved and the
I/O is enabled. In the Program position, all logic solv-
ing is stopped and the I/O is disabled. The Remote
position allows the PLC to be remotely changed
between program and run mode by a personal com-
puter connected to the PLC processor. The remote
mode may be beneficial when the controller is in a
location that is not easily accessible.

5.11 Connecting with Analog Devices
Electrical devices and signals can be divided into two cat-
egories: analog and digital. Digital devices operate using
discrete ON or OFF signals that have only two possible
values. Analog signals can take any shape and represent
an infinite number of possible values, as illustrated in
Figure 5-53. Analog circuits are usually much more sus-
ceptible to noise (small, undesired variations in voltage).
Small changes in the voltage level of an analog signal

for PLC control. Not only is it reasonably intuitive, es-
pecially for users with relay experience, but it is also
particularly effective in an online mode when the PLC
is actually performing control. Operation of the logic is
apparent from the highlighting of rungs of the various
instructions on-screen, which identifies the logic state of
contacts in real time (Figure 5-51) and which rungs have
logic continuity.

For most PLC systems, each Examine If Closed and
Examine If Open contact, each output, and each branch
Start/End instruction requires one word of user memory.
You can refer to the SLC 500 Controller Properties to see
the number of instruction words used and the number left
as the program is being developed.

5.10 Modes of Operation
A processor has basically two modes of operation: the
program mode and some variation of the run mode. The
number of different operating modes and the method of
accessing them varies with the manufacturer. Figure 5-52
shows a typical three-position keyswitch used to select
different processor modes of operation.

Some common operating modes are explained in the
following paragraphs.

Figure 5-51 Monitoring a ladder logic program.

Highlighted rungs indicate
the instruction is true.

Figure 5-52 Three-position keyswitch used to select
different processor modes of operation.

PROGREMRUN

pet73842_ch05_074-097.indd 93 05/11/15 4:18 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

94 Chapter 5 Basics of PLC Programming

• The valve is initially open 100%.
• As the fluid level in the tank approaches the level

preset point, the processor modifies the output to
degrade, closing the valve to 90%, 80%, etc., adjust-
ing the valve to maintain a set point.

may produce significant errors as the signal is processed.
Analog signals must be coded into digital signals before
they can be processed by the PLC. An analog-to-digital
converter (ADC) converts analog input signals to digi-
tal signals. A digital-to-analog converter (DAC) converts
digital output signals to analog signals.

Analog applications are present in many forms.
Figure 5-54 shows a typical use of analog control for a
tank-filling process. The operation of the circuit can be
summarized as follows:

• The processor controls the amount of fluid placed
in a holding tank by adjusting the percentage of the
valve opening.

Analog output

Valve
Level sensor

Processor

Analog input

PLC
Analog I/O
Module

Level
Preset
Point

Figure 5-54 Analog control for a tank-filling process.

Figure 5-53 Digital and analog signals.

(a) Digital signal

Analog
signal
input

Binary
output

1 0 0 1 1

ADC

(b) Analog signal

(c) Analog-to-digital converter (ADC)

pet73842_ch05_074-097.indd 94 05/11/15 4:18 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Basics of PLC Programming Chapter 5 95

1. What does the memory map for a typical PLC pro-
cessor consist of?

2. Compare the function of the PLC program and data
files.

3. In what manner are data files organized?

4. List eight different types of data files used by an
SLC 500 controller.

5. a. What information is stored in the input image
table file?

b. In what form is this information stored?

6. a. What information is stored in the output image
table file?

b. In what form is this information stored?

7. Outline the sequence of events involved in a PLC
scan cycle.

8. List four factors that enter into the length of the
scan time.

9. Compare the way horizontal and vertical scan pat-
terns examine input and output instructions.

10. List the five standard PLC languages as defined
by the International Standard for Programmable
Controllers, and give a brief description of each.

11. Draw the symbol and state the equivalent instruc-
tion for each of the following: NO contact, NC
contact, and coil.

12. Answer the following with regard to the Examine If
Closed instruction:
a. What is another common name for this

instruction?
b. What is this instruction asking the processor to

examine?
c. Under what condition is the status bit associated

with this instruction 0?
d. Under what condition is the status bit associated

with this instruction 1?
e. Under what condition is this instruction logically

true?
f. What state does this instruction assume when it

is false?

13. Answer the following with regard to the Examine If
Open instruction:
a. What is another common name for this

instruction?
b. What is this instruction asking the processor to

examine?

CHAPTER 5 REVIEW QUESTIONS

c. Under what condition is the status bit associated
with this instruction 0?

d. Under what condition is the status bit associated
with this instruction 1?

e. Under what condition is this instruction logically
true?

f. What state does this instruction assume when it
is false?

14. Answer the following with regard to the Output
Energize instruction:
a. What part of an electromagnetic relay does this

instruction look and act like?
b. What is this instruction asking the processor to do?
c. Under what condition is the status bit associated

with this instruction 0?
d. Under what condition is the status bit associated

with this instruction 1?

15. A normally closed pushbutton is connected to a
PLC discrete input. Does this mean it must be
represented by a normally closed contact in the
ladder logic program? Explain why or why not.

16. Answer the following with regard to a ladder logic rung:
a. Describe the basic makeup of a ladder logic rung.
b. How are the contacts and coil of a rung

identified?
c. When is the ladder rung considered as having

logic continuity?

17. What does the address assigned to an instruction
indicate?

18. When are input branch instructions used as part of
a ladder logic program?

19. Identify two matrix limitations that may apply to
certain PLCs.

20. In what way does an internal output differ from a
discrete output.

21. A normally open limit switch is to be programmed
to control a solenoid. What determines whether an
Examine-on or Examine-off contact instruction is used?

22. Explain the purpose of Windows based program-
ming software such as RSLogix.

23. Briefly describe each of the following PLC modes
of operation:
a. Program
b. Test
c. Run

pet73842_ch05_074-097.indd 95 05/11/15 4:18 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

96 Chapter 5 Basics of PLC Programming

is the major difference between these two
categories?

26. Compare the way memory space is assigned and
referenced in rack-based and tag-based PLCs.

4. Redraw the program shown in Figure 5-57 corrected
to solve the problem of some logic ignored.

5. Redraw the program shown in Figure 5-58 corrected
to solve the problem of too many series contacts
(only four allowed).

6. Draw the equivalent ladder logic program used
to implement the hardwired circuit drawn in
Figure 5-59, wired using:
a. A limit switch with a single NO contact con-

nected to the PLC discrete input module
b. A limit switch with a single NC contact connected

to the PLC discrete input module

CHAPTER 5 PROBLEMS

1. Assign each of the following discrete input and out-
put addresses based on the SLC 500 format.
a. Limit switch connected to terminal screw 4 of the

module in slot 1 of the chassis.
b. Pressure switch connected to terminal screw 2 of

the module in slot 3 of the chassis.
c. Pushbutton connected to terminal screw 0 of the

module in slot 6 of the chassis.
d. Pilot light connected to terminal screw 13 of the

module in slot 2 of the chassis.
e. Motor starter coil connected to terminal screw 6

of the module in slot 4 of the chassis.
f. Solenoid connected to terminal screw 8 of the

module in slot 5 of the chassis.

2. Redraw the program shown in Figure 5-55 corrected
to solve the problem of a nested contact.

3. Redraw the program shown in Figure 5-56 cor-
rected to solve the problem of a nested vertical
programmed contact.

24. Under what condition is a ladder logic rung said to
have logic continuity?

25. Electrical devices and signals can be divided
into two categories: analog and digital. What

Figure 5-58 Program for Problem 5.

A C D EB Y

Figure 5-59 Hardwired circuit for Problem 6.

L2

SOL B

SOL ALS1

L1

Figure 5-55 Program for Problem 2.

A

C D

E

B Y

Figure 5-56 Program for Problem 3.

A

C D

B

Y

Figure 5-57 Program for Problem 4.

A Y

C D

E

B

pet73842_ch05_074-097.indd 96 05/11/15 4:18 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Basics of PLC Programming Chapter 5 97

7. Assuming the hardwired circuit drawn in
Figure 5-60 is to be implemented using a PLC
program, identify
a. All input field devices
b. All output field devices
c. All devices that could be programmed using inter-

nal relay instructions

8. What instruction would you select for each of the
following discrete input field devices to accomplish
the desired task? (State the reason for your answer.)
a. Turn on a light when a conveyor motor is running

in reverse. The input field device is a set of con-
tacts on the conveyor start relay that close when
the motor is running forward and open when it is
running in reverse.

b. When a pushbutton is pressed, it operates a so-
lenoid. The input field device is a normally open
pushbutton.

c. Stop a motor from running when a pushbutton
is pressed. The input field device is a normally
closed pushbutton.

d. When a limit switch is closed, it triggers an instruc-
tion ON. The input field device is a limit switch
that stores a 1 in a data table bit when closed.

9. Write the ladder logic program needed to implement
each of the following (assume inputs A, B, and C are
all normally open toggle switches):
a. When input A is closed, turn ON and hold ON

outputs X and Y until A opens.
b. When input A is closed and either input B or C is

open, turn ON output Y; otherwise, it should be OFF.

Figure 5-60 Hardwired circuit for Problem 7.

L2

LS1
CR1

CR1 PL1

SOL A

SS1

CR1PS1

LS2 LS3 CR2

CR2

SOL B

SOL C
PB2

PB3 CR2

CR3

PL2

LS4 CR3

PB1
L1

c. When input A is closed or open, turn ON
output Y.

d. When input A is closed, turn ON output X and
turn OFF output Y.

pet73842_ch05_074-097.indd 97 05/11/15 4:18 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

98

Courtesy of Siemens

Chapter Objectives

After completing this chapter, you will be able to:

 • Identify the functions of electromagnetic control relays,
contactors, and motor starters

 • Identify switches commonly found in PLC installations

 • Explain the operation of sensors commonly found in
PLC installations

 • Explain the operation of output control devices
commonly found in PLC installations

 • Describe the operation of an electromagnetic latching relay
and the PLC-programmed LATCH/UNLATCH instruction

 • Compare sequential and combination control processes

 • Convert fundamental relay ladder diagrams to PLC
ladder logic programs

 • Write PLC programs directly from a narrative description

For ease of understanding, ladder logic pro-
grams can be compared to relay schematics.
This chapter gives examples of how traditional
relay schematics are converted into PLC ladder
logic programs. You will learn more about the
wide variety of field devices commonly used in
connection with the I/O modules.

6
Developing Fundamental

PLC Wiring Diagrams and
Ladder Logic Programs

pet73842_ch06_098-130.indd 98 05/11/15 4:19 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 99

control relay. With no current flow through the coil (de-
energized), the armature is held away from the core of
the coil by spring tension. When the coil is energized, it
produces an electromagnetic field. Action of this field,
in turn, causes the physical movement of the armature.
Movement of the armature causes the contact points of
the relay to open or close. The coil and contacts are insu-
lated from each other; therefore, under normal conditions,
no electric circuit will exist between them.

The symbol used to represent a control relay is shown in
Figure 6-3. The contacts are represented by a pair of short
parallel lines and are identified with the coil by means
of the letters. The letter M frequently indicates a motor
starter, while CR is used for control relays. Normally
open (NO) contacts are defined as those contacts that are
open when no current flows through the coil but that close
as soon as the coil conducts a current or is energized.
Normally closed (NC) contacts are closed when the coil
is de-energized and open when the coil is energized. Each
contact is usually drawn as it would appear with the coil
de-energized.

A typical control relay used to control two pilot lights
is shown in Figure 6-4. The operation of the circuit can be
summarized as follows:

• With the switch open, coil CR is de-energized.
• The circuit to the green pilot light is completed

through the normally closed contact, so this light
will be on.

• At the same time, the circuit to the red pilot light is
opened through the normally open contact, so this
light will be off.

6.1 Electromagnetic Control Relays
The PLC’s original purpose was the replacement of
electromagnetic relays with a solid-state switching sys-
tem that could be programmed. Although the PLC has re-
placed much of the relay control logic, electromagnetic
relays are still used as auxiliary devices to switch I/O field
devices. The programmable controller is designed to re-
place the physically small control relays that make logic
decisions but are not designed to handle heavy current or
high voltage (Figure 6-1). In addition, an understanding
of electromagnetic relay operation and terminology is im-
portant for correctly converting relay schematic diagrams
to ladder logic programs.

An electrical relay is a magnetic switch. It uses elec-
tromagnetism to switch contacts. A relay will usually
have only one coil but may have any number of different
contacts. Figure 6-2 illustrates the operation of a typical

Figure 6-1 Electromechanical control relay.
Source: Courtesy Tyco Electronics Ltd.

Relay

Output circuit

Contact

Coil

Load

Switch

Input circuit

+–

Figure 6-2 Relay operation.

+

–

Coil energized

Fixed contacts

Spring

Armature
Movable contact

Coil de-energized

pet73842_ch06_098-130.indd 99 05/11/15 4:19 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

100 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

• With the switch closed, the coil is energized.
• The normally open contact closes to switch the red

pilot light on.
• At the same time, the normally closed contact opens

to switch the green pilot light off.

Control relay coils and contacts have separate ratings.
Coils are rated for the type of operating current (DC or
AC) and normal operating voltage. Contacts are rated in
terms of the maximum amount of current the contacts
are capable of handling at a specified voltage level and
type (AC or DC). Control relay contacts generally are
not designed to carry heavy currents or high voltages.
The contacts are usually rated between 5 and 10 Amp,
with the most common rating for the coil voltage being
120 VAC.

6.2 Contactors
A contactor is a special type of relay designed to handle
heavy power loads that are beyond the capability of con-
trol relays. Figure 6-5 shows a three-pole magnetic con-
tactor. Unlike relays, contactors are designed to make and
break higher powered circuits without being damaged.
Such loads include lights, heaters, transformers, capaci-
tors, and electric motors for which overload protection is
provided separately or not required.

Programmable controllers normally have an output ca-
pacity capable of operating a contactor coil, but not that
needed to operate heavy power loads directly. Figure 6-6
illustrates the application of a PLC used in conjunction
with a contactor to switch power on and off to a pump.
The output module is connected in series with the coil to
form a low-current switching circuit. The contacts of the
contactor are connected in series with the pump motor to
form a high-current switching circuit.

Figure 6-3 Relay normally open and normally closed contacts.
Source: Photo courtesy Eaton Corporation, www.eaton.com.

Armature Coil

Movable contacts

Stationary
contact

Normally closed
(NC) contacts

Normally open
(NO) contacts

Coil de-energized

Coil

Energized

Open Closed

Armature

Coil energized

Coil

M

Associated
contacts

M

Coil

CR

Associated
contacts

CR

Figure 6-4 Control relay used to control two pilot lights.
Source: Photo courtesy Digi-Key Corporation, www.digikey.com.

Single-pole
double-throw relay

Switch open—coil de-energized

G
CR

CR
R

S
L1 L2

On

O�

Switch closed—coil energized

G
CR

CR
R

S
L1 L2

O�

On

CR

CR

pet73842_ch06_098-130.indd 100 05/11/15 4:19 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 101

6.3 Motor Starters
A motor starter is designed to provide power to motors.
The motor starter is made up of a contactor with an
overload relay attached physically and electrically to it
as illustrated in Figure 6-7. The function of the overload
relay can be summarized as follows:

• Overload relays are designed to meet the special
protective needs of motor control circuits.

• They allow harmless temporary overloads that occur
when a motor starts.

• The overload relay will trip and disconnect power to
the motor if an overload condition persists.

• Overload relays can be reset after the overload con-
dition has been corrected.

Figure 6-8 shows the diagram for a typical three-phase,
magnetic motor starter. The operation of the circuit can be
summarized as follows:

• When the START button is pressed coil M is ener-
gized closing all normally open M contacts.

• The M contacts in series with the motor close to
complete the current path to the motor. These con-
tacts are part of the power circuit and must be de-
signed to handle the full load current of the motor.

Figure 6-5 Three-pole magnetic contactor.
Source: Image Courtesy of Rockwell Automation, Inc.

Line side

Line side

Coil

Coil

Contacts

Load side

Load side

Load side

Wiring symbol

Stationary
contacts

Movable
contacts

Movable iron
armature or

plunger

Line side

Figure 6-6 Contactor used in conjunction with a PLC output.
Source: This material and associated copyrights are proprietary to, and used
with the permission of Schneider Electric.

Pump

Contactor power
contacts

L2

High-current
wiring

Coil
terminals

Low-current
wiring

PLC output
module

L2 L1

L1

pet73842_ch06_098-130.indd 101 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

102 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

an overload current is sensed to de-energize the M
coil and stop the motor.

Motor starters are available in various standard Na-
tional Electric Manufacturers Association (NEMA) sizes
and ratings. When a PLC needs to control a large motor,
it must work in conjunction with a starter as illustrated in
Figure 6-9. The power requirements for the starter coil
must be within the power rating of the output module of
the PLC. Note that the control logic is determined and
executed by the program within the PLC and not by the
hardwired arrangement of the input control devices.

6.4 Manually Operated Switches
Manually operated switches are controlled by hand.
These include toggle switches, pushbutton switches, knife
switches, and selector switches.

Pushbutton switches are the most common form of
manual control. A pushbutton operates by opening or clos-
ing contacts when pressed. Figure 6-10 shows commonly
used types of pushbutton switches, which include:

• Normally open (NO) pushbutton, which makes a
circuit when it is pressed and returns to its open po-
sition when the button is released.

• Normally closed (NC) pushbutton, which opens the
circuit when it is pressed and returns to the closed
position when the button is released.

• Break-before-make pushbutton in which the top
section contacts are NC and the bottom section con-
tacts are NO. When the button is pressed, the top
contacts open before the bottom contacts are closed.

• Control contact M (across START button) closes
to seal in the coil circuit when the START button is
released. This contact is part of the control circuit
and, as such, is only required to handle the small
amount of current needed to energize the coil.

• An overload (OL) relay is provided to protect the
motor against current overloads. The normally
closed relay contact OL opens automatically when

Figure 6-7 Motor starter is a contactor with an attached
overload relay.
Source: Image Courtesy of Rockwell Automation, Inc.

Contactor

Overload
relay

Figure 6-8 Three-phase magnetic motor starter.
Source: This material and associated copyrights are proprietary to, and used
with the permission of Schneider Electric.

Stop
Start

M OL

M

M

M

M

OL

L3
T3

High-current
power circuit

Low-current
control circuit

Magnetic starter

L1

L2

T1

T2 Three-
phase
motor

OL

OL

Figure 6-9 PLC control of a motor.

Motor

Stop

OL

Start
L1 Inputs

PLC Program

L2Output
Starter

coil

Start Stop OL

M

M

Pushbuttons

PLC Magnetic
starter

M

pet73842_ch06_098-130.indd 102 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 103

range on a particular input module may be selected by
means of DIP switches located on the back of the module.

6.5 Mechanically Operated Switches
A mechanically operated switch is controlled automati-
cally by factors such as pressure, position, or tempera-
ture. The limit switch, shown in Figure 6-13, is a very
common industrial control device. Limit switches are
designed to operate only when a predetermined limit is
reached, and they are usually actuated by contact with
an object such as a cam. These devices take the place
of a human operator. They are often used in the control
circuits of machine processes to govern the starting, stop-
ping, or reversal of motors.

The temperature switch, or thermostat, shown in
Figure 6-14 is used to sense temperature changes. Al-
though there are many types available, they are all actu-
ated by some specific environmental temperature change.

The selector switch is another common manually op-
erated switch. The main difference between a pushbut-
ton and selector switch is the operator mechanism. A
selector switch operator is rotated (instead of pushed)
to open and close contacts of the attached contact block.
Figure 6-11 shows a three-position selector switch.
Switch positions are established by turning the opera-
tor knob right or left. Selector switches may have two
or more selector positions, with either maintained con-
tact position or spring return to give momentary contact
operation.

Dual in-line package (DIP) switches are small
switch assemblies designed for mounting on printed cir-
cuit board modules (Figure 6-12). The pins or terminals
on the bottom of the DIP switch are the same size and
spacing as an integrated circuit (IC) chip. The individual
switches may be of the toggle, rocker, or slide kind. DIP
switches use binary (on/off) settings to set the parameters
for a particular module. For example, the input voltage

Figure 6-11 Three-position selector switch.
Source: Image Courtesy of Rockwell Automation, Inc.

Hand
1

Auto
3

A

B

O�
2

Symbol

Position
A B

Contacts

X1

2

X3

Figure 6-12 DIP switch.

ON

OFF

1 2 3 4 5 6 7

Figure 6-10 Commonly used types of pushbutton switches.

Normally open Normally closed Break-make

NEMA
symbol

IEC
symbol

NEMA
symbol

IEC
symbol

NEMA symbol

Figure 6-13 Mechanically operated limit switch.
Source: Photo courtesy Eaton Corporation.

Cam (on machine)

Operator
Operating

force

Enclosure
containing
contact
mechanism

Normally open
limit switch

Normally closed
limit switch

NEMA symbols

IEC symbols

Normally
open

Normally
closed

pet73842_ch06_098-130.indd 103 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

104 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

open or close piping solenoid valves to control fluids. The
float switch shown in Figure 6-16 is a type of level switch.
This switch is weighted so that as the liquid rises the switch
floats and turns upside down, actuating its internal contacts.

6.6 Sensors
Sensors are used for detecting, and often measuring, the
magnitude of something. They convert mechanical, mag-
netic, thermal, optical, and chemical variations into elec-
tric voltages and currents. Sensors are usually categorized
by what they measure, and they play an important role in
modern manufacturing process control.

Proximity Sensor
Pilot control devices have limited current handling capac-
ity and are used to control current to a secondary device,
such as a contactor coil, which in turn can be used to switch
heavier load currents. Proximity sensors or switches, such
as that shown in Figure 6-17, are pilot devices that detect
the presence of an object (usually called the target) without
physical contact. These solid-state electronic devices are
completely encapsulated to protect against excessive vibra-
tion, liquids, chemicals, and corrosive agents found in the
industrial environment. Proximity sensors are used when:

• The object being detected is too small, lightweight,
or soft to operate a mechanical switch.

• Rapid response and high switching rates are required,
as in counting or ejection control applications.

• An object has to be sensed through nonmetallic bar-
riers such as glass, plastic, and paper cartons.

Temperature switches open or close when a designated
temperature is reached. Industrial applications for these
devices include maintaining the desired temperature
range of air, gases, liquids, or solids.

Pressure switches, such as that shown in Figure 6-15,
are used to control the pressure of liquids and gases.
Although many different types are available, they are
all basically designed to actuate (open or close) their
contacts when a specified pressure is reached. Pres-
sure switches can be pneumatically (air) or hydrauli-
cally (liquid) operated switches. Generally, bellows or
a diaphragm presses up against a small microswitch and
causes it to open or close.

Level switches are used to sense liquid levels in ves-
sels and provide automatic control for motors that transfer
liquids from sumps or into tanks. They are also used to

Figure 6-14 Temperature switch.
Source: Photo courtesy Honeywell, www.honeywell.com.

NEMA symbols

IEC symbols

NO contact NC contact

NO contact NC contactProgrammable thermostat

Figure 6-16 Float type level switch.
Source: Courtesy Dwyer Instruments.

Symbols

NC contact

NO contact

Figure 6-15 Pressure switch.
Source: Photo courtesy Honeywell, www.honeywell.com.

NO
contact

NC
contact

NEMA symbols for
pressure switch contacts

IEC symbols for
pressure switch contacts

�

�

NO
contact

NC
contact

Figure 6-17 Proximity sensor.
Source: Photo courtesy Turck, Inc., www.turck.com.

Normally open (NO)
sensor symbols

NEMAIEC

pet73842_ch06_098-130.indd 104 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 105

Most sensor applications operate either at 24V DC
or at 120V AC. The method of connecting a proximity
sensor varies with the type of sensor and its application.
Figure 6-19 shows a typical three-wire DC sensor connec-
tion. The three-wire DC proximity sensor has the positive
and negative line leads connected directly to it. When the
sensor is actuated, the circuit will connect the signal wire
to the positive side of the line if operating normally open.
If operating normally closed, the circuit will disconnect
the signal wire from the positive side of the line.

Figure 6-20 shows a typical two-wire proximity sen-
sor connection intended to be connected in series with the
load. They are manufactured for either AC or DC sup-
ply voltages. In the off state, enough current must flow
through the circuit to keep the sensor active. This off state
current is called leakage current and typically may range
from 1 to 2 mA. When the switch is actuated, it will con-
duct the normal load circuit current.

Figure 6-21 shows the proximity sensor sensing range.
Hysteresis is the distance between the operating point
when the target approaches the proximity sensor face and
the release point when the target is moving away from the
sensor face. The object must be closer to turn the sensor
on rather than to turn it off. If the target is moving toward
the sensor, it will have to move to a closer point. Once the
sensor turns on, it will remain on until the target moves to

• Hostile environments prevent proper operation of
mechanical switches and demand improved sealing
properties.

• Long life and reliable service are required.
• A fast electronic control system requires a bounce-

free input signal.

Proximity sensors operate on different principles, de-
pending on the type of matter being detected. When an
application calls for noncontact metallic target sensing,
an inductive-type proximity sensor is used. Inductive
proximity sensors are used to detect both ferrous metals
(containing iron) and nonferrous metals (such as copper,
aluminum, and brass).

Inductive proximity sensors operate under the electri-
cal principle of inductance, where a fluctuating current
induces an electromotive force (emf) in a target object.
The block diagram for an inductive proximity sensor is
shown in Figure 6-18 and its operation can be summa-
rized as follows:

• The oscillator circuit generates a high-frequency
electromagnetic field that radiates from the end of
the sensor.

• When a metal object enters the field, eddy currents
are induced in the surface of the object.

• The eddy currents on the object absorb some of
the radiated energy from the sensor, resulting in
a loss of energy and change of strength of the
oscillator.

• The sensor’s detection circuit monitors the oscilla-
tor’s strength and triggers a solid-state output at a
specific level.

• Once the metal object leaves the sensing area, the
oscillator returns to its initial value.

Figure 6-18 Inductive proximity sensor.

Coil Oscillator Detector Output
Metal

object

OutputL1 L2

OFF

Output

Target

ON

Target

Figure 6-19 Typical three-wire DC sensor connection.

+
–

(+)

(–)NO

Signal

Load

Load

Figure 6-20 Typical two-wire proximity sensor connection.

L1

L2

NO

Load

Load

L1

L2

pet73842_ch06_098-130.indd 105 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

106 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

electrostatic field instead of an electromagnetic field and are
actuated by both conductive and nonconductive materials.

Figure 6-23 illustrates the operation of a capacitive sen-
sor. A capacitive sensor contains a high-frequency oscil-
lator along with a sensing surface formed by two metal
electrodes. When the target nears the sensing surface, it
enters the electrostatic field of the electrodes and changes
the capacitance of the oscillator. As a result, the oscillator
circuit begins oscillating and changes the output state of
the sensor when it reaches a certain amplitude. As the tar-
get moves away from the sensor, the oscillator’s amplitude
decreases, switching the sensor back to its original state.

Capacitive proximity sensors will sense metal objects
as well as nonmetallic materials such as paper, glass, liq-
uids, and cloth. They typically have a short sensing range
of about 1 inch, regardless of the type of material being
sensed. The larger the dielectric constant of a target, the
easier it is for the capacitive sensor to detect. This makes
possible the detection of materials inside nonmetallic
containers as illustrated in Figure 6-24. In this example,
the liquid has a much higher dielectric constant than the
cardboard container, which gives the sensor the ability to
see through the container and detect the liquid. In the pro-
cess shown, detected empty containers are automatically
diverted via the push rod.

Inductive proximity switches may be actuated only by a
metal and are insensitive to humidity, dust, dirt, and the like.
Capacitive proximity switches, however, can be actuated

the release point. Hysteresis is needed to keep proximity
sensors from chattering when subjected to shock and vi-
bration, slow-moving targets, or minor disturbances such
as electrical noise and temperature drift. Most proximity
sensors come equipped with an LED status indicator to
verify the output switching action.

As a result of solid-state switching of the output, a
small leakage current flows through the sensor even when
the output is turned off. Similarly, when the sensor is on,
a small voltage drop is lost across its output terminals. To
operate properly, a proximity sensor should be powered
continuously. Figure 6-22 illustrates the use of a bleeder
resistor connected to allow enough current for the sensor
to operate but not enough to turn on the input of the PLC.

Capacitive proximity sensors are similar to inductive
proximity sensors. The main differences between the two
types are that capacitive proximity sensors produce an

Figure 6-21 Proximity sensor sensing range.
Source: Photo courtesy Eaton Corporation, www.eaton.com.

Hysteresis
zone

Cube sensor
with status LED

Target

Operating
point

Release
point

Figure 6-23 Capacitive proximity sensor.

Sensor
electrodes

Electrostatic
field

Oscillator waveform

Target
present

Target
absent

Target
absentMetallic or

nonmetallic
target

Figure 6-22 Bleeder resistor connected to continuously
power a proximity sensor.

Proximity
sensor

L1 L2

Input
module

Bleeder
resistor

MILK
MILK

MILK

Figure 6-24 Capacitive proximity sensor liquid detection.
Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

pet73842_ch06_098-130.indd 106 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 107

One practical application for a magnetic reed switch
is its use in a float switch, illustrated in Figure 6-26. The
reed switch opens or closes a circuit as the level of a liq-
uid rises or falls. The switch assembly is made up of a per-
manent magnet installed within the movable float arm and
a magnetic reed switch installed within the fixed housing.
The movement of the float, due to the changing liquid
level, will cause the reed switch to open or close a circuit
at a particular level.

Light Sensors
The photovoltaic cell and the photoconductive cell, illus-
trated in Figure 6-27, are two examples of light sensors.
The photovoltaic or solar cell reacts to light by convert-
ing the light energy directly into electric energy. The pho-
toconductive cell (also called a photoresistive cell) reacts
to light by change in the resistance of the cell.

A photoelectric sensor is an optical control device
that operates by detecting a visible or invisible beam of
light and responding to a change in the received light in-
tensity. Photoelectric sensors are composed of two basic
components: a transmitter (light source) and a receiver
(sensor), as shown in Figure 6-28. These two compo-
nents may or may not be housed in separate units. The

by any dirt in their environment. For general applications,
the capacitive proximity switches are not really an alterna-
tive but a supplement to the inductive proximity switches.
They are a supplement when there is no metal available
for the actuation (e.g., for woodworking machines and for
determining the exact level of liquids or powders).

Magnetic Reed Switch
A magnetic reed switch is composed of two flat contact
tabs that are hermetically sealed (airtight) in a glass tube
filled with protective gas, as illustrated in Figure 6-25.
When a magnetic force is generated parallel to the reed
switch, the reeds become flux carriers in the magnetic cir-
cuit. The overlapping ends of the reeds become opposite
magnetic poles, which attract each other. If the magnetic
force between the poles is strong enough to overcome
the restoring force of the reeds, the reeds will be drawn
together to actuate the switch. Because the contacts are
sealed, they are unaffected by dust, humidity, and fumes;
thus, their life expectancy is quite high.

Figure 6-25 Magnetic reed switch.
Source: Courtesy of Reed Switch Developments Corp., used with permission.

Reed switch sensor

N S

Figure 6-27 Photovoltaic and photoconductive light cells.

+ –

DCV

(a) Photovoltaic solar cell (b) Photoconductive cell

Light changes resistanceLight produces voltage

Ohms

Figure 6-26 Magnetic reed float switch.

Reed switch

Magnet

Float

h

gMagnet

Reeed swittch

pet73842_ch06_098-130.indd 107 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

108 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

in only one direction, through-beam scanning provides
long-range sensing. Quite often, a garage door opener has
a through-beam photoelectric sensor mounted near the
floor, across the width of the door. For this application
the sensor senses that nothing is in the path of the door
when it is closing.

In a retroreflective scan, the transmitter and receiver
are housed in the same enclosure. This arrangement re-
quires the use of a separate reflector or reflective tape
mounted across from the sensor to return light back
to the receiver. The retroreflective scan is designed to
respond to objects that interrupt the beam normally
maintained between the transmitter and receiver, as il-
lustrated in Figure 6-30. In contrast to a through-beam
application, retroreflective sensors are used for medium-
range applications.

Fiber optics is not a scan technique, but another method
for transmitting light. Fiber optic sensors use a flexible
cable containing tiny fibers that channel light from emitter
to receiver, as illustrated in Figure 6-31. Fiber optic sensor
systems are completely immune to all forms of electrical
interference. The fact that an optical fiber does not contain
any moving parts and carries only light means that there is
no possibility of a spark. This means that it can be safely
used even in the most hazardous sensing environments
such as a refinery for producing gases, grain bins, mining,
pharmaceutical manufacturing, and chemical processing.

Bar code technology is widely implemented in in-
dustry to enter data quickly and accurately. Bar code
scanners are the eyes of the data collection system. A
light source within the scanner illuminates the bar code
symbol; those bars absorb light, and spaces reflect light.
A photodetector collects this light in the form of an
electronic-signal pattern representing the printed sym-
bol. The decoder receives the signal from the scanner and
converts these data into the character data representation

basic operation of a photoelectric sensor can be sum-
marized as follows:

• The transmitter contains a light source, usually an
LED along with an oscillator.

• The oscillator modulates or turns the LED on and
off at a high rate of speed.

• The transmitter sends this modulated light beam to
the receiver.

• The receiver decodes the light beam and switches
the output device, which interfaces with the load.

• The receiver is tuned to its emitter’s modulation
frequency and will amplify only the light signal that
pulses at the specific frequency.

• Most sensors allow adjustment of how much light
will cause the output of the sensor to change state.

• Response time is related to the frequency of the light
pulses. Response times may become important when
an application calls for the detection of very small ob-
jects, objects moving at a high rate of speed, or both.

The scan technique refers to the method used by pho-
toelectric sensors to detect an object. The through-beam
scan technique (also called direct scan) places the trans-
mitter and receiver in direct line with each other, as il-
lustrated in Figure 6-29. Because the light beam travels

Figure 6-28 Photoelectric sensor.
Source: Photo courtesy SICK, Inc., www.sick.com.

Modulated
light

beam

Load

Transmitter

Receiver

Object to
be sensed

Figure 6-29 Through-beam scan.
Source: Photo courtesy SICK, Inc., www.sick.com.

Transmitter
Receiver

Figure 6-30 Retroreflective scan.
Source: Photo courtesy ifm efector, www.ifm.com/us.

Reflector

Transmitter

Receiver

pet73842_ch06_098-130.indd 108 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 109

to external control devices. The operation of this process
can be summarized as follows:

• The 4- to 20-mA mA represents the sensor’s mea-
surement span.

• The 4-mA set point is typically placed near the bot-
tom of the empty tank, or the greatest measurement
distance from the sensor.

• The 20-mA set point is typically placed near the top
of the full tank, or the shortest measurement dis-
tance from the sensor.

• The sensor will proportionately generate a 4-mA
signal when the tank is empty and a 20-mA signal
when the tank is full.

of the symbol’s code. Figure 6-32 illustrates a typical
PLC application which involves a bar code module read-
ing the bar code on boxes as they move along a conveyor
line. The PLC is then used to divert the boxes to the ap-
propriate product lines according to the data read from
the bar code.

Ultrasonic Sensors
An ultrasonic sensor operates by sending high-frequency
sound waves toward the target and measuring the time it
takes for the pulses to bounce back. The time taken for
this echo to return to the sensor is directly proportional to
the distance or height of the object because sound has a
constant velocity.

Figure 6-33 illustrates a practical application in which
the returning echo signal is electronically converted to a
4- to 20-mA output, which supplies a monitored flow rate

Figure 6-31 Fiber optic sensors.
Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

Through-beam

To receiver

To receiver

From transmitter

From transmitter

Retroreflective

Figure 6-32 PLC bar code application.
Source: Courtesy Keyence Canada, Inc.

Programmable
controller

Scanner/decoder

Diverter

Figure 6-33 Ultrasonic sensor.
Source: Courtesy Keyence Canada, Inc.

Detecting transparent bottlesDetecting the level
of chocolate

4
5

5
10
15

20
25
30

30

20

Level detection

Output
(mA)

Inches

Inches

4- to 20-mA
output

pet73842_ch06_098-130.indd 109 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

110 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

junction) is the end of a thermocouple that is kept at a constant
temperature to provide a reference point. For example, a K-
type thermocouple, when heated to a temperature of 300°C
at the hot junction, will produce 12.2 mV at the cold junction.
Because of their ruggedness and wide temperature range, ther-
mocouples are used in industry to monitor and control oven
and furnace temperatures. Thermocouples produce a relative
low output signal that is nonlinear. As a result, accurate ther-
mocouple measurements need signal conditioning modules
with outputs, which are linearly scaled to temperature.

Resistance temperature detectors (RTDs) are wire-
wound temperature-sensing devices that operate on the
principle of the positive temperature coefficient (PTC) of
metals. That means the electrical resistance of metals is di-
rectly proportional to temperature. The hotter they become,
the larger or higher the value of their electrical resistance.
This proportional variation is precise and repeatable, and
therefore allows the consistent measurement of tempera-
ture through electrical resistance detection. Platinum is the
material most often used in RTDs because of its superior-
ity regarding temperature limit, linearity, and stability.

RTDs are among the most precise temperature sensors
available and are normally found encapsulated in probes
for external temperature sensing and measurement or en-
closed inside devices where they measure temperature as
a part of the device’s function. Figure 6-36 illustrates how

• Ultrasonic sensors can detect solids, fluids, granular
objects, and textiles. In addition, they enable the de-
tection of different objects irrespective of color and
transparency and therefore are ideal for monitoring
transparent objects.

Strain/Weight Sensors
A strain gauge converts a mechanical strain into an elec-
tric signal. Strain gauges are based on the principle that
the resistance of a conductor varies with length and cross-
sectional area. The force applied to the gauge causes the
gauge to bend. This bending action also distorts the physical
size of the gauge, which in turn changes its resistance. This
resistance change is fed to a bridge circuit that detects small
changes in the gauge’s resistance. Strain gauge load cells
are usually made with steel and sensitive strain gauges. As
the load cell is loaded, the metal elongates or compresses
very slightly. The strain gauge detects this movement and
translates it to a varying voltage signal. Many sizes and
shapes of load cells are available, and they range in sensitiv-
ity from grams to millions of pounds. Strain gauge–based
load cells are used extensively for industrial weighing ap-
plications similar to the one illustrated in Figure 6-34.

Temperature Sensors
The thermocouple is the most widely used temperature sen-
sor. Thermocouples operate on the principle that when two
dissimilar metals are joined, a predictable DC voltage will
be generated that relates to the difference in temperature be-
tween the hot junction and the cold junction (Figure 6-35).
The hot junction (measuring junction) is the joined end of a
thermocouple that is exposed to the process where the tem-
perature measurement is desired. The cold junction (reference

Programmable controller

Hopper

ON/OFF

control

Drum

Load cell

PLC sensor
input

560 lbs.

Figure 6-34 Strain gauge load cell.
Source: Courtesy RDP Group.

Figure 6-35 Thermocouple temperature sensor.
Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

Chromel
(nickel-chromium)

+

–
12.2 mV300°C

Alumel (nickel-aluminum)
type K thermocouple

Metal A

Metal B
Cold

junction

Hot
junction

HEATLeads

Figure 6-36 Resistance temperature detector (RTD).

Ceramic
support RTD

element

Encapsulated-type RTD
wound with platinum wire

Cooling line
Heating line

Temperature control system

Cool

Controller

Heat

35
RTD °CSheath

pet73842_ch06_098-130.indd 110 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 111

a constant AC supply. In either case, the rotor of the
tachometer is mechanically connected, directly or indi-
rectly, to the load.

Figure 6-38 illustrates motor speed control applica-
tions in which a tachometer generator is used to pro-
vide a feedback voltage to the motor controller that is
proportional to motor speed. The control motor and ta-
chometer generator may be contained in the same or
separate housings.

An encoder is used to convert linear or rotary motion
into a binary digital signal. Encoders are used in appli-
cations where positions have to be precisely determined.
The optical encoder illustrated in Figure 6-39 uses a light
source shining on an optical disk with lines or slots that
interrupt the beam of light to an optical sensor. An elec-
tronic circuit counts the interruptions of the beam and
generates the encoder’s digital output pulses.

an RTD is used as part of a temperature control system. A
controller uses the signal from the RTD sensor to moni-
tor the temperature of the liquid in the tank and thereby
control heating and cooling lines.

Flow Measurement
Many industrial processes depend on accurate measure-
ment of fluid flow. Although there are several ways to
measure fluid flow, the usual approach is to convert
the kinetic energy that the fluid has into some other
measurable form.

Turbine-type flowmeters are a popular means of mea-
surement and control of liquid products in industrial,
chemical, and petroleum operations. Turbine flowme-
ters, like windmills, utilize their angular velocity (rota-
tion speed) to indicate the flow velocity. The operation
of a turbine flowmeter is illustrated in Figure 6-37. Its
basic construction consists of a bladed turbine rotor in-
stalled in a flow tube. The bladed rotor rotates on its axis
in proportion to the rate of the liquid flow through the
tube. A magnetic pickup sensor is positioned as close
to the rotor as practical. Fluid passing through the flow
tube causes the rotor to rotate, which generates pulses
in the pickup coil. The frequency of the pulses is then
transmitted to readout electronics and displayed as gal-
lons per minute.

Velocity and Position Sensors
Tachometer generators provide a convenient means of
converting rotational speed into an analog voltage sig-
nal that can be used for motor speed indication and con-
trol applications. A tachometer generator is a small AC
or DC generator that develops an output voltage (pro-
portional to its rpm) whose phase or polarity depends
on the rotor’s direction of rotation. The DC tachometer
generator usually has permanent magnetic field excita-
tion. The AC tachometer generator field is excited by

Figure 6-37 Turbine type flowmeter.

Gallons/minute

Generated pulses

Readout
electronics

Magnetic pickup

Flow

Rotating
turbine

Figure 6-38 Tachometer generator feedback.
Source: Courtesy ATC Digitec.

Load

Tach

Motor

1450 rpm

CONTROLLER

Separate
tachometer
generator

Figure 6-39 Optical encoder.
Source: Photo courtesy Avtron, www.avtron.com.

Optical
encoder

Optical
sensor

Light
source

Optical
disk

Lines

pet73842_ch06_098-130.indd 111 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

112 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

and operation of a solenoid. Its operation can be sum-
marized as follows:

• The coil and frame form the fixed part.
• When the coil is energized, it produces a magnetic

field that attracts the plunger, pulling it into the
frame and thus creating mechanical motion.

• When the coil is de-energized the plunger returns
to its normal position through gravity or assistance
from spring assemblies within the solenoid.

• The frame and plunger of an AC-operated solenoid
are constructed with laminated pieces instead of a
solid piece of iron to limit eddy currents induced by
the magnetic field.

Solenoid valves are electromechanical devices that work
by passing an electrical current through a solenoid, thereby
changing the state of the valve. Normally, there is a mechan-
ical element, which is often a spring, that holds the valve in
its default position. A solenoid valve is a combination of a
solenoid coil operator and valve, which controls the flow
of liquids, gases, steam, and other media. When electrically
energized, they open, shut off, or direct the flow of media.

Figure 6-42 illustrates the construction and principle
of operation of a typical fluid solenoid valve. Its operation
can be summarized as follows:

• The valve body contains an orifice in which a disk
or plug is positioned to restrict or allow flow.

• Flow through the orifice is either restricted or al-
lowed depending on whether the solenoid coil is
energized or de-energized.

• When the coil is energized, the core is drawn into
the solenoid coil to open the valve.

• The spring returns the valve to its original closed
position when the coil is de-energized.

6.7 Output Control Devices
A variety of output control devices can be operated by
the PLC output to control traditional industrial processes.
These devices include pilot lights, control relays, motor
starters, alarms, heaters, solenoids, solenoid valves,
small motors, and horns. Similar electrical symbols are
used to represent these devices both on relay schematics
and PLC output connection diagrams. Figure 6-40 shows
common electrical symbols used for various output de-
vices. Although these symbols are generally acceptable,
some differences among manufacturers do exist.

An actuator, in the electrical sense, is any device
that converts an electrical signal into mechanical
movement. An electromechanical solenoid is an actua-
tor that uses electrical energy to magnetically cause
mechanical control action. A solenoid consists of a
coil, frame, and plunger (or armature, as it is some-
times called). Figure 6-41 shows the basic construction

Figure 6-40 Symbols for output control devices.

Pilot light

Control relay

Motor starter coil

Motor overload relay contact

Heater

Solenoid

Solenoid valve

Motor

Horn

Alarm

CR1-1 CR1-2

NO NC

OL

ALARM

PL

M

SV

CR1

MTR

HTR

SOL

Figure 6-41 Solenoid construction and operation.
Source: Photos courtesy Guardian Electric, www.guardian-electric.com.

Air

Frame

Coil Plunger

Symbol

DC solenoid

AC solenoid

pet73842_ch06_098-130.indd 112 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 113

motor will require 360 pulses to move through one revolu-
tion; the degrees per step are known as the resolution. When
stopped, a stepper motor inherently holds its position. Step-
per systems are used most often in “open-loop” control sys-
tems, where the controller tells the motor only how many
steps to move and how fast to move, but does not have any
way of knowing what position the motor is at.

The movement created by each pulse is precise and
repeatable, which is why stepper motors are so effective
for load-positioning applications. Conversion of rotary
to linear motion inside a linear actuator is accomplished
through a threaded nut and lead screw. Generally, step-
per motors produce less than 1 hp and are therefore
frequently used in low-power position control appli-
cations. Figure 6-43 shows a stepper motor/drive unit
along with typical rotary and linear applications.

All servo motors operate in closed-loop mode,
whereas most stepper motors operate in open-loop
mode. Closed-loop and open-loop control schemes
are illustrated in Figure 6-44. Open loop is control

• A valve must be installed with direction of flow in
accordance with the arrow cast on the side of the
valve body.

Stepper motors operate differently than standard types,
which rotate continuously when voltage is applied to their
terminals. The shaft of a stepper motor rotates in discrete
increments when electrical command pulses are applied to
it in the proper sequence. Every revolution is divided into a
number of steps, and the motor must be sent a voltage pulse
for each step. The amount of rotation is directly proportional
to the number of pulses, and the speed of rotation is rela-
tive to the frequency of those pulses. A 1-degree-per-step

Figure 6-42 Solenoid valve construction and operation.
Source: Photo courtesy ASCO Valve Inc., www.ascovalve.com.

L1 L2Control circuit

Solenoid coil
energized

L1 L2Control circuit

Solenoid coil
de-energized

Valve orifice opened

OutletInlet

Coil
de-energized

Valve orifice closed

Coil
energized

Valve

Solenoid operator

Rotary application

Linear application

Stepper motor

Motor drive

Figure 6-43 Stepper motor/drive unit.
Source: Photos courtesy Oriental Motor, www.orientalmotor.com.

Figure 6-44 Open- and closed-loop motor control systems.

Output
shaft

To load

Open-loop
control

Motor

CONTROLLER

Speed
setting

Motor

CONTROLLER

Output
shaft

To load

Closed-loop
control

Tachometer
Feedback signal

Speed
setting

pet73842_ch06_098-130.indd 113 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

114 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

without feedback, for example, when the controller tells
the stepper motor how many steps to move and how
fast to move, but does not verify where the motor is.
Closed-loop control compares speed or position feed-
back with the commanded speed or position and gen-
erates a modified command to make the error smaller.
The error is the difference between the required speed
or position and the actual speed or position.

Figure 6-45 illustrates a closed-loop servo motor sys-
tem. The motor controller directs operation of the servo
motor by sending speed or position command signals to
the amplifier, which drives the servo motor. A feedback
device such as an encoder for position and a tachometer
for speed are either incorporated within the servo motor
or are remotely mounted, often on the load itself. These
provide the servo motor’s position and speed feedback in-
formation that the controller compares to its programmed
motion profile and uses to alter its position or speed.

6.8 Seal-In Circuits
Seal-in, or holding, circuits are very common in both relay
logic and PLC logic. Essentially, a seal-in circuit is a method
of maintaining current flow after a momentary switch has
been pressed and released. In these types of circuits, the seal-
in contact is usually in parallel with the momentary device.

Motor/controller

Controller
Servo

amplifier

Feedback
device

Tachometer: speed
Encoder: position

Load

Position
feedback

Speed
feedback

Servo
motor

Figure 6-45 Closed-loop servo motor system.
Source: Photos courtesy Omron Industrial Automation, www.ia.omron.com.

Figure 6-46 Hardwired and programmed seal-in circuit.

Start

Stop

Inputs

L1

Ladder logic program Output

L2

M

Motor
starter

coil

Motor
starter coil

M

StopStart

Programmed

Start

Stop

Wiring diagram

L1 L2 L3

M

M
M

OL

T1

Motor

Ladder control diagram

L1 L2

M
M

Seal-in contact

Hardwired

Start
Stop

Motor
starter coil

T2 T3

The motor stop/start circuit shown in Figure 6-46 is a
typical example of a seal-in circuit. The hardwired circuit
consists of a normally closed stop button in series with a
normally open start button. The seal-in auxiliary contact
of the starter is connected in parallel with the start button
to keep the starter coil energized when the start button is

pet73842_ch06_098-130.indd 114 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 115

• Motor 2 has to be operating before Motor 3 can be
started.

• The NO auxiliary interlocking contact M2-2 is used
for this purpose.

Figure 6-49 shows a PLC program equivalent of the
hardwired circuit.

Pushbutton interlocking is one of the methods of
preventing two loads from being energized simultane-
ously. The hardwired pushbutton interlocking circuit of
Figure 6-50 is designed to prevent solenoids SOL-A and
SOL-B from being energized at the same time. The in-
terlocking feature of the circuit can be summarized as
follows:

• Each pushbutton is equipped with a set of momen-
tarily normally open (NO) and normally closed
(NC) contacts mechanically connected together.

• The NC contact of SOL-A pushbutton is con-
nected in series with the NO contact of SOL-B
pushbutton.

• The NO contact of SOL-A pushbutton is con-
nected in series with the NC contact of SOL-B
pushbutton.

released. When this circuit is programmed into a PLC,
both the start and stop buttons are examined for a closed
condition because both buttons must be closed to cause
the motor starter to operate.

Figure 6-47 shows a PLC wiring diagram of the motor
seal-in circuit implemented using an Allen-Bradley Pico
controller. The controller is programmed using ladder
logic. Each programming element can be entered directly
via the Pico display. This controller also lets you program
the circuit from a personal computer using PicoSoft pro-
gramming software.

6.9 Electrical Interlocking Circuits
An electrical interlocking circuit is used to prevent a piece
of equipment from operating under certain potentially
hazardous or undesirable conditions. Figure 6-48 shows
a three motor hardwired relay control circuit electrically
interlocked to prevent the motors from accidently oper-
ating in an order other than their proper sequence. The
interlocking feature of the circuit can be summarized as
follows:

• Motor 1 has to be operating before Motor 2 can be
started.

• The NO auxiliary interlocking contact M1-2 is used
for this purpose.

Figure 6-47 Motor seal-in circuit implemented using an
Allen-Bradley Pico controller.

M
Motor
starter coil

Q1

Q1

Q1

L1

L1

L2

L2

I1 I2

I2 I1

Q2 Q3
Outputs

Inputs

Q3

Stop Start

Figure 6-48 Sequential hardwired three motor relay
control circuit.

Hardwired relay circuit

Motor 1
Stop PB

Motor 2
Stop PB

Motor 3
Stop PB

M1-2

M2-2

M2-1

M1-1

Motor 1
Start PB

Motor 2
Start PB

Motor 3
Start PB

M3-1

OL
M1

M2

M3

OL

OL

L2L1

pet73842_ch06_098-130.indd 115 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

116 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

• When SOL-A pushbutton is pressed its NO contact
completes the circuit to SOL-A and its NC contacts
opens the current path to SOL-B.

• When SOL-B pushbutton is pressed its NO contact
completes the circuit to SOL-B and its NC contacts
opens the current path to SOL-A.

• When both buttons are pushed, neither solenoid will
be energized.

Figure 6-51 shows a PLC program equivalent of
the hardwired circuit implemented using two NO
pushbuttons.

Inputs

Motor 1
Start PB

Motor 1
Stop PB

Motor 1
Start PB

Ladder logic program
Outputs

Motor 2
Start PB

Motor 3
Stop PB

Motor 2
Stop PB

Motor 3
Stop PB

M1

M1

M2

M2

M3

M2

M3

M1 M1 OL

M2 OL

M3 OL

L2L1

Motor 2
Start PB

Motor 3
Start PB

Motor 1
Stop PB

Motor 2
Stop PB

Motor 3
Stop PB

Figure 6-49 PLC program equivalent of the hardwired sequential motor
control circuit.

Figure 6-50 Hardwired pushbutton interlocking circuit.

L1

SOL-A
PB

SOL-B
PB SOL-A

L2

SOL-B

Figure 6-51 PLC program equivalent of the hardwired
pushbutton interlocking circuit.

Ladder logic program
Inputs

L1 SOL-A
PB

SOL-A
PB

SOL-B
PB SOL-A L2

Outputs

SOL-A

SOL-B
PB

SOL-A
PB SOL-B

SOL-B

SOL-B
PB

6.10 Latching Relays
Electromagnetic latching relays are designed to hold the
relay closed after power has been removed from the coil.
Latching relays are used where it is necessary for contacts
to stay open and/or closed even though the coil is ener-
gized only momentarily. Figure 6-52 shows a latching
relay that uses two coils. The latch coil is momentarily
energized to set the latch and hold the relay in the latched

pet73842_ch06_098-130.indd 116 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 117

• When the ON button is momentarily actuated, the
latch coil is energized to set the relay to its latched
position.

• The contacts close, completing the circuit to the
pilot light, and so the light is switched on.

• The relay coil does not have to be continuously
energized to hold the contacts closed and keep the
light on.

• The only way to switch the lamp off is to actu-
ate the OFF button, which will energize the
unlatch coil and return the contacts to their open,
unlatched state.

• In cases of power loss, the relay will remain in its
original latched or unlatched state when power is
restored.

An electromagnetic latching relay function can be
programmed on a PLC to work like its real-world coun-
terparts. The instruction set for the SLC 500 includes
a set of output instructions that duplicates the opera-
tion of the mechanical latch. A description of the output
latch (OTL) and output unlatch (OTU) instruction is
given in Figure 6-54. The OTL and OTU instructions
differ from the OTE instruction in that they must be
used together. Both the latch and unlatch outputs must
have the same address. The OTL (latch) instruction can
only turn a bit on and the OTU (unlatch) instruction can
only turn a bit off.

The operation of the output latch and output un-
latch coil instruction is illustrated in the ladder program
of Figure 6-55. The operation of the program can be
summarized as follows:

• Both the latch (L) and the unlatch (U) coil have the
same address (O:2/5).

• When the on pushbutton (I:1/0) is momentarily
actuated, the latch rung becomes true and the latch
status bit (O:2/5) is set to 1, and so the light output
is switched on.

position. The unlatch or release coil is momentarily en-
ergized to disengage the mechanical latch and return the
relay to the unlatched position.

Figure 6-53 shows a hardwired control circuit for an
electromagnetic latching relay. The operation of the
circuit can be summarized as follows:

• The contact is shown with the relay in the unlatched
position.

• In this state the circuit to the pilot light is open and
so the light is off.

OFF

ON
Latch coil

Unlatch coil

L L

In unlatch position

Relay contact

21

PL

L

U

Figure 6-53 Hardwired control circuit for an
electromagnetic latching relay.

Figure 6-52 Two-coil mechanical latching relay.
Source: Courtesy Relay Service Company.

Latch
mechanism

L

U

Command Name Symbol Description

OTL

OTU Output
unlatch

Output latch
OTL sets the bit to
"1" when the rung
becomes true and
retains its state when
the rung loses
continuity or a power
cycle occurs.

OTU resets the bit to
"0" when the rung
becomes true and
retains it.

Latch coil

Unlatch coil

XXX

XXX

L
Same
address

U
U

L

Figure 6-54 Output latch and output unlatch instruction.

pet73842_ch06_098-130.indd 117 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

118 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

Status Indicating Lights—Water pump running light
(green)
 - Low water level status light (red)
 - High water level status light (yellow)

Figure 6-57 shows a program that can be used to imple-
ment control of the water level in the storage tank. The
latch and unlatch instructions form part of the program.
The operation of the program can be summarized as
follows:

• An internal storage bit is used for the latch and ad-
dress rather than an actual discrete output address.
Both have the same addresses.

• The rung 1 Examine-on instruction addressed
to the off/on switch prevents the pump motor
from starting under any condition when in the off
(open) state.

• In the MAN mode, the rung 1 Examine-on instruc-
tion addressed to the low sensor switch allows the
pump motor to operate only when the low level sen-
sor switch is closed.

• In the AUTO mode, whenever the high sensor
switch is momentarily closed the Examine-on in-
struction of rung 1 addressed to it will energize the
latch coil. The pump will begin running and con-
tinue to operate until the unlatch coil is energized by
the rung 3 Examine-off instruction addressed to the
low sensor switch.

• The pump running status light is controlled by the
rung 4 Examine-on instruction addressed to the
motor output.

• The status bit will remain set to 1 when the pushbut-
ton is released and logical continuity of the latch
rung is lost.

• When the off pushbutton (I:1/1) is momentarily ac-
tuated, the unlatch rung becomes true and the latch
status bit (O:2/5) is reset back to 0 and so the light
is switched off.

• The status bit will remain reset to 0 when the push-
button is released and logical continuity of the latch
rung is lost.

Output latch is an output instruction with a bit-level
address. When the instruction is true, it sets a bit in the
output image file. It is a retentive instruction because the
bit remains set when the latch instruction goes false. In
most applications it is used with an unlatch instruction.
The output unlatch instruction is also an output instruc-
tion with a bit-level address. When the instruction is true,
it resets a bit in the output image file. It, too, is a retentive
instruction because the bit remains reset when the instruc-
tion goes false.

The process shown in Figure 6-56 is to be used to con-
trol the level of water in a storage tank by turning a dis-
charge pump on or off. The modes of operation are to be
programmed as follows:

OFF Position—The water pump will stop if it is run-
ning and will not start if it is stopped.
Manual Mode—The pump will start if the water in
the tank is at any level except low.
Automatic Mode—If the level of water in the tank
reaches a high point, the water pump will start so that
water can be removed from the tank, thus lowering
the level.
 - When the water level reaches a low point, the pump

will stop.

Figure 6-55 Output latch and output unlatch operation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Latch
rung

I:1/0

Unlatch
rung

I:1/1

I:1/0
O:2/5

O:2/

O:2/5

O:2/5

I:1/1

ON

Inputs OutputProgram
L1 L2

OFF

PL
L

U

Status bit

Figure 6-56 Process used to control the level of water in a
storage tank.

High sensor switch

Low sensor switchMAN/AUTO

Pump motor

ON/OFF

Pump
running

G

Low
level

R

High
level

Y

pet73842_ch06_098-130.indd 118 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 119

relatively small power rating and is used to supply DC
power to all devices physically mounted in the backplane
of the PLC rack. In this application a 24 VDC field power
supply is used for the input devices and a 120 VAC field
power supply for the output devices. This allows a low-
voltage 24-volt control signal to control 240-volt output
devices. SLC 500 controllers use a rack/slot-based ad-
dress system where the slot location of the I/O modules
in the rack establishes the PLC address. The addresses
for the field devices of this particular application are
shown below:

• The low-level status light is controlled by the rung
5 Examine-off instruction addressed to the low
s ensor switch.

• The high-level status light is controlled by the rung
6 Examine-on instruction addressed to the high
s ensor switch.

Figure 6-58 shows a typical I/O module wiring dia-
gram and addressing format for the water level control
program implemented using an Allen-Bradley modu-
lar SLC 500 controller. The chassis power supply has a

L1

1

2

3

4

5

6

Input module
wiring connections

OFF ON

AutoMan

Low sensor switch

L2

High sensor switch

Man/Auto Low sensor switch

Man/Auto

Man/Auto

Latch/Unlatch

Ladder logic program

OFF/ON Motor

Man/Auto High sensor switch

Latch coil

L

Man/Auto Low sensor switch

Unlatch coil

U

Motor G

Low sensor switch R

High sensor switch Y

Motor

Output module
wiring connection

Pump running

Low level

High level

M

G

R

Y

Figure 6-57 Program used to implement control of the water level in the storage tank.

FIELD DEVICE ADDRESS Signifies

OFF/ON Switch I:2/0 The input module in slot 2 and screw terminal 0

MAN/AUTO Switch I:2/4 The input module in slot 2 and screw terminal 4

LOW SENSOR Switch I:2/8 The input module in slot 2 and screw terminal 8

HIGH SENSOR Switch I:2/12 The input module in slot 2 and screw terminal 12

MOTOR O:3/1 The output module in slot 3 and screw terminal 1

PUMP RUNNING Light O:3/5 The output module in slot 3 and screw terminal 5

LOW LEVEL Light O:3/9 The output module in slot 3 and screw terminal 9

HIGH LEVEL Light O:3/13 The output module in slot 3 and screw terminal 13

B3:0/0 Internal retentive bit instruction that does not drive a real-word device

pet73842_ch06_098-130.indd 119 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

120 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

Ladder logic program

Low sensor switch OFF/ON MotorMan/Auto

Man/Auto

Man/Auto

Man/Auto

Man/Auto

Motor G

R

Y

Low sensor switch

Low sensor switch

Unlatch coil

Latch/Unlatch

High sensor switch Latch coil

I:2/4 I:2/8

I:2/4 B3:0/0

I:2/4

I:2/4 I:2/8

I:2/4

O:3/1

I:2/8

O:3/5

O:3/9

B3:0/0

I:2/12 B3:0/0

I:2/0 O:3/1

I:2/12 O:3/13
Slots

0

High sensor switch

Input module

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

IN 0

IN 2

IN 4

IN 6

IN 8

IN 10

IN 12

IN 14

DC
COM

IN 1

IN 3

IN 5

IN 7

IN 9

IN 11

IN 13

IN 15

DC
COM

Output module

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

VAC

OUT 1

OUT 3

OUT 5

OUT 7

OUT 9

OUT 11

OUT 13

OUT 15

OUT 0

OUT 2

OUT 4

OUT 6

OUT 8

OUT 10

OUT 12

OUT 14

AC
COM

24 VDC
16-point discrete
input module

240 VAC
16-point discrete
output module

24 VDC

Field device
power supply

+DC –DC

240 VAC

M

Field device
power supply

L2 L1

Power
supply

1 2 3 4 5 6

OFF ON

Man

Motor

Pump running

Low level

High level

Auto

Low sensor
switch

High sensor
switch

R

G

Y

L

U

Figure 6-58 Water-level control program implemented using an Allen-Bradley modular SLC 500 controller.

pet73842_ch06_098-130.indd 120 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 121

Automatic control involves maintaining a desired set
point at an output. One example is maintaining a certain
set-point temperature in a furnace as illustrated in Fig-
ure 6-61. If there is deviation from that set point, an error
is determined by comparing the output against the set point
and using this error to make a correction. This requires
feedback from the output to the control for the input.

The converting of a simple sequential process can be
examined with reference to the process flow diagram illus-
trated in Figure 6-62. The sequential task is as follows:

1. Start button is pressed.
2. Table motor is started.

6.11 Converting Relay Schematics
into PLC Ladder Programs
The best approach to developing a PLC program from a
relay schematic is to understand first the operation of each
relay ladder rung. As each relay ladder rung is understood,
an equivalent PLC rung can be generated. This process
will require access to the relay schematic, documentation
of the various input and output devices used, and possibly
a process flow diagram of the operation.

Most control processes require the completion of several
operations to produce the required output. Manufacturing,
machining, assembling, packaging, finishing, or transport-
ing of products requires the precise coordination of tasks.

A sequential control process is required for processes
that demand that certain operations be performed in a spe-
cific order. Figure 6-59 illustrates part of a bottle filling
process. In the filling and capping operations, the tasks
are (1) fill bottle and (2) press on cap. These tasks must
be performed in the proper order. Obviously we could not
fill the bottle after the cap is pressed on. This process,
therefore, requires sequential control.

Combination controls require that certain operations
be performed without regard to the order in which they
are performed. Figure 6-60 illustrates another part of the
same bottle filling process. Here, the tasks are (1) place
label 1 on bottle and (2) place label 2 on bottle. The order
in which the tasks are performed does not really matter.
In fact, however, many industrial processes that are not in-
herently sequential in nature are performed in a sequential
manner for the most efficient order of operations.

Figure 6-59 Sequential control process.
Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

1 - Filling operation 2 - Capping operation

Figure 6-60 Combination control process.

Label solenoid 1

Label
solenoid 2

Figure 6-61 Automatic control process.

PLC

Furnace

Feedback

Controller

Figure 6-62 Sequential process flow diagram.

Package

Limit
switch

Motor

Pilot lights

Stop
Start

R

G

pet73842_ch06_098-130.indd 121 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

122 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

Figure 6-64 shows an I/O connection diagram for a
programmed version of the sequential process. Each input
and output device is represented by its symbol and asso-
ciated address. These addresses will indicate what PLC
input is connected to what input device and what PLC
output will drive what output device. The address code, of
course, will depend on the PLC model used. This example
uses SLC 500 addressing for the process. Note that the
electromagnetic control relay CR is not needed because
its function is replaced by an internal PLC control relay.

The hardwired relay schematic for the sequential pro-
cess can be converted to the PLC ladder logic program
shown in Figure 6-65. In converting the process to a pro-
gram the operation of each rung must be understood. The
pushbuttons PB1, PB2 as well as limit switch LS are all
programmed using the examine-closed (–] [–) instruction
to produce the desired logic control. Also, internal relay
B3:1/0 is used to replace control relay CR. To obtain the
desired control logic, all internal relay contacts are pro-
grammed using the PLC contact instruction that matches
the coil de-energized state. The internal relay imple-
mented in software requires one coil address the contacts
of which can be examined for an ON or OFF condition as
many times as you like.

There is more than one method to correctly design the
ladder logic program for a given control process. In some
cases one arrangement may be more efficient in terms of
the amount of memory used and the time required to scan
the program. Figure 6-66 illustrates an example of an ar-
rangement of series instructions of a rung programmed
for optimum scan time. The series instructions are pro-
grammed from the most likely to be false (far left) to
the least likely to be false (far right). Once the processor
sees a false input instruction in series, the processor stops
checking the rung at the false condition and sets the out-
put false.

Figure 6-67 illustrates an example of an arrangement
of parallel instructions of a rung programmed for opti-
mum scan time. The parallel path that is most often true is

3. Package moves to the position of the limit switch
and automatically stops.

Other auxiliary features include:

• a stop button that will stop the table, for any reason,
before the package reaches the limit switch position;

• a red pilot light to indicate the table is stopped; and
• a green pilot light to indicate the table is running.

A relay schematic for the sequential process is shown
in Figure 6-63. The operation of this hardwired circuit can
be summarized as follows:

• Start button is actuated; CR is energized if stop but-
ton and limit switch are not actuated.

• Contact CR-1 closes, sealing in CR when the start
button is released.

• Contact CR-2 opens, switching the red pilot light
from on to off.

• Contact CR-3 closes, switching the green pilot light
from off to on.

• Contact CR-4 closes to energize the motor starter
coil, starting the motor and moving the package to-
ward the limit switch.

• Limit switch is actuated, de-energizing relay
coil CR.

• Contact CR-1 opens, opening the seal-in circuit.
• Contact CR-2 closes, switching the red pilot light

from off to on.
• Contact CR-3 opens, switching the green pilot light

from on to off.
• Contact CR-4 opens, de-energizing the motor starter

coil to stop the motor and end the sequence.

Figure 6-63 Relay schematic for the sequential process.

PB1
Start

L1 L2

PB2
Stop

LS
Limit

switch
Control

relay

CR-2

CR-3

CR-4

CR-1

OL

PL1
Stop

PL2
Run

Motor
starter coil

R

G

CR

M

O:4/2

OutputsInputs

LS - Limit switch

L2L1 L2L1

PB1 - Start

Motor starter
coil

O:4/1

PL1 - Stop
I:3/0

I:3/2

I:3/1

PB1 - Stop
R

M

O:4/3

PL2 - Run

G

Figure 6-64 I/O connection diagram.

pet73842_ch06_098-130.indd 122 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 123

• The M maintaining contact closes; this maintains
the circuit for the M coil.

• Pressing the jog button energizes the M coil only,
starting the motor. Both CR contacts remain open,
and the CR coil is de-energized. The M coil will
not remain energized when the jog push button is
released.

Figure 6-69 shows a PLC program equivalent of the
hardwired relay jog circuit. Note that the function of the
control relay is now accomplished using an internal PLC
instruction (B3:1/0).

placed on the top of the rung. The processor will not look
at the others unless the top path is false.

Figure 6-68 shows a hardwired jog control circuit that
incorporates a jog control relay. The operation of the cir-
cuit can be summarized as follows:

• Pressing the start pushbutton completes a circuit for
the CR coil, closing the CR1 and CR2 contacts.

• The CR1 contact completes the circuit for the M
coil, starting the motor.

Figure 6-65 Sequential process PLC ladder logic program.

L1

Input module
wiring connections

PB1

PB2

L2

LS

I:3/2

I:3/1

I:3/0

I:3/0

B3:1/0

B3:1/0

B3:1/0

B3:1/0

I:3/1

Ladder logic program

I:3/2 B3:1/0
PB1 PB2 LS

Internal
relay

O:4/2

PL1

O:4/3

PL2

O:4/1

M

O:4/1

O:4/2

Output module
wiring connection

PL1

O:4/3

PL2

OL

R

M

G

Instruction most
likely to be FALSE

Instruction least
likely to be FALSE

Figure 6-66 Series instructions programmed for optimum
scan time.

OL

Control relay

A BH1 H3 H2 H4

X1 X2

120 V

Start

Jog

CR2

CR1

M

Stop

CR

M

Figure 6-68 Jog circuit with control relay.
Source: Photo courtesy IDEC Corporation, www.IDEC.com/usa, RR Relay.

Path most likely to be TRUE

Less likely

Least likely

Figure 6-67 Parallel instructions programmed for
optimum scan time.

pet73842_ch06_098-130.indd 123 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

124 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

• List the sequence of operational steps in as much
detail as possible.

• Write the ladder logic program to be used as a basis
for the PLC program.

• Consider different scenarios where the process se-
quence may go astray and make adjustments as needed.

• Consider the safety of operating personnel and
make adjustments as needed.

The following are examples of ladder logic programs
derived from narrative descriptions of control processes.

6.12 Writing a Ladder Logic Program
Directly from a Narrative Description
In most cases, it is possible to prepare a ladder logic program
directly from the narrative description of a control process.
Some of the steps in planning a program are as follows:

• Define the process to be controlled.
• Draw a sketch of the process, including all sensors

and manual controls needed to carry out the control
sequence.

I:3/0

B3:1/0

I:3/1 B3:1/0

I:3/2

B3:1/0

I:3/1 O:2/2

O:2/2

Ladder logic program

Start
L1 L2

Inputs OutputStop
Internal

relay

Jog

Jog

Stop M

I:3/2

Start

Stop

I:3/0

I:3/1

M
OL

Figure 6-69 PLC program equivalent of the hardwired relay jog circuit.

Figure 6-70 shows the sketch of a drilling process that
requires the drill press to turn on only if there is a part
present and the operator has one hand on each of the
start switches. This precaution will ensure that the opera-
tor’s hands are not in the way of the drill.

The sequence of operation requires that switches
1 and 2 and the part sensor all be activated to make the
drill motor operate. Figure 6-71 shows the ladder logic
program required for the process implemented using an
SLC 500 controller.

EXAMPLE 6 -1

L1
Inputs

I:3/5

Sensor

I:3/6

I:3/4

Ladder logic program

Motor
contactor

PB1 PB2 Sensor
Motor

contactor
PB1

PB2

I:3/4 I:3/5 I:3/6 O:4/0

O:4/0

L2
Output

M

Figure 6-71 Drilling process PLC program.

PB1
Drill

motor

Switches

PB2

Part sensor

Figure 6-70 Sketch of the drilling process.

pet73842_ch06_098-130.indd 124 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 125

A motorized overhead garage door is to be operated au-
tomatically to preset open and closed positions. The field
devices include one of each of the following:

• Reversing motor contactor for the up and down
directions.

• Normally open down limit switch to sense when the
door is fully closed.

• Normally open-held closed up limit switch to sense
when the door is fully opened.

• Normally open door up button for the up direction.

• Normally open door down button for the down
direction.

• Normally closed door stop button for stopping the
door.

• Red door ajar light to signal when the door is partially
open.

• Green door open light to signal when the door is fully
open.

• Yellow door closed light to signal when the door is fully
closed.

The sequence of operation requires that:

• When the up button is pushed, the up motor contac-
tor energizes and the door travels upward until the up
limit switch is actuated.

• When the down button is pushed, the down motor
contactor energizes and the door travels down until
the down limit switch is actuated.

• When the stop button is pushed, the motor stops.
The motor must be stopped before it can change
direction.

Figure 6-72 shows the ladder logic program required for
the operation implemented using an SLC 500 controller.

EXAMPLE 6 -2

Figure 6-72 Motorized overhead garage door PLC program.

L1

Input devices
(shown in unactuated

condition)

Output devices

Up limit

L2

Door up

I:3/0 I:3/7

Program

O:4/3 O:4/0

Door ajar

Door down

Stop door

I:3/4 I:3/5

Down limit
I:3/1

I:3/4

I:3/5

I:3/7

O:4/4 I:3/0
Stop Motor upUp

I:3/0 O:4/0I:3/1
Up limit Door ajarDown limit

I:3/0 O:4/1
Up limit Door open

O:4/3
Motor up

Down
Down

Intrlock Up limit

O:4/4

I:3/1 O:4/2
Down limit Door closed

Motor down

O:4/4
Motor down

I:3/7 I:3/5 I:3/4 O:4/3 I:3/1
Stop Down Up

Up
intrlock Down limit

O:4/1

Door open

O:4/2

Door
closed

O:4/3

Motor
contactor

O:4/4

Motor
contactor

R

G

Y

UP

DN

pet73842_ch06_098-130.indd 125 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

126 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

Figure 6-73 shows the sketch of a continuous filling opera-
tion. This process requires that boxes moving on a con-
veyor be automatically positioned and filled.

The sequence of operation for the continuous filling
operation is as follows:

• Start the conveyor when the start button is momen-
tarily pressed.

• Stop the conveyor when the stop button is momen-
tarily pressed.

• Energize the run status light when the process is
operating.

• Energize the standby status light when the process is
stopped.

• Stop the conveyor when the right edge of the box is
first sensed by the photosensor.

• With the box in position and the conveyor stopped,
open the solenoid valve and allow the box to fill. Filling
should stop when the level sensor goes true.

• Energize the full light when the box is full. The full light
should remain energized until the box is moved clear
of the photosensor.

Figure 6-74 shows the ladder logic program required for
the operation.

EXAMPLE 6 -3

Figure 6-73 Sketch of the continuous filling operation.

Run

Standby

PL

PL

Full
Level
switch

Photo
switch

Motor

Start

Solenoid

Hopper

Stop

PL

L1
Stop

Start

Photo

L2

Level

Stop Start

Run

Ladder logic program
Run

Run Standby

OutputsInputs

Motor

Solenoid

Run

Standby

Full

Level Photo

Full

Full

Photo Run

Level Photo

Motor

Run SolenoidFull

Full

Figure 6-74 Continuous filling operation PLC program.

pet73842_ch06_098-130.indd 126 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 127

6.13 Instrumentation
Instrumentation is the use of measuring instruments to
monitor and control a process. It involves the design and
calibration of systems used to measure, record, and control
industrial process variables. These variables may include
pressure, temperature, flow rate, weight, and chemical
consistency. An instrument is a device that measures
and/or acts to control any kind of physical process and
may include flow devices, level devices, thermocouples,
and pressure switches.

Every instrument has at least one input and one output.

• For a pressure sensor, the input could be some fluid
pressure and the output a 4- to 20-mA current signal.

• For a loop indicator, the input could be a 4- to 20-mA
current signal and the output an electronic display.

• For a variable-speed motor drive, the input could be
an electronic signal and the output electric power to
the motor.

To calibrate an instrument means to check, and if
necessary adjust, its response so the output accurately
corresponds to its input throughout a specified range. In-
strument calibration involves exposure of the instrument
to an actual input stimulus of precisely known quantity.
For a pressure gauge, this would mean subjecting the pres-
sure instrument to known fluid pressures and comparing

Figure 6-75 Smart instruments.
Source: Photo courtesy Emerson.

Pressure
input

Analog Digital Digital Analog
output
4-20 mA

Pressure
sensor

Analog-to-
digital

converter

Digital-to-
analog

converter

Micro-
processor

Figure 6-76 Process parameters display.
Source: Courtesy of Siemens.

the instrument response against those known pressure
quantities. Smart instruments (Figure 6-75) that contain
microprocessors have built-in diagnostic ability, greater
accuracy, and the ability to communicate digitally with
host devices for reporting of various parameters.

The PLC’s role as part of an industrial instrumentation
system is to receive, process, and send signals from input
and to output devices. With the use of programming soft-
ware the PLC can control, monitor, and display all the
parameters associated with a given process (Figure 6-76).

pet73842_ch06_098-130.indd 127 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

128 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

1. Explain the basic operating principle of an electro-
magnetic control relay.

2. What is the operating difference between a nor-
mally open and a normally closed relay contact?

3. In what ways are control relay coils and contacts rated?

4. How do contactors differ from relays?

5. What is the main difference between a contactor
and a magnetic motor starter?

6. a. Draw the schematic for an across-the-line AC
magnetic motor starter.

b. With reference to this schematic, explain the
function of each of the following parts:

i. Main contact M
ii. Control contact M

iii. Starter coil M
iv. OL relay coils
v. OL relay contact

7. The current requirement for the control circuit of a
magnetic starter is normally much smaller than that
required by the power circuit. Why?

8. Compare the method of operation of each of the
following types of switches:
a. Manually operated switch
b. Mechanically operated switch
c. Proximity switch

9. What do the abbreviations NO and NC represent
when used to describe switch contacts?

10. Draw the electrical symbol used to represent each
of the following switches:
a. NO pushbutton switch
b. NC pushbutton switch
c. Break-make pushbutton switch
d. Three-position selector switch
e. NO limit switch
f. NC temperature switch
g. NO pressure switch
h. NC level switch
i. NO proximity switch

11. Outline the method used to actuate inductive and
capacitive proximity sensors.

12. How are reed switch sensors actuated?

13. Compare the operation of a photovoltaic solar cell
with that of a photoconductive cell.

14. What are the two basic components of a photoelec-
tric sensor?

15. Compare the operation of the reflective-type and
through-beam photoelectric sensors.

16. Give an explanation of how a scanner and a decoder
act in conjunction with each other to read a bar code.

17. How does an ultrasonic sensor operate?

18. Explain the principle of operation of a strain gauge.

19. Explain the principle of operation of a thermocouple.

20. What is the most common approach taken with re-
gard to the measurement of fluid flow?

21. Explain how a tachometer is used to measure rota-
tional speed.

22. How does an optical encoder work?

23. Draw an electrical symbol used to represent each of
the following PLC control devices:
a. Pilot light
b. Relay
c. Motor starter coil
d. OL relay contact
e. Alarm

f. Heater
g. Solenoid
h. Solenoid valve
i. Motor
j. Horn

24. Explain the function of each of the following
actuators:
a. Solenoid
b. Solenoid valve
c. Stepper motor

25. Compare the operation of open-loop and closed-
loop control.

26. What is a seal-in circuit?

27. In what way is the construction and operation of an
electromechanical latching relay different from a
standard relay?

28. Give a short description of each of the following
control processes:
a. Sequential
b. Combination
c. Automatic

29. Compare the type of sensor signal obtained from a
thermocouple with that from an RTD.

30. Explain how a magnetic reed float switch works.

31. What is the function of an electrical interlocking
circuit?

32. What is the role of instrumentation in an industrial
process?

33. You have been assigned the task of calibrating an
instrument. How would you proceed?

CHAPTER 6 REVIEW QUESTIONS

pet73842_ch06_098-130.indd 128 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs Chapter 6 129

CHAPTER 6 PROBLEMS

will correctly execute the hardwired control circuit
in Figure 6-78.
Assume: Stop pushbutton used is an NO type.

Run pushbutton used is an NO type.
Jog pushbutton used has one set of NO
contacts.
OL contact is hardwired.

5. Design a PLC program and prepare a typical I/O
connection diagram and ladder logic program that
will correctly execute the hardwired control circuit
in Figure 6-79.
Assume: PB1 pushbutton used is an NO type.

PB2 pushbutton used is an NC type.
PS1 pressure switch used is an NO type.
LS1 limit switch used has only one set of
NC contacts.

1. Design and draw the schematic for a conventional
hardwired relay circuit that will perform each of
the following circuit functions when a normally
closed pushbutton is pressed:
• Switch a pilot light on
• De-energize a solenoid
• Start a motor running
• Sound a horn

2. Design and draw the schematic for a conventional
hardwired circuit that will perform the following
circuit functions using two break-make pushbuttons:
• Turn on light L1 when pushbutton PB1 is pressed.
• Turn on light L2 when pushbutton PB2 is pressed.
• Electrically interlock the pushbuttons so that L1

and L2 cannot both be turned on at the same time.
3. Study the ladder logic program in Figure 6-77, and

answer the questions that follow:
a. Under what condition will the latch rung 1 be true?
b. Under what conditions will the unlatch rung 2 be true?
c. Under what condition will rung 3 be true?
d. When PL1 is on, the relay is in what state

(latched or unlatched)?
e. When PL2 is on, the relay is in what state

(latched or unlatched)?
f. If AC power is removed and then restored to the

circuit, what pilot light will automatically come
on when the power is restored?

g. Assume the relay is in its latched state and all three
inputs are false. What input change(s) must occur
for the relay to switch into its unlatched state?

h. If the examine if closed instructions at addresses
I/1, I/2, and I/3 are all true, what state will the
relay remain in (latched or unlatched)?

4. Design a PLC program and prepare a typical I/O
connection diagram and ladder logic program that

Figure 6-77 Ladder logic program for Problem 3.

I/1

L1
Inputs Ladder logic program Outputs

L2

I/2

I/3

I/1 I/2 O/9

L

I/3 O/9

U

O/9 O/10

Rung 1

Rung 2

Rung 3

PL2

PL1

O/10

O/9

Figure 6-79 Hardwired control circuit for Problem 5.

Start

CR1

SOLCR1-2

CR1-1

PS1

LS1

SS1
CR2-2

CR2-1

CR2

SOL

SOL

LL

1
2

3

2

1

21
Stop

PB
PB

PL1

PL2

Figure 6-78 Hardwired control circuit for Problem 4.

LL

Stop
Run

OL

Jog M

21

M

pet73842_ch06_098-130.indd 129 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

130 Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs

• Overload relay contacts are to be programmed so
that an overload on any one of the starters will
automatically drop all of the starters.

• All pushbuttons are to be wired using one set of
NO contacts.

9. A temperature control system consists of four
thermostats controlling three heating units. The
thermostat contacts are set to close at 50°, 60°,
70°, and 80°F, respectively. The PLC ladder logic
program is to be designed so that at a temperature
below 50°F, three heaters are to be ON. From 50°
to 60°F, two heaters are to be ON. For 60° to 70°F,
one heater is to be ON. Above 80°F, there is a
safety shutoff for all three heaters in case one stays
on because of a malfunction. A master switch is to
be used to turn the system ON and OFF. Prepare a
typical PLC program for this control process.

10. A pump is to be used to fill two storage tanks. The
pump is manually started by the operator from a
start/stop station. When the first tank is full, the
control logic must be able to automatically stop
flow to the first tank and direct flow to the second
tank through the use of sensors and electric sole-
noid valves. When the second tank is full, the pump
must shut down automatically. Indicator lamps are
to be included to signal when each tank is full.
a. Draw a sketch of the process.
b. Prepare a typical PLC program for this control

process.

11. Write the optimum ladder logic rung for each of the
following scenarios, and arrange the instructions
for optimum performance:
a. If limit switches LS1 or LS2 or LS3 are on, or if

LS5 and LS7 are on, turn on; otherwise, turn off.
(Commonly, if LS5 and LS7 are on, the other
conditions rarely occur.)

b. Turn on an output when switches SW6, SW7,
and SW8 are all on, or when SW55 is on.
(SW55 is an indication of an alarm state, so it
is rarely on; SW7 is on most often, then SW8,
then SW6.)

6. Design a PLC program and prepare a typical I/O
connection diagram and ladder logic program that
will correctly execute the hardwired control circuit
in Figure 6-80.
Assume: PB1 pushbutton used is an NC type.

PB2 and PB3 are each wired using one set
of NO contacts.
OL contact is hardwired.

7. Design a PLC program and prepare a typical I/O
connection diagram and ladder logic program for
the following motor control specifications:
• A motor must be started and stopped from any

one of three start/stop pushbutton stations.
• Each start/stop station contains one NO start

pushbutton and one NC stop pushbutton.
• Motor OL contacts are to be hardwired.

8. Design a PLC program and prepare a typical I/O
connection diagram and ladder logic program for
the following motor control specifications:
• Three starters are to be wired so that each starter

is operated from its own start/stop pushbutton
station.

• A master stop station is to be included that will
trip out all starters when pushed.

Figure 6-80 Hardwired control circuit for Problem 6.

Stop
PB

REV
FWD

PB
PB

R-1
F

OL

PL1F-2

R-2
PL2

L L

F-1
R

2

3
21

1

pet73842_ch06_098-130.indd 130 05/11/15 4:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

131

7
Programming Timers

Chapter Objectives

After completing this chapter, you will be able to:

 • Describe the operation of pneumatic on-delay and off-
delay timers

 • Describe PLC timer instruction and differentiate
between a nonretentive and retentive timer

 • Convert fundamental timer relay schematic diagrams to
PLC ladder logic programs

 • Analyze and interpret typical PLC timer ladder logic
programs

 • Program the control of outputs using the timer
instruction control bits

The most commonly used PLC instruction, after
coils and contacts, is the timer. This chapter
deals with how timers time intervals and the way
in which they can control outputs. We discuss
the basic PLC on-delay timer function, as well as
other timing functions derived from it, and typical
industrial timing tasks.

File number

Timers4

File type Timer number

EN TT DNWord 0

T4:2
15 14 13

Preset valueWord 1

Accumulated valueWord 2

pet73842_ch07_131-155.indd 131 05/11/15 4:21 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

132 Chapter 7 Programming Timers

Figure 7-2 shows the construction of an on-delay pneu-
matic (air) timer. The time-delay function depends on
the transfer of air through a restricted orifice. The time-
delay period is adjusted by positioning the needle valve
to vary the amount of orifice restriction. When the coil
is energized, the timed contacts are delayed from open-
ing or closing. However, when the coil is de- energized,
the timed contacts return instantaneously to their normal
state. This particular pneumatic timer has instantaneous
contacts in addition to timed contacts. The instantaneous
contacts change state as soon as the timer coil is powered
while the delayed contacts change state at the end of the
time delay. Instantaneous contacts are often used as hold-
ing or sealing contacts in a control circuit.

Mechanical timing relays provide time delay through
two arrangements. The first arrangement, on delay, pro-
vides time delay when the relay coil is energized. The
second arrangement, off delay, provides time delay when
the relay coil is de-energized. Figure 7-3 illustrates the
different relay symbols used for timed contacts.

The on-delay timer is sometimes referred to as DOE,
which stands for delay on energize. The time delay of the
contacts begins once the timer is switched on; hence the term
on-delay timing. Figure 7-4 shows an on-delay timer circuit
that uses a normally open, timed closed (NOTC) contact.
The operation of the circuit can be summarized as follows:

• With S1 initially open, TD coil is de-energized so
TD1 contacts are open and light L1 will be off.

7.1 Mechanical Timing Relays
There are very few industrial control systems that do not
need at least one or two timed functions. Mechanical
timing relays are used to delay the opening or closing of
contacts for circuit control. The operation of a mechanical
timing relay is similar to that of a control relay, except that
certain of its contacts are designed to operate at a preset
time interval, after the coil is energized or de-energized.
Typical types of mechanical and electronic timing relays
are shown in Figure 7-1. Timers allow a multitude of op-
erations in a control circuit to be automatically started and
stopped at different time intervals.

Figure 7-1 Timing relays.
Source: Image Courtesy of Rockwell Automation, Inc.

Solid-state timing relay Plug-in timing relayPneumatic timing relay

Figure 7-2 Pneumatic on-delay timer.

Time adjustment

Normally closed terminals

Normally closed terminals

Instantaneous contacts

Normally open terminals

Time control contacts

Normally open terminals

Operating coil

pet73842_ch07_131-155.indd 132 05/11/15 4:21 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Chapter 7 133

Figure 7-6 shows an off-delay timer circuit that uses a
normally open, timed open (NOTO) contact. The opera-
tion of the circuit can be summarized as follows:

• With S1 initially open, TD coil is de-energized so
TD1 contacts are open and light L1 will be off.

• When S1 is closed, TD coil is energized and TD1
contacts close instantly to switch light L1 on.

• When S1 is opened, TD coil is de-energized and the
timing period starts.

• After the 10 s time-delay period has elapsed, TD1
contacts open to switch the light off.

• When S1 is closed, TD coil is energized and the
timing period starts. TD1 contacts are delayed from
closing so L1 remains off.

• After the 10 s time-delay period has elapsed, TD1
contacts close and L1 is switched on.

• When S1 is opened, TD coil is de-energized and
TD1 contacts open instantly to switch L1 off.

Figure 7-5 shows an on-delay timer circuit that uses a
normally closed, timed open (NCTO) contact. The opera-
tion of the circuit can be summarized as follows:

• With S1 initially open, TD coil is de-energized
so TD1 contacts are closed and light L1 will
be on.

• When S1 is closed, TD coil is energized and the
timing period starts. TD1 contacts are delayed from
opening so L1 remains on.

• After the 10 s time-delay period has elapsed, TD1
contacts open and L1 is switched off.

• When S1 is opened, TD coil is de-energized
and TD1 contacts close instantly to switch
L1 on.

Figure 7-3 Timed contact symbols.

On-delay symbols

Normally open, timed
closed contact (NOTC).

Contact is open when
relay coil is de-energized.

When relay is energized,
there is a time delay in
closing.

Normally closed, timed
open contact (NCTO).

Contact is closed when
relay coil is de-energized.

When relay is energized,
there is a time delay in
opening.

or

Normally closed, timed
closed contact (NCTC).

Contact is normally
closed when relay coil
is de-energized.

When relay coil is
energized, contact
opens instantly.

When relay coil is
de-energized, there is
a time delay before the
contact closes.

O�-delay symbols

Normally open, timed
open contact (NOTO).

Contact is normally
open when relay coil
is de-energized.

When relay coil is
energized, contact
closes instantly.

When relay coil is
de-energized, there is
a time delay before the
contact opens.

oror or

Figure 7-4 On-delay timer circuit that uses a normally
open, timed closed (NOTC) contact.

L2L1

TD1
L 1

S1
10 s

Timing diagram

Input
(S1)

Output
(L1)

O�

On

TD

Figure 7-5 On-delay timer circuit that uses a normally
closed, timed open (NCTO) contact.

L1

TD1
L 1

S1
TD

10 s

10 s

Timing diagram

Input
(S1)

Output
(L1) O�

On

L2

Figure 7-6 Off-delay timer circuit that uses a normally
open, timed open (NOTO) contact.

L2L1

TD1
L 1

S1
TD

10 s

Timing diagram

Input
(S1)

Output
(L1)

10 s

O�

On

pet73842_ch07_131-155.indd 133 05/11/15 4:21 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

134 Chapter 7 Programming Timers

TOF (Timer Off Delay)—Counts time-based inter-
vals when the instruction transitions from a true to
false condition.
RTO (Retentive Timer On)—Counts time-based
intervals when the instruction is true and retains the
accumulated value when the instruction goes false or
when power cycle occurs.
RES (Reset)—Resets a retentive timer’s accumulated
value to zero.

Several quantities are associated with the timer
instruction:

• Time Base The time base of a timer is the unit
of time used by a timer to time an event. A timer
instruction times an event by counting the number
of times the time base has occurred. Depending on
the manufacturer and type of PLC, time base values
can be in 1 ms (0.001 s), 10 ms (0.01 s), 100 ms
(0.1 s), or 1 second intervals. For example, if a timer
has a time base of 1 second and it is timing some-
thing that is 5 seconds long, the PLC will wait until
the time base has occurred 5 times before the timer
times out. Conversely, if the PLC’s time base setting
is 0.01 seconds, it will wait until the time base has
occurred 500 times before timing out. The smaller
the time base, the better the accuracy of the timer.

• Preset Value The preset value of a timer repre-
sents the time duration for the timing circuit. Total
timing interval = the preset value x time base. For
example, for a timer with a preset value of 100 and
a time base of 0.1s the time duration for the timer is:
Total timing interval = 100 × 0.1 s

= 10 seconds
• Accumulated Value The accumulated value of

the timer represents the amount of time that has
elapsed from the moment the timing started. It
keeps track of how many times the time base has
occurred since the timer instruction was initiated.

Although each manufacturer may represent timers
differently on the ladder logic program, most timers operate
in a similar manner. One of the first methods used depicts
the timer instruction as a relay coil similar to that of a me-
chanical timing relay. Figure 7-9 shows a coil- formatted
timer instruction.

Figure 7-7 shows an off-delay timer circuit that uses a
normally closed, timed closed (NCTC) contact. The op-
eration of the circuit can be summarized as follows:

• With S1 initially open, TD coil is de-energized so
TD1 contacts are closed and light L1 will be on.

• When S1 is closed, TD coil is energized and TD1
contacts open instantly to switch light L1 off.

• When S1 is opened, TD coil is de-energized and the
timing period starts. TD1 contacts are delayed from
closing so L1 remains off.

• After the 10 s time-delay period has elapsed, TD1
contacts close to switch the light on.

7.2 Timer Instructions
PLC timers are instructions that provide the same func-
tions as on-delay and off-delay mechanical and electronic
timing relays. All PLC timers are output instructions. PLC
timers offer several advantages over their mechanical and
electronic counterparts. These include the fact that:

• The entire timing function occurs inside the controller.
• Time settings can be easily changed.
• The number of timers used in a circuit can be in-

creased or decreased through the use of program-
ming changes rather than wiring changes.

• Timer accuracy and repeatability are extremely
high because time delays are generated in the PLC
processor.

In general, there are three different PLC timer types: the
on-delay timer (TON), off-delay timer (TOF), and retentive
timer on (RTO). The most common is the on-delay timer,
which is the basic function. There are also many other tim-
ing configurations, all of which can be derived from one or
more of the basic time-delay functions. Figure 7-8 shows
the timer selection toolbar for the Allen-Bradley SLC 500
PLC and its associated RSLogix software. These timer
commands can be summarized as follows:

TON (Timer On Delay)—Counts time-based inter-
vals when the instruction is true.

Figure 7-7 Off-delay timer circuit that uses a normally
closed, timed closed (NCTC) contact.

L2L1

TD1
L 1

S1
TD

10 s

Timing diagram
10 s

Input

Output
O�

On Figure 7-8 Timer selection toolbar.

TON TOF RTO CTU CTD RES HSC

User Bit Timer/Counter Input/Output Compare

HSC

pet73842_ch07_131-155.indd 134 05/11/15 4:21 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Chapter 7 135

• All block-formatted timers provide at least one out-
put signal from the timer. The timer continuously
compares its current time with its preset time, and
its output is false (logic 0) as long as the current
time is less than the preset time. When the current
time equals the preset time, the output changes to
true (logic 1).

7.3 On-Delay Timer Instruction
Most timers are output instructions that are conditioned
by input instructions. An on-delay timer is used when
you want to program a time delay before an instruction
becomes true. Figure 7-11 illustrates the principle of op-
eration of an on-delay timer. Its operation can be summa-
rized as follows:

• The on-delay timer operates such that when the
rung containing the timer is true, the timer time-out
period commences.

• The timed output becomes true sometime after the
timer rung becomes true; hence, the timer is said to
have an on-delay.

• The length of the time delay can be adjusted by
changing the preset value.

• In addition, some PLCs allow the option of chang-
ing the time base, or resolution, of the timer. As the
time base you select becomes smaller, the accuracy
of the timer increases.

The Allen-Bradley SLC 500 timer file is file 4
(Figure 7-12). Each timer is composed of three 16-bit
words, collectively called a timer element. There can be

Timers are most often represented by boxes in ladder
logic. Figure 7-10 illustrates a generic block format for a
retentive timer that requires two input lines. Its operation
can be summarized as follows:

• The timer block has two input conditions associated
with it, namely, the control and reset.

• The control line controls the actual timing operation
of the timer. Whenever this line is true or power is
supplied to this input, the timer will time. Removal
of power from the control line input halts the further
timing of the timer.

• The reset line resets the timer’s accumulated value
to zero.

• Some manufacturers require that both the control
and reset lines be true for the timer to time; removal
of power from the reset input resets the timer to
zero.

• Other manufacturers’ PLCs require power flow for
the control input only and no power flow on the
reset input for the timer to operate. For this type of
timer operation, the timer is reset whenever the reset
input is true.

• The timer instruction block contains information
pertaining to the operation of the timer, including
the preset time, the time base of the timer, and the
current or accumulated time.

Figure 7-9 Coil-formatted timer instruction.

TON

XXX

Timer address

Type of timer

Determines
rung continuity

Timer preset value

Time accumulated
or current value

YYY
0.1 s
000

PR:
TB:
AC:

Time
base of
timer

Figure 7-10 Block-formatted timer instruction.

Preset time
Time base

Accumulated time

Control line

Reset line

Output line

Figure 7-11 Principle of operation of an on-delay timer.

Preset value = accumulated value

Timed output bit

Timed period

Rung condition

O� (logic 0)
False

False

On (logic 1)
True

True

TimerInput

On-delay
timed duration

pet73842_ch07_131-155.indd 135 05/11/15 4:21 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

136 Chapter 7 Programming Timers

Figure 7-13 shows an example of the on-delay timer in-
struction used as part of the Allen-Bradley SLC 500 control-
ler instruction sets. The information to be entered includes:

Timer number—This number must come from the
timer file. In the example shown, the timer number is
T4:0, which represents timer file 4, timer 0 in that file.
The timer address must be unique for this timer and
may not be used for any other timer.
Time base—The time base (which is always expressed
in seconds) may be either 1.0 or 0.01 s. In the example
shown, the time base is 1.0 s.
Preset value—In the example shown, the preset value
is 15. The timer preset value can range from 0 through
32,767.
Accumulated value—In the example shown, the ac-
cumulated value is 0. The timer’s accumulated value
normally is entered as 0, although it is possible to
enter a value from 0 through 32,767. Regardless of the
value that is preloaded, the timer value will become 0
whenever the timer is reset.

The timer instruction for the SLC 500 and ControlLogix
5000 processors operates in exactly the same manner.
Figure 7-14 shows the timer selection toolbar, on-delay
timer instruction, and expanded timer structure for a
ControlLogix controller.

up to 256 timer elements. Addresses for timer file 4, timer
element number 2 (T4:2), are listed below.

T4 = timer file 4
:2 = timer element number 2 (0–255 timer elements
per file)
T4:2/DN is the address for the done bit of the timer.
T4:2/TT is the address for the timer-timing bit of the
timer.
T4:2/EN is the address for the enable bit of the timer.

The control word uses the following three control
bits:

Enable (EN) bit—The enable bit is true (has a status
of 1) whenever the timer instruction is true. When the
timer instruction is false, the enable bit is false (has a
status of 0).
Timer-timing (TT) bit—The timer-timing bit is true
whenever the accumulated value of the timer is chang-
ing, which means the timer is timing. When the timer
is not timing, the accumulated value is not changing,
so the timer-timing bit is false.
Done (DN) bit—The done bit changes state whenever
the accumulated value reaches the preset value. Its
state depends on the type of timer being used.

The preset value (PRE) word is the set point of the
timer, that is, the value up to which the timer will time.
The preset word has a range of 0 through 32,767 and is
stored in binary form. The preset will not store a negative
number.

The accumulated value (ACC) word is the value that in-
crements as the timer is timing. The accumulated value will
stop incrementing when its value reaches the preset value.

The timer instruction also requires that you enter a time
base, which is either 1.0 or 0.01 s. The actual preset time
interval is the time base multiplied by the value stored
in the timer’s preset word. The actual accumulated time
interval is the time base multiplied by the value stored in
the timer’s accumulated word.

Figure 7-12 SLC 500 timer file.

File number

Timers4

File type Timer number

EN TT DNWord 0

T4:2
15 14 13

Preset valueWord 1

Accumulated valueWord 2

T4:0
1.0
15
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

EN

DN

Figure 7-13 On-delay timer instruction.

Figure 7-14 ControlLogix timer instruction.

TON

Favorites Add-On Alarms Bit Timer/Counter

TOF RTO CTU CTD RES

Input side of rung TON
TIMER ON DELAY EN

DN
Timer
Preset
Accum

Name
Pump_Motor
Motor_Delay.PRE
Motor_Delay.ACC

Motor_Delay.EN
Motor_Delay.TT
Motor_Delay.DN BOOL

BOOL
BOOL

DINT
DINT Decimal

Decimal

Decimal
Decimal
Decimal

Timer Delay before starting motor

Data Type Style Description

Timer tag name
Example: Pump_Timer

?
?
?

–
+
+

pet73842_ch07_131-155.indd 136 05/11/15 4:21 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Chapter 7 137

• Logix processors use a tag name, such as Pump_
Motor, instead of a timer number.

• This descriptive tag name makes it easier to know
what function the timer serves in the control
system.

• The time base is fixed at 0.001 s (1 ms). Therefore
there is no parameter field.

• The associated timer data (PRE, ACC, EN, TT, DN)
are found within the expanded timer structure.

The on-delay timer (TON) is the most commonly used
timer. Figure 7-15 shows a PLC program that uses an on-
delay timer. The operation of the program can be sum-
marized as follows:

• The timer is activated by input switch A.

• When input switch A is closed (true or set to 1), the
processor starts timer T4:0 timing and sets the EN
and TT bits to true or 1.

• This turns ON outputs B and C
• The accumulated value increases in one-second

time base intervals.
• When the accumulated time equals the preset time

(10 s), the DN bit is set to 1, output D is turned ON,
the TT bit is reset to 0 and output C is turned OFF.

• As long as input switch A remains closed the EN bit
is set to 1 and output B will be ON.

• If input switch A is opened at any time before or
after the timer has timed out, the accumulated time is
automatically reset to 0 and output B is turned OFF.

• This timer configuration is termed nonretentive
because any loss of continuity to the timer causes
the timer instruction to reset.

• This timing operation is that of an on-delay timer
because output D is switched on 10 s after the switch
has been actuated from the off to the on position.

Figure 7-16 shows the timing diagram for the on-
delay timer’s control bits. The sequence of operation is
as follows:

• The first true period of the timer rung shows the
timer timing to 4 s and then going false.

• The timer resets, and both the timer-timing bit and
the enable bit go false. The accumulated value also
resets to 0.

• For the second true period input A remains true in
excess of 10 s.

TON
Instruction

ON

Enable Bit (EN)

Timer ON DELAY (TON)

0

0

1
0

0

0

NO

NO

Reset

YES

0

1

1
0
1

0

Timer Timing Bit (TT)
Done Bit (DN)
Accumulating
Enable Bit (EN)

Timer Timing Bit (TT)
Done Bit (DN)
Accumulating
Enable Bit (EN)

Timer Timing Bit (TT)
Done Bit (DN)
Accumulating
Enable Bit (EN)

Timer Timing Bit (TT)
Done Bit (DN)
Accumulating

Table showing how each bit is e�ected during the program operation.

TON
Instruction

OFF

Timed Out
Accum = Preset

Instruction OFF
after timed out

Figure 7-15 PLC on-delay timer program.

L1

Input A
Input A

T4:0

T4:0

T4:0

EN

TT

DN

Output C

TON
TIMER ON DELAY
Timer T4:0
Time base 1.0
Preset 10
Accumulated 0

L2

Output B

Output C

Output D

Output B

Output D

Ladder logic program OutputsInput

G

R

Y

EN

DN

pet73842_ch07_131-155.indd 137 05/11/15 4:21 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

138 Chapter 7 Programming Timers

Timers may or may not have an instantaneous output
(also known as the enable bit) signal associated with
them. If an instantaneous output signal is required from
a timer and it is not provided as part of the timer in-
struction, an equivalent instantaneous contact instruc-
tion can be programmed using an internally referenced
relay coil. Figure 7-18 shows an application of this
technique. The operation of the program can be sum-
marized as follows:

• According to the hardwired relay circuit diagram,
coil M is to be energized 5 s after the start pushbut-
ton is pressed.

• Contact TD-1 is the instantaneous contact, and con-
tact TD-2 is the timed contact.

• The ladder logic program shows that a contact in-
struction referenced to an internal relay is now used
to operate the timer.

• The instantaneous contact is referenced to the in-
ternal relay coil, whereas the time-delay contact is
referenced to the timer output coil.

Figure 7-19 shows an application for an on-delay timer
that uses an NCTO contact. This circuit is used as a warn-
ing signal when moving equipment, such as a conveyor
motor, is about to be started. The operation of the circuit
can be summarized as follows:

• According to the hardwired relay circuit diagram,
coil CR is energized when the start pushbutton PB1
is momentarily actuated.

• As a result, contact CR-1 closes to seal in CR coil,
contact CR-2 closes to energize timer coil TD,
and contact CR-3 closes to sound the horn.

• After a 10-s time-delay period, timer contact TD-1
opens to automatically switch the horn off.

• The ladder logic program shows how an equivalent
circuit could be programmed using a PLC.

• The logic on the last rung is the same as the timer-
timing bit and as such can be used with timers that
do not have a timer-timing output.

Timers are often used as part of automatic sequential
control systems. Figure 7-20 shows how a series of mo-
tors can be started automatically with only one start/stop
control station. The operation of the circuit can be sum-
marized as follows:

• According to the relay ladder schematic, lube-oil
pump motor starter coil M1 is energized when the
start pushbutton PB2 is momentarily actuated.

• As a result, M1-1 control contact closes to seal in
M1, and the lube-oil pump motor starts.

• When the accumulated value reaches 10 s, the done
bit (DN) goes from false to true and the timer-
timing bit (TT) goes from true to false.

• When input A goes false, the timer instruction
goes false and also resets, at which time the con-
trol bits are all reset and the accumulated value
resets to 0.

The timer table for an Allen-Bradley SLC 500 is
shown in Figure 7-17. Addressing is done at three dif-
ferent levels: the element level, the word level, and the
bit level. The timer uses three words per element. Each
element consists of a control word, a preset word, and
an accumulated word. Each word has 16 bits, which
are numbered from 0 to 15. When addressing to the bit
level, the address always refers to the bit within the
word:

EN = Bit 15 enable
TT = Bit 14 timer timing
DN = Bit 13 done

Figure 7-16 Timing diagram for an on-delay timer.

Input condition A

Timer-enable bit

Timer-done bit

On

On

On

On

O�

O�

O�

O�

Timer
accumulated

value
0

4 s 10 sTimer-timing bit

Figure 7-17 SLC 500 timer table.

Timer Table

 /EN /TT /DN .PRE .ACC
T4:0 0 0 0 10 0
T4:1 0 0 0 0 0
T4:2 0 0 0 0 0
T4:3 0 0 0 0 0
T4:4 0 0 0 0 0
T4:5 0 0 0 0 0

Address T4:0 Table: T4: Timer

pet73842_ch07_131-155.indd 138 05/11/15 4:21 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Chapter 7 139

Figure 7-18 Instantaneous
contact instruction can be
programmed using an internally
referenced relay coil.

Internal
relay

Output line

Motor
M

Internal
relay

Ladder logic program

Timer

PR: 5
TB: 1 s

L1

Inputs

L2

Output

Motor

Start

Start

M

Stop

Stop

Hardwired relay circuit

L2L1
Stop

Start

TD-1

TD-2
(5 s)

M

TD

Figure 7-19 Conveyor
warning signal circuit.

PB2

Ladder logic program

PB1
L2

Output

Horn

TON
TIMER ON DELAY
Timer T4:0
Time base 1.0
Preset 10
Accumulated 0

L1

Inputs

Start-up

Reset

PB1

PB2

T4:0

EN

HornT4:0 T4:0

DN EN

EN

DN

L2L1
PB2PB1

Reset

Hardwired relay circuit

Start-up

CR-3

CR-1

CR-2

Horn

CR

TD

TD-1
(10 s)

pet73842_ch07_131-155.indd 139 05/11/15 4:21 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

140 Chapter 7 Programming Timers

• When the lube-oil pump builds up sufficient oil
pressure, the lube-oil pressure switch PS1 closes.

• This in turn energizes coil M2 to start the main
drive motor and energizes coil TD to begin the time-
delay period.

• After the preset time-delay period of 15 s, TD-1 con-
tact closes to energize coil M3 and start the feed motor.

• The ladder logic program shows how an equivalent
circuit could be programmed using a PLC. The en-
able bit is used to seal in the timer so it continues

to time until its preset value equals the accumulated
value. The program sequence is reset by actuating
the reset button.

7.4 Off-Delay Timer Instruction
The off-delay timer (TOF) operation will keep the
output energized for a time period after the rung con-
taining the timer has gone false. Figure 7-21 illustrates
the programming of an off-delay timer that uses the
SLC 500 TOF timer instruction. TOF starts timing when

Figure 7-20 Automatic sequential control system.

OL

OL

Start

Hardwired relay circuit

Stop

M1-1

(15 s)
Feed
motor

Main drive
motor

Lube oil
pump motor

(Lube oil
pressure switch)

TD-1

L2L1

PB1
PB2

PS1

OL

M1

M2

TD

M3

PB2PB1

PS1

L2

OL

OutputsLadder logic program

T4:0
1.0
15
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

M1

M1

M2

M3T4:0

DN

PB2

PB1

PS1

L1

Inputs

OL

M3

OL

M2

M1

EN

DN

pet73842_ch07_131-155.indd 140 05/11/15 4:21 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Chapter 7 141

to 1, immediately turning on motors M1, M2,
and M3.

• If SW is then opened, logic continuity to all three
timers is lost and each timer begins counting.

• Timer T4:1 times out after 5 s resetting its done bit
to zero to de-energize motor M1.

the instruction goes from ON to OFF or from true to
false. The operation of the circuit can be summarized
as follows:

• When the switch connected to input I:1/0 is first
closed, timed output O:2/1 is set to 1 immediately
and the lamp is switched on.

• If this switch is now opened, logic continuity is lost
and the timer begins counting.

• After 15 s, when the accumulated time equals the
preset time, the output is reset to 0 and the lamp
switches off.

• If logic continuity is gained before the timer is timed
out, the accumulated time is reset to 0. For this rea-
son, this timer is also classified as nonretentive.

Figure 7-22 illustrates the use of an off-delay timer
instruction used to switch motors off sequentially at
5 second intervals. The operation of the program can be
summarized as follows:

• Timer preset values for T4:1, T4:2, and T4:3 are set
for 5, 10, and 15 s, respectively.

• Closing the input switch SW immediately sets
the done bit of each of the three off-delay timers

Figure 7-21 Off-delay programmed timer.

O:2/1

L2

OutputLadder logic program

I:1/0

L1

Input

S1

TOF
TIMER OFF DELAY
Timer T4:3
Time base 1.0
Preset 15
Accumulated 0

T4:3/DN O:2/1

I:1/0

EN

DN PL

S1 input
enable bit (EN)

True (logic 1)

True

False

False (logic 0)

Timed period timing bit (TT)
15 s

O� delay
timed duration

Timed output
done bit (DN)

Preset value = accumulated value
O:2/1

Table showing how each bit is e�ected during the program operation.

TOF
Instruction

ON

Enable Bit (EN)

Timer OFF DELAY (TOF)

1

1

1
1

1

1

NO

NO

Reset

YES

0

0

0
0
0

0

Timer Timing Bit (TT)
Done Bit (DN)
Accumulating
Enable Bit (EN)

Timer Timing Bit (TT)
Done Bit (DN)
Accumulating
Enable Bit (EN)

Timer Timing Bit (TT)
Done Bit (DN)
Accumulating
Enable Bit (EN)

Timer Timing Bit (TT)
Done Bit (DN)
Accumulating

TOF
Instruction

OFF

Timed Out
Accum = Preset

Instruction OFF
after timed out

pet73842_ch07_131-155.indd 141 05/11/15 4:21 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

142 Chapter 7 Programming Timers

• Timer T4:2 times out 5 s later resetting its done bit
to zero to de-energize motor M2.

• Timer T4:3 times out 5 s later resetting its done bit
to zero to de-energize motor M3.

Figure 7-23 shows a hardwired off-delay timer relay
circuit with both instantaneous and timed contacts. The
operation of the circuit can be summarized as follows:

• When power is first applied (limit switch LS open),
motor starter coil M1 is energized and the green
pilot light is on.

• At the same time, motor starter coil M2 is de-
energized, and the red pilot light is off.

• When limit switch LS closes, off-delay timer coil
TD energizes.

• As a result, timed contact TD-1 opens to de-
energize motor starter coil M1, timed contact TD-2
closes to energize motor starter coil M2, instanta-
neous contact TD-3 opens to switch the green light
off, and instantaneous contact TD-4 closes to switch
the red light on. The circuit remains in this state as
long as limit switch LS1 is closed.

• When limit switch LS1 is opened, the off-delay
timer coil TD de-energizes and the time-delay
period is started.

Figure 7-22 Program for switching motors off at 5 s intervals.

M1

M2

M3

L2

OL

Outputs

OL

OL

SW

SW

Ladder logic program

T4:1
5
0

TOF
TIMER OFF DELAY
Timer
Preset
Accumulated

T4:1/DN

T4:2/DN

T4:3/DN

M1

M2

M3

T4:2
10
0

TOF
TIMER OFF DELAY
Timer
Preset
Accumulated

T4:3
15
0

TOF
TIMER OFF DELAY
Timer
Preset
Accumulated

L1
Input

Switch EN

DN

EN

DN

EN

DN

Figure 7-23 Hardwired off-delay timer relay circuit with
both instantaneous and timed contacts.

TD-4

L2

5 s

TD-1 OL

TD-2 OL

TD-3

LS1

L1

R

G

M2

M1

TD

pet73842_ch07_131-155.indd 142 05/11/15 4:21 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Chapter 7 143

Figure 7-24 shows an equivalent PLC program of the
hardwired off-delay timer relay circuit containing both
instantaneous and timed contacts. The timer instruction
carries out all of the functions of the original physical timer.

Figure 7-25 shows a program that uses both the on-
delay and the off-delay timer instruction. The process

• Instantaneous contact TD-3 closes to switch the
green light on, and instantaneous contact TD-4
opens to switch the red light off.

• After a 5-s time-delay period, timed contact TD-1
closes to energize motor starter M1, and timed con-
tact TD-2 opens to de-energize motor starter M2.

Figure 7-24 Equivalent
PLC program of the hardwired
off-delay timer relay circuit
containing both instantaneous
and timed contacts.

L1 L2
LS1

Ladder logic program

M1

M2

G

R

Input Outputs

OL

OL

TOF
TIMER OFF DELAY
Timer T4:1
Time base 1.0
Preset 5
Accumulated 0

EN

DN

T4:/DN

T4:/DN

T4:/EN

T4:/EN

LS1 M1

M2

G

R R

G

Figure 7-25 Fluid pumping process.

OL

Start T4:5

Pump delay

PS1 Pump

Pump

Pump L2
Output

M

Stop

Ladder logic program

Pump

T4:6
1.0

5
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

EN

DN

Pump timeT4:6

DN T4:5
1.0
14
0

TOF
TIMER OFF DELAY
Timer
Time base
Preset
Accumulated

EN

DN

PS2

PS3

L1
Inputs DN

Stop

PS1

PS2

PS3

Start

Tank
A

Tank
B

PS1 PS2 PS3

Pump

pet73842_ch07_131-155.indd 143 05/11/15 4:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

144 Chapter 7 Programming Timers

similar to the nonretentive on-delay timer (TON), with one
major exception—a retentive timer reset (RES) instruction.
Unlike the TON, the RTO will hold its accumulated value
when the timer rung goes false and will continue timing
where it left off when the timer rung goes true again. This
timer must be accompanied by a timer reset instruction to
reset the accumulated value of the timer to 0. The RES in-
struction is the only automatic means of resetting the accu-
mulated value of a retentive timer. The RES instruction has
the same address as the timer it is to reset. Whenever the
RES instruction is true, both the timer accumulated value
and the timer done bit (DN) are reset to 0. Figure 7-27
shows a PLC program for a retentive on-delay timer. The
operation of the program can be summarized as follows:

• The timer will start to time when time pushbutton
PB1 is closed.

• If the pushbutton is closed for 3 s and then opened
for 3 s, the timer accumulated value will remain
at 3 s.

• When the time pushbutton is closed again, the timer
picks up the time at 3 s and continues timing.

involves pumping fluid from tank A to tank B. The opera-
tion of the process can be summarized as follows:

• Before starting, PS1 must be closed.
• When the start button is pushed, the pump starts.

The button can then be released and the pump con-
tinues to operate.

• When the stop button is pushed, the pump stops.
• PS2 and PS3 must be closed 5 s after the pump starts.

If either PS2 or PS3 opens, the pump will shut off
and will not be able to start again for another 14 s.

7.5 Retentive Timer
A retentive timer accumulates time whenever the device
receives power, and it maintains the current time should
power be removed from the device. When the timer ac-
cumulates time equal to its preset value, the contacts of the
device change state. Loss of power to the timer after reach-
ing its preset value does not affect the state of the contacts.
The retentive timer must be intentionally reset with a sepa-
rate signal for the accumulated time to be reset and for the
contacts of the device to return to its nonenergized state.

Figure 7-26 illustrates the action of a motor-driven,
electromechanical retentive timer used in some appliances.
The shaft-mounted cam is driven by a motor. Once power
is applied, the motor starts turning the shaft and cam. The
positioning of the lobes of the cam and the gear reduction
of the motor determine the time it takes for the motor to
turn the cam far enough to activate the contacts. If power is
removed from the motor, the shaft stops but does not reset.

A PLC retentive timer is used when you want to retain
accumulated time values through power loss or the change
in the rung state from true to false. The PLC-programmed
retentive on-delay timer (RTO) is programmed in a manner

Figure 7-26 Electromechanical retentive timer.

Cam-operated
contact

Motor-driven
cam

Figure 7-27 Retentive on-delay timer program.

PB2

PB1

L2
Output

T4:2

RES

DN

Ladder logic program

PB2

Time

PB1

L1
Inputs

Reset

RTO
RETENTIVE TIMER ON
Timer T4:2
Time Base 1.0
Preset 9
Accumulated 0

EN

DN

PL

PL

T4:2

pet73842_ch07_131-155.indd 144 05/11/15 4:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Chapter 7 145

• If the timing rung goes false, the timer will stop
timing but will recommence timing for the stored
accumulated value each time the rung goes true.

• When the reset PB2 is closed, the T4:2/DN bit is
reset to 0 and turns the pilot light output off. The ac-
cumulated value is also reset and held at zero until
the reset pushbutton is opened.

The program drawn in Figure 7-29 illustrates a prac-
tical application for an RTO. The purpose of the RTO
timer is to detect whenever a piping system has sustained

• When the accumulated value (9) equals the preset
value (9), the timer done bit T4:2/DN is set to 1 and
the pilot light output PL is switched on.

• Whenever the momentary reset pushbutton is
closed, the timer accumulated value is reset to 0.

Figure 7-28 shows a timing chart for the retentive on-
delay timer program. The timing operation can be sum-
marized as follows:

• When the timing rung is true (PB1 closed), the
timer will commence timing.

Figure 7-28 Retentive on-delay timer timing chart.

Accumulated value
retained when rung
condition goes false

Accumulated value

DN (done) bit

PL output

Reset input PB2

Enable bit is reset
when input pushbutton
PB1 is opened.

0
1

2
3

4
5

6
7

8 9

10 11 12

Time in seconds

0 1 2 3 4 5 6 7 8 9

True

False

On
O�

On
O�

On

O�

On

O�

Accum = Preset

EN (enable) bit

Time input PB1

Figure 7-29 Retentive on-delay timer alarm program.

Reset

Key switch

Pressure
switch

L1

Inputs

L2

OutputLadder logic program

S1

S1

PS

PS

 RTO

RETENTIVE TIMER ON

Timer T4:1
Preset 60
Accumulated 0

RES

EN

DN

Horn

Horn

T4:1

DN

T4:1

pet73842_ch07_131-155.indd 145 05/11/15 4:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

146 Chapter 7 Programming Timers

• The bearings also receive oil when the machine is
running.

• When the operator turns SW off to stop the
machine, the oil pump continues to supply oil for
15 s.

• A retentive timer is used to track the total running
time of the pump. When the total running time is
3 hours, the motor is shut down and a pilot light is
turned on to indicate that the filter and oil need to be
changed.

• A reset button is provided to reset the process after
the filter and oil have been changed.

Retentive timers do not have to be timed out com-
pletely to be reset. Rather, such a timer can be reset at
any time during its operation. Note that the reset input
to the timer will override the control input of the timer
even though the control input to the timer has logic
continuity.

a cumulative overpressure condition for 60 s. At that
point, a horn is sounded automatically to call attention
to the malfunction. When they are alerted, maintenance
personnel can silence the alarm by switching the key
switch S1 to the reset (contact closed) position. After
the problem has been corrected, the alarm system can be
reactivated by switching the key switch to open contact
position.

Figure 7-30 shows a practical application that uses the
on-delay, off-delay, and retentive on-delay instructions in
the same program. In this industrial application, there is
a machine with a large steel shaft supported by babbitted
bearings. This shaft is coupled to a large electric motor.
The bearings need lubrication, which is supplied by an oil
pump driven by a small electric motor. The operation of
the program can be summarized as follows:

• To start the machine, the operator turns SW on.
• Before the motor shaft starts to turn, the bearings

are supplied with oil by the pump for 10 seconds.

Figure 7-30 Bearing lubrication program.

T4:2L1

Inputs

Reset

Reset

SW

SW

Ladder logic program

T4:0
1.0
10
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

Pump

Pump

Pump

T4:2
1.0

10800
0

RTO
RETENTIVE TIMER ON
Timer
Time base
Preset
Accumulated

EN

DN

T4:1

DN

T4:1
1.0
15
0

TOF
TIMER OFF DELAY
Timer
Time base
Preset
Accumulated

EN

Motor

Motor

T4:0

DN

PL

OL

L2

Outputs

OL

PL

T4:2

DN

T4:2
RES

DN

Pump running time

Pump O� time delay

Motor starting time delay

DN

DN

EN

M2

M1

pet73842_ch07_131-155.indd 146 05/11/15 4:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Chapter 7 147

each using two hardwired on-delay timers. The operation
of the circuit can be summarized as follows:

• Motor starter coil M1 is energized when the
momentary start pushbutton PB2 is actuated.

• As a result, motor 1 starts, contact M1-1 closes to
seal in M1, and timer coil TD1 is energized to begin
the first time-delay period.

• After the preset time period of 20 s, TD1-1 contact
closes to energize motor starter coil M2.

• As a result, motor 2 starts and timer coil TD2
is energized to begin the second time-delay
period.

• After the preset time period of 20 s, TD2-1 contact
closes to energize motor starter coil M3, and so
motor 3 starts.

Figure 7-32 shows an equivalent PLC program of the
hardwired sequential time-delayed motor-starting circuit.
Two programmed on-delay timers are cascaded together
to obtain the same logic as the original hardwired timer
relay circuit. Note that the output of timer T4:1 is used to
control the input logic to timer T4:2.

Reciprocating timers are defined as timing functions
where the output of one timer is used to reset the input
of a second timer, each resetting the other. These types
of timers are used in situations where a constant cycling

7.6 Cascading Timers
When one timer’s output triggers another timer’s input,
those timers are referred to as cascaded. Timers can be
interconnected, or cascaded, to satisfy a number of logic
control functions.

Figure 7-31 shows how three motors can be started
automatically in sequence with a 20 s time delay between

Figure 7-31 Hardwired sequential time-delayed motor-
starting circuit.

L2

(20 s)

L 1
PB1

M1-1

TD2-1 OL

OL

TD1-1 OL

TD1

PB2

TD2

M1

M3

(20 s)

M2

Stop
Start

Figure 7-32 Equivalent PLC program of the sequential time-delayed motor-starting circuit.

L1 L2

PB1

PB1 PB2

PB2

Ladder logic programInputs Outputs

M1

M2

M3

M1

M1
OL

OL

OL

Start

Stop

EN

M1

DN

TON
TIMER ON DELAY
Timer
Preset
Accumulated

T4:1
20

0

EN

T4:1/DN

T4:1/DN

T4:2/DN

DN

T4:2
20

0

TON
TIMER ON DELAY
Timer
Preset
Accumulated

M2

M3

pet73842_ch07_131-155.indd 147 05/11/15 4:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

148 Chapter 7 Programming Timers

• The first timer, T4:1, is programmed for a preset
time of 30,000 s and begins timing when input SW
is closed.

• When T4:1 completes its time-delay period 30,000 s
later, the T4:1/DN bit will be set to 1.

• This in turn activates the second timer, T4:2, which
is preset for the remaining 12,000 s of the total
42,000-s time delay.

• Once T4:2 reaches its preset time, the T4:2/DN bit
will be set to 1, which switches on the output PL,
the pilot light, to indicate the completion of the full
42,000-s time delay.

• Opening input SW at any time will reset both timers
and switch output PL off.

A typical application for a PLC circuit combining
both cascading and reciprocating functions would be
the control of traffic signals. The ladder logic circuit of
Figure 7-35 illustrates a control of a set of traffic lights in
one direction. The operation of the program can be sum-
marized as follows:

• Transition from red light to green light to amber
light is accomplished by the interconnection of the
three TON timer instructions.

of an output is required. For example, if a flashing light
is required in the event of a control system failure, a pro-
gram with reciprocating timers could be used to create the
flashing output function.

Two timers can be interconnected to form an
oscillator or reciprocating circuit. The oscillator logic
is basically a timing circuit programmed to generate
periodic output pulses of any duration. Figure 7-33
shows the program for an annunciator flasher circuit.
Two internal timers form the oscillator circuit, which
generates a timed, pulsed output. The oscillator circuit
output is programmed in series with the alarm condi-
tion. If the alarm condition (temperature, pressure, or
limit switch) is true, the appropriate output indicating
light will flash. Note that any number of alarm con-
ditions could be programmed using the same flasher
circuit.

At times you may require a time-delay period longer
than the maximum preset time allowed for the single timer
instruction of the PLC being used. When this is the case,
the problem can be solved by simply cascading timers, as
illustrated in Figure 7-34. The operation of the program
can be summarized as follows:

• The total time-delay period required is 42,000 s.

Figure 7-33 Annunciator flasher program.

L1 L2
OutputsInputs

T4:6

DN

Ladder logic program

T4:5
1.0

1
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

EN

G

DN

T4:5

T4:6
1.0

1
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

EN

DN

RT4:5

Y

Y

R

G

T4:5

DN

TS1

PS1

TS1

PS1

LS1

LS1

T4:5

DN

DN

DN

pet73842_ch07_131-155.indd 148 05/11/15 4:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Chapter 7 149

• The input to timer T4:0 is controlled by the T4:2
done bit.

• The input to timer T4:1 is controlled by the T4:0
done bit.

• The input rung to timer T4:2 is controlled by the
T4:1 done bit.

• The timed sequence of the lights is:
Red—30 s on
Green—25 s on
Amber—5 s on

• The sequence then repeats itself.

The chart shown in Figure 7-36 shows the timed se-
quence of the lights for two-directional control of traffic
lights.

Figure 7-37 shows the original traffic light program
modified to include three more lights that control traffic
flow in two directions.

Figure 7-34 Cascading of timers for
longer time delays.L2

OutputLadder logic program

T4:1
1.0

30000
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

EN

DN

T4:2
1.0

12000
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

EN

DN

SW

T4:1

PL

DN

T4:2

DN

SW

L1
Input

PL

Figure 7-35 Control of traffic lights in one direction.

T4:2

DN

Ladder logic program

T4:0
1.0
30

0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

DN

T4:0

DN
T4:1

1.0
25

0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

EN

DN

T4:1

T4:2
1.0

5
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

EN

DN

T4:0

EN

T4:0

T4:1

EN

T4:1

T4:2

EN

T4:2

L2
Outputs

Red

Red

Green

Amber

Red

Tra�c lights

Red time

Green time

Amber time

EN

Green

Green

Amber

Amber

DN

DN

DN

DN

Figure 7-36 Timing chart for two-directional control of traffic lights.

Red = north/south

Red = east/westGreen = east/west

25 s

Amber = east/west

5 s

Green = north/south Amber = north/south

25 s 5 s

pet73842_ch07_131-155.indd 149 05/11/15 4:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

150 Chapter 7 Programming Timers

Figure 7-37 Control of traffic lights in two directions.

North/south

North/south

North/south

Red
East/west

Amber
East/west

Green
East/west

Red
North/south

Amber
North/south

Green
North/south

North/south
tra�c lights

East/west
tra�c lights

Green

Amber

Red

East/west

East/west

East/west

T4:2

DN

Ladder logic program

T4:0
1.0
30

0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

DN

T4:0

DN
T4:1

1.0
25

0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

EN

DN

T4:1

T4:2
1.0

5
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

EN

DN

T4:0

EN

T4:0 Red

T4:1

EN

T4:1 Green

T4:2

EN

T4:2 Amber

L1
Outputs

Green

Amber

Red

Green

Amber

EN

DN

DN

DN

DN

T4:0

T4:3
1.0
25

0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

EN

DN
EN

T4:3

EN

T4:3

T4:3

DN

T4:0

T4:0

DN

DN

DN

Red

pet73842_ch07_131-155.indd 150 05/11/15 4:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Chapter 7 151

CHAPTER 7 REVIEW QUESTIONS

1. Explain the difference between the timed and
instantaneous contacts of a mechanical timing
relay.

2. Draw the symbol and explain the operation of each
of the following timed contacts of a mechanical
timing relay:
a. On-delay timer—NOTC contact
b. On-delay timer—NCTO contact
c. Off-delay timer—NOTO contact
d. Off-delay timer—NCTC contact

3. Name five pieces of information usually associated
with a PLC timer instruction.

4. When is the output of a programmed timer
energized?

5. a. What are the two methods commonly used to
represent a timer instruction within a PLC’s
ladder logic program?

b. Which method is preferred? Why?

6. a. Explain the difference between the operation of
a nonretentive timer and that of a retentive timer.

b. Explain how the accumulated count of pro-
grammed retentive and nonretentive timers is
reset to zero.

7. State three advantages of using programmed PLC
timers over mechanical timing relays.

8. For a TON timer:
a. When is the enable bit of a timer instruction

true?
b. When is the timer-timing bit of a timer instruc-

tion true?
c. When does the done bit of a timer change state?

9. For a TOF timer:
a. When is the enable bit of a timer instruction true?
b. When is the timer-timing bit of a timer instruc-

tion true?
c. When does the done bit of a timer change state?

10. Explain what each of the following quantities asso-
ciated with a PLC timer instruction represents:
a. Preset time
b. Accumulated time
c. Time base

11. State the method used to reset the accumulated
time of each of the following:
a. TON timer
b. TOF timer
c. RTO timer

CHAPTER 7 PROBLEMS

1. a. With reference to the relay schematic diagram in
Figure 7-38, state the status of each light (on or
off) after each of the following sequential events:

I. Power is first applied and switch S1 is open.
II. Switch S1 has just closed.

III. Switch S1 has been closed for 5 s.
IV. Switch S1 has just opened.
V. Switch S1 has been opened for 5 s.

b. Design a PLC program and prepare a typical I/O
connection diagram and ladder logic program that
will execute this hardwired control circuit correctly.

2. Design a PLC program and prepare a typical I/O
connection diagram and ladder logic program that
will correctly execute the hardwired relay control
circuit shown in Figure 7-39.

3. Study the ladder logic program in Figure 7-40 and
answer the questions that follow:
a. What type of timer has been programmed?
b. What is the length of the time-delay period? Figure 7-38 Relay schematic diagram for Problem 1.

Relay schematic diagram

L2

TD2-2

L1

TD1

TD2

S1

(5 s)

TD1-1

(5 s)

TD1-2

(5 s)

TD2-1

(5 s)

PL4

PL3

PL2

PL1

pet73842_ch07_131-155.indd 151 05/11/15 4:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

152 Chapter 7 Programming Timers

j. Suppose that rung 1 is true for 5 s and then
power is lost. What will the accumulated value
of the counter be when power is restored?

4. Study the ladder logic program in Figure 7-41 and
answer the questions that follow:
a. What type of timer has been programmed?
b. What is the length of the time-delay period?
c. What is the value of the accumulated time when

power is first applied?
d. When does the timer start timing?
e. When does the timer stop timing and reset itself?
f. When input LS1 is first closed, which rungs are

true and which are false?
g. When input LS1 is first closed, state the status

(on or off) of each output.
h. When the timer’s accumulated value equals the pre-

set value, which rungs are true and which are false?
i. When the timer’s accumulated value equals the

preset value, state the status (on or off) of each
output.

j. Suppose that rung 1 is true for 5 s and then
power is lost. What will the accumulated value
of the counter be when power is restored?

5. Study the ladder logic program in Figure 7-42, and
answer the questions that follow:
a. What type of timer has been programmed?
b. What is the length of the time-delay period?
c. When does the timer start timing?

c. What is the value of the accumulated time when
power is first applied?

d. When does the timer start timing?
e. When does the timer stop timing and reset itself?
f. When input LS1 is first closed, which rungs are

true and which are false?
g. When input LS1 is first closed, state the status

(on or off) of each output.
h. When the timer’s accumulated value equals the pre-

set value, which rungs are true and which are false?
i. When the timer’s accumulated value equals the

preset value, state the status (on or off) of each
output.

Figure 7-39 Hardwired relay control circuit for Problem 2.

L2

(60 s)

L 1
PB1

PB2Stop
Start

M-1

PS1

OL

Hand

Auto

TD-2TD-1

TD

M

Figure 7-40 Ladder logic program for Problem 3.

L1 L2

LS1

LS1

Ladder logic programInput Outputs

T4:0
1

10
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

EN

DN

DN

DN

EN

EN

T4:0

T4:0

T4:0

T4:0

SOL A

SOL B

R

Y

1

2

3

4

5

SOL A

SOL B

R

Y

R

Y

pet73842_ch07_131-155.indd 152 05/11/15 4:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Chapter 7 153

h. Assume that your accumulated time value is up
to 020 and power to your system is lost. What
will your accumulated time value be when
power is restored?

d. When is the timer reset?
e. When will rung 3 be true?
f. When will rung 5 be true?
g. When will output PL4 be energized?

Figure 7-41 Ladder logic program for Problem 4.

5

4

3

2

1

DN

Input

L1

LS1

LS1

Ladder logic program

T4:0
1

25
0

TOF
TIMER OFF DELAY
Timer
Time base
Preset
Accumulated

EN

SOL A

SOL B

R

Y

T4:0

DN

T4:0

DN

T4:0

EN

T4:0

EN

R

SOL B

Outputs

L2

Y

SOL A

Y

R

Figure 7-42 Ladder
logic program for
Problem 5.

PL2T4:5/EN

L1

Ladder logic programInputs

PB2

PB1

PB2

PB1

T4:5
1.0
50

0

RTO
RETENTIVE TIMER ON
Timer
Time base
Preset
Accumulated

PL1T4:5/EN

PL4

L2

Outputs

PL4

PL3

PL2

PL1

T4:5 DN

PL3T4:5 DN

1

2

3

4

5

6

RES

T4:5

EN

DN

pet73842_ch07_131-155.indd 153 05/11/15 4:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

154 Chapter 7 Programming Timers

b. The input is true, and EN is 1, TT is 1, and
DN is 1.

c. The input is false, and EN is 0, TT is 0, and
DN is 0.

d. The input is true, and EN is 1, TT is 0, and
DN is 1.

10. Study the off-delay timer ladder logic program in
Figure 7-45, and from each of the conditions stated,
determine whether the timer is reset, timing, or
timed out or if the conditions stated are not possible.
a. The input is true, and EN is 0, TT is 0, and

DN is 1.

i. What happens if inputs PB1 and PB2 are both
true at the same time?

6. Study the ladder logic program in Figure 7-43 and
answer the questions that follow:
a. What is the purpose of interconnecting the two

timers?
b. How much time must elapse before output PL is

energized?
c. What two conditions must be satisfied for timer

T4:2 to start timing?
d. Assume that output PL is on and power to the

system is lost. When power is restored, what will
the status of this output be?

e. When input PB2 is on, what will happen?
f. When input PB1 is on, how much accumulated

time must elapse before rung 3 will be true?

7. You have a machine that cycles on and off during
its operation. You need to keep a record of its total
run time for maintenance purposes. Which timer
would accomplish this?

8. Write a ladder logic program that will turn on a
light, PL, 15 s after switch S1 has been turned on.

9. Study the on-delay timer ladder logic program
in Figure 7-44, and from each of the conditions
stated, determine whether the timer is reset, tim-
ing, or timed out or if the conditions stated are not
possible.
a. The input is true, and EN is 1, TT is 1, and

DN is 0.

Figure 7-43 Ladder logic program for Problem 6.

T4:2

T4:1

L1

PB1

PB2

PB2

PB1

PB1

Inputs

T4:1
1.0

2900
0

RTO
RETENTIVE TIMER ON
Timer
Time base
Preset
Accumulated

EN

DN

T4:2
1.0

1780
0

RTO
RETENTIVE TIMER ON
Timer
Time base
Preset
Accumulated

EN

DN
DN

DN

PL

L2

Output

PL

RES

RES
 T4:2

T4:1

Ladder logic program

1

2

3

4

Figure 7-44 On-delay timer ladder logic program for
Problem 9.

Input

T4:0
1.0
10
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

EN

DN

T4:0

T4:0

T4:0

DN

EN

T T

pet73842_ch07_131-155.indd 154 05/11/15 4:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Chapter 7 155

• Solenoid A is de-energized.
• The agitate motor starts automatically and runs

for 3 min to mix the liquid.
• When the agitate motor stops, solenoid B is ener-

gized to empty the tank.
• When the tank is completely empty, the empty

sensor switch opens to de-energize solenoid B.
• The start button is pressed to repeat the sequence.

14. When the lights are turned off in a building, an exit
door light is to remain on for an additional 2 min,
and the parking lot lights are to remain on for an
additional 3 min after the door light goes out. Write
a program to implement this process.

15. Write a program to simulate the operation of a se-
quential taillight system. The light system consists
of three separate lights on each side of the car. Each
set of lights will be activated separately, by either
the left or right turn signal switch. There is to be a
1-s delay between the activation of each light, and
a 1-s period when all the lights are off. Ensure that
when both switches are on, the system will not op-
erate. Use the least number of timers possible. The
sequence of operation should be as follows:
• The switch is operated.
• Light 1 is illuminated.
• Light 2 is illuminated 1 s later.
• Light 3 is illuminated 1 s later.
• Light 3 is illuminated for 1 s.
• All lights are off for 1 s.
• The system repeats while the switch is on.

b. The input is true, and EN is 1, TT is 1, and
DN is 1.

c. The input is true, and EN is 1, TT is 0, and
DN is 1.

d. The input is false, and EN is 0, TT is 1, and
DN is 1.

e. The input is false, and EN is 0, TT is 0, and
DN is 0.

11. Write a program for an “anti–tie down circuit” that
will disallow a punch press solenoid from operat-
ing unless both hands are on the two palm start
buttons. Both buttons must be pressed at the same
time within 0.5 s. The circuit also will not allow the
operator to tie down one of the buttons and operate
the press with just one button. (Hint: Once either of
the buttons is pressed, begin timing 0.5 s. Then, if
both buttons are not pressed, prevent the press sole-
noid from operating.)

12. Modify the program for the control of traffic lights
in two directions so that there is a 3-s period when
both directions will have their red lights illuminated.

13. Write a program to implement the process illus-
trated in Figure 7-46. The sequence of operation is
to be as follows:
• Normally open start and normally closed stop

pushbuttons are used to start and stop the process.
• When the start button is pressed, solenoid A ener-

gizes to start filling the tank.
• As the tank fills, the empty level sensor switch

closes.
• When the tank is full, the full level sensor switch

closes.

Figure 7-45 Off-delay timer ladder logic program for
Problem 10.

Input

T4:0
1.0
10
0

TOF
TIMER OFF DELAY
Timer
Time base
Preset
Accumulated

EN

DN

T4:0

T4:0

T4:0

DN

EN

T T

Figure 7-46 Process for Problem 13.

SOL B

Motor

Full
sensor
switch

Empty
sensor
switch

Start/stop
control station

SOL A

pet73842_ch07_131-155.indd 155 05/11/15 4:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

156

Counter address

C5:3 Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Word
0

Word
1

Word
2

C5:3.0 CU CD DN OV UN UA Internal use (not addressable)

C5:3.1 Preset value

C5:3.2 Accumulated value

File number

Counters5

File type Counter number

C5:3

8
Programming Counters

Chapter Objectives

After completing this chapter, you will be able to:

 • List and describe the functions of PLC counter
instructions

 • Describe the operating principle of a transitional, or
one-shot, contact

 • Analyze and interpret typical PLC counter ladder logic
programs

 • Apply the PLC counter function and associated
circuitry to control systems

 • Apply combinations of counters and timers to control
systems

All PLCs include both up-counters and down-
counters. Counter instructions and their function
in ladder logic are explained in this chapter. Typi-
cal examples of PLC counters include the follow-
ing: straight counting in a process, two counters
used to give the sum of two counts, and two
counters used to give the difference between
two counts.

pet73842_ch08_156-183.indd 156 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Chapter 8 157

external or program sources for counting. The two
methods used to represent a counter within a PLC’s
ladder logic program are the coil format and the block
format. Figure 8-4 shows a typical coil-formatted up-
counter instruction. The up-counter increments its
accumulated value by 1 each time the counter rung
makes a false-to-true transition. When the accumu-
lated count equals the preset count the counter output
is energized or set to 1. Shown as part of the instruc-
tion are the:

Counter type
Counter address
Counter preset value
Accumulated count

The counter reset instruction must be used in conjunc-
tion with the counter instruction. Up-counters are always
reset to zero. Down-counters may be reset to zero or
to some preset value. Some manufacturers include the
reset function as a part of the general counter instruc-
tion, whereas others dedicate a separate instruction for
resetting the counter. Figure 8-5 shows a coil-formatted
counter instruction with a separate instruction for reset-
ting the counter. When programmed, the counter reset
coil (CTR) is given the same reference address as the

8.1 Counter Instructions
Programmed counters can serve the same function as
mechanical counters. Figure 8-1 shows the construction
of a simple mechanical counter. Every time the actuat-
ing lever is moved over, the counter adds one number;
the actuating lever then returns automatically to its origi-
nal position. Resetting to zero is done with a pushbutton
located on the side of the unit.

Electronic counters, such as those shown in Figure 8-2,
can count up, count down, or be combined to count up
and down. Although the majority of counters used in
industry are up-counters, numerous applications require
the implementation of down-counters or of combination
up/down-counters.

All PLC manufacturers offer some form of counter
instruction as part of their instruction set. One common
counter application is keeping track of the number of items
moving past a given point as illustrated in Figure 8-3.

Counters are similar to timers except that they do
not operate on an internal clock but are dependent on

Figure 8-1 Mechanical counter.

Reset
button

Actuating
lever

0000312

Figure 8-2 Electronic counters.
Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

Figure 8-3 Counter application.

PLC

Figure 8-4 Coil-formatted up-counter instruction.

XXX

PR: YYY
AC: 000

Counter address

Accumulated
counter value

Preset counter
value

Increments
counter by 1
for each
false-to-true
transition.

Type of
counter

CTU

pet73842_ch08_156-183.indd 157 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

158 Chapter 8 Programming Counters

of the input signal. The counter will either increment
or decrement whenever the count input transfers from
an off state to an on state. The counter will not operate
on the trailing edge, or on-to-off transition, of the input
condition.

Some manufacturers require the reset rung or line to be
true to reset the counter, whereas others require it to be
false to reset the counter. For this reason, it is wise to con-
sult the PLC’s operations manual before attempting any
programming of counter circuits.

PLC counters are normally retentive; that is, what-
ever count was contained in the counter at the time of a
processor shutdown will be restored to the counter on
power-up. The counter may be reset, however, if the reset
condition is activated at the time of power restoration.

PLC counters can be designed to count up to a preset
value or to count down to a preset value. The up-counter
is incremented by 1 each time the rung containing the
counter goes from false to true. The down-counter decre-
ments by 1 each time the rung containing the counter is
energized. These rung transitions can result from events
occurring in the program, such as parts traveling past a
sensor or actuating a limit switch. The preset value of a
programmable controller counter can be set by the opera-
tor or can be loaded into a memory location as a result of
a program decision.

Figure 8-7 illustrates the counting sequence of an up-
counter and a down-counter. The value indicated by the
counter is termed the accumulated value. The counter
will increment or decrement, depending on the type of
counter, until the accumulated value of the counter is
equal to or greater than the preset value, at which time an
output will be produced. A counter reset is always pro-
vided to cause the counter accumulated value to be reset
to a predetermined value.

counter (CTU) that it is to reset. In this example the reset
instruction is activated whenever the CTR rung condition
is true.

Figure 8-6 shows a block-formatted counter. The
instruction block indicates the type of counter (up or
down), along with the counter’s preset value and accu-
mulated or current value. The counter has two input con-
ditions associated with it, namely, the count and reset.
All PLC counters operate, or count, on the leading edge

Figure 8-5 Coil-formatted counter and reset instructions.

XXX

XXX

PR: YYY
AC: 000Count

rung

Resets
counter

Reset
rung

Same
address

CTU

CTR

Figure 8-6 Block-formatted counter instruction.

Count
line

Input
module

Type of
counter

Preset value

Accumulated
value

Output
line

Reset
line

Figure 8-7 Counter counting sequence.

Limit
switch

Accumulated = Preset =

Up-counter Down-counter

Counter—up

 + 4

Counter
value

O�

On

Output

Parts
sensor

Accumulated = Preset =

Counter—down

 – 5

Counter
value

O�

On

Output

pet73842_ch08_156-183.indd 158 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Chapter 8 159

Figure 8-8 shows the program and timing diagram for
an SLC 500 Count-Up Counter. This control application
is designed to turn the red pilot light on and the green pilot
light off after an accumulated count of 7. The operation of
the program can be summarized as follows:

• Operating pushbutton PB1 provides the off-to-on
transition pulses that are counted by the counter.

• The preset value of the counter is set for 7.

8.2 Up-Counter
The up-counter is an output instruction whose function
is to increment its accumulated value on false-to-true
transitions of its instruction. It thus can be used to count
false-to-true transitions of an input instruction and then
trigger an event after a required number of counts or tran-
sitions. The up-counter output instruction will increment
by 1 each time the counted event occurs.

L1 L2Ladder logic programInputs Outputs

PB1 (Count)
PB1 (Count)

PB2 (Reset)

Counter done bit Red PL

Counter done bit Green PL

Green PL

Red PL

PB2 (Reset)

Rung 1

Rung 2

Rung 3

Rung 4

I:1/0

I:1/0

C5:1/DN O:2/0

O:2/1

O:2/0

O:2/1

C5:1

C5:1/DN

I:1/1

I:1/1

(a)

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:1
7
0

RES

CU

DN

G

R

Figure 8-8 Simple up-counter program. (a) Program. (b) Timing diagram.

Rung 1

Rung 2

Rung 3

Rung 4

(count)

Preset
value (7)

Accumulated
value

False

True 1 2 3 4 5 6 7

1
2

3
4

5

6 7

(b)

(reset)

pet73842_ch08_156-183.indd 159 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

160 Chapter 8 Programming Counters

C5:3/UA is the address for the update accumulator bit
of the counter. This instruction is only used with the
High-Speed Counter (HSC) instruction.

Figure 8-10 shows the counter table for the Allen-
Bradley SLC 500 controller. The control word uses status
control bits consisting of the following:

Count-Up (CU) Enable Bit—The count-up enable bit
is used with the count-up counter and is true whenever
the count-up counter instruction is true. If the count-up
counter instruction is false, the CU bit is false.
Count-Down (CD) Enable Bit—The count-down
enable bit is used with the count-down counter and is
true whenever the count-down counter instruction is
true. If the count-down counter instruction is false, the
CD bit is false.
Done (DN) Bit—The done bit is true whenever the
accumulated value is equal to or greater than the
preset value of the counter, for either the count-up or
the count-down counter.
Overflow (OV) Bit—The overflow bit is true when-
ever the counter counts past its maximum value,
which is 32,767. On the next count, the counter will
wrap around to –32,768 and will continue counting

• Each false-to-true transition of rung 1 increases the
counter’s accumulated value by 1.

• Output O:2/1 is energized as long as the accumu-
lated value is less than 7.

• After 7 pulses, or counts, when the preset counter
value equals the accumulated counter value, output
DN is energized.

• As a result, rung 2 becomes true and energizes
output O:2/0 to switch the red pilot light on.

• At the same time, rung 3 becomes false and de-
energizes output O:2/1 to switch the green pilot
light off.

• The counter is reset by closing pushbutton PB2,
which makes rung 4 true and resets the accumulated
count to zero.

• Counting can resume when rung 4 goes false again.

The Allen-Bradley SLC 500 counter file is file 5 (Fig-
ure 8-9). Each counter is composed of three 16-bit words,
collectively called a counter element. These three data
words are the control word, preset word, and accumulated
word. Each of the three data words shares the same base
address, which is the address of the counter itself. There
can be up to 256 counter elements. Addresses for counter
file 5, counter element 3 (C5:3), are listed below.

C5 = counter file 5
:3 = counter element 3 (0–255 counter elements per file)
C5:3/DN is the address for the done bit of the counter.
C5:3/CU is the address for the count-up enable bit of
the counter.
C5:3/CD is the address for the count-down enable bit
of the counter.
C5:3/OV is the address for the overflow bit of the counter.
C5:3/UN is the address for the underflow bit of the
counter.

Figure 8-9 SLC 500 counter file.

Counter address

C5:3 Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Word
0

Word
1

Word
2

C5:3.0 CU CD DN OV UN UA Internal use (not addressable)

C5:3.1 Preset value

C5:3.2 Accumulated value

File number

Counters5

File type Counter number

C5:3

Figure 8-10 SLC 500 counter table.

Counter Table

C5:0
C5:1
C5:2
C5:3
C5:4
C5:5

/CU
0
0
0
0
0
0

/CD
0
0
0
0
0
0

/DN
0
0
0
0
0
0

/OV
0
0
0
0
0
0

/UN
0
0
0
0
0
0

/UA
0
0
0
0
0
0

.PRE
0
0
0

50
0
0

.ACC
0
0
0
0
0
0

C5: CounterTable:Address C5:3

pet73842_ch08_156-183.indd 160 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Chapter 8 161

instruction set. The address for counters begins at C5:0
and continues through C5:255. The information to be
entered includes:

Counter Number—This number must come from
the counter file. In the example shown, the counter
number is C5:0, which represents counter file 5,
counter 0 in that file. The address for this counter
should not be used for any other count-up counter.
Preset Value—The preset value can range from –
32,768 to +32,767. In the example shown, the preset
value is 10.
Accumulated Value—The accumulated value can
also range from –32,768 to +32,767. Typically, as
in this example, the value entered in the accumu-
lated word is 0. Regardless of what value is entered,
the reset instruction will reset the accumulated value
to 0.

Figure 8-12 shows the timer/counter menu tab from
the RSLogix toolbar. Several timer and counter instruc-
tions appear when this tab is selected. The first three
are timer instructions that are covered in Chapter 7. The
next two instructions from the left are the up-counter
(CTU) and down-counter (CTD) instructions. To the
right of the CTU and CTD instructions is the reset (RES)
instruction, which is used by both counters and timers.
The counter commands can be summarized as follows:

CTU (Count-Up)—Increments the accumulated
value at each false-to-true transition and retains
the accumulated value when an off/on power cycle
occurs.
CTD (Count-Down)—Decrements the accumu-
lated value at each false-to-true transition and retains
the accumulated value when an on/off power cycle
occurs.
HSC (High-Speed Counter)—Counts high-speed
pulses from a high-speed input.

Figure 8-13 shows a PLC counter program used to stop
a motor from running after 10 operations. The operation
of the program can be summarized as follows:

• Up-counter C5:0 counts the number of on/off times
the motor starts.

• The preset value of the counter is set to 10.

from there toward 0 on successive false-to-true transi-
tions of the count-up counter.
Underflow (UN) Bit—The underflow bit will go true
when the counter counts below –32,768. The counter
will wrap around to +32,767 and continue counting
down toward 0 on successive false-to-true rung transi-
tions of the count-down counter.
Update Accumulator (UA) Bit—The update accu-
mulator bit is used only in conjunction with an exter-
nal HSC (high-speed counter).

The preset value (PRE) word specifies the value that
the counter must count to before it changes the state of
the done bit. The preset value is the set point of the coun-
ter and ranges from –32,768 to +32,767. The number is
stored in binary form, with any negative numbers being
stored in 2’s complement binary.

The accumulated value (ACC) word is the current
count based on the number of times the rung goes from
false to true. The accumulated value either increments
with a false-to-true transition of the count-up counter
instruction or decrements with a false-to-true transition of
the count-down counter instruction. It has the same range
as the preset: –32,768 to +32,767. The accumulated value
will continue to count past the preset value instead of
stopping at the preset like a timer does.

Figure 8-11 shows an example of the count-up
counter and its status bits used in the SLC 500 controller

Figure 8-11 Count-up counter instruction.

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:0
10
0

C5:0/CU

Counter enable bit

C5:0/DN

Counter done bit

C5:0/OV

Overflow status bit

C5:0 The reset instruction resets
the counter's accumulated
value back to zero.

CU

DN

RES

Figure 8-12 Counter selection toolbar.

TON TOF RTO CTU CTD RES

User Bit Timer/Counter Input/Output Compare

HSC

pet73842_ch08_156-183.indd 161 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

162 Chapter 8 Programming Counters

• Logix processors use a tag name, such as
Package_Count, instead of a counter number.

• This descriptive tag name makes it easier to know
what function the counter serves in the control
system.

• The associated counter data (PRE, ACC, CU,
CD, DN, OV, UN) are found within the program
tags dialog box.

One-Shot Instruction
Figure 8-16 shows the program for a one-shot, or transi-
tional, contact circuit that is often used to automatically
clear or reset a counter. The program is designed to gen-
erate an output pulse that, when triggered, goes on for
the duration of one program scan and then goes off. The
one-shot can be triggered from a momentary signal or
from a signal that comes on and stays on for some time.
Whichever signal is used, the one-shot is triggered by the
leading-edge (off-to-on) transition of the input signal. It
stays on for one scan and goes off. It stays off until the
trigger goes off, and then comes on again. The one-shot is
perfect for resetting both counters and timers since it stays
on for one scan only.

Some PLCs provide transitional contacts or one-shot
instructions in addition to the standard NO and NC contact
instructions. The off-to-on transitional contact instruc-
tion, shown in Figure 8-17a, is programmed to provide a
one-shot pulse when the referenced trigger signal makes
a positive (off-to-on) transition. This contact will close
for exactly one program scan whenever the trigger signal

• A counter done bit examine-off instruction is
programmed in series with the motor output
instruction.

• A motor output examine-on instruction is used to
increment the accumulated value of the counter for
each off/on operation.

• After the count of 10 is reached the counter done
bit examine-off instruction goes false preventing the
motor from being started.

• Closure of the reset pushbutton resets the accumu-
lated count to zero.

Figure 8-14 shows a PLC can-counting program that
uses three up-counters. The operation of the program can
be summarized as follows:

• Counter C5:2 counts the total number of cans
coming off an assembly line for final packaging.

• Each package must contain 10 parts.
• When 10 cans are detected, counter C5:1 sets bit

B3:0/1 to initiate the box closing sequence.
• Counter C5:3 counts the total number of packages

filled in a day. (The maximum number of packages
per day is 300.)

• A pushbutton is used to restart the total part and
package count from zero daily.

The counter instructions for the SLC 500 and Control-
Logix 5000 processors operate in exactly the same
manner. Figure 8-15 shows the counter selection toolbar,
CTU counter instruction, and program tags dialog box for
a ControlLogix controller.

Figure 8-13 PLC counter program used to stop a motor from running after 10 operations.

CU
CTU
COUNT-UP COUNTER
Counter C5:0
Preset 10
Accumulated 0

DN

RES
C5:0

Reset

Motor

Motor

Motor

Output

Stop Start

Motor

C5:0/DN

Ladder logic program

Stop

Start

Inputs
L1

Start

Reset

Reset

Stop

Start

Reset

OL

L2

M

pet73842_ch08_156-183.indd 162 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Chapter 8 163

Figure 8-14 Can-counting program.

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:1
10
0

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:2
32767

0

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:3
300

0

Parts

Packages

PROX-SWInputsL1

Reset PB

Close box
B3:0/1

C5:1

C5:1/DN

B3:0/1

C5:3

C5:2

PROX-SW

Reset PB

Ladder logic program

CU

CU

DN

CU

DN

DN

RES

RES

RES

Figure 8-15 ControlLogix counter instruction.

TON

Favorites Add-On Alarms Bit Timer/Counter

TOF RTO CTU CTD RES

True
Tag name

Package_Count

12
0

Description
12 can counterDecimalCOUNTER

DINT
Package_count
Package_count.PRE
Package_count.ACC
Package_count.CU
Package_count.CD
Package_count.DN
Package_count.OV
Package_count.UN

DINT
BOOL
BOOL
BOOL
BOOL
BOOL

Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal

Style

Input side of rung

False
CTU
Count Up CU

DN
Package_Count
Preset
Accum

RES

TypeBase TagAlias ForTag Name
–

+
+

pet73842_ch08_156-183.indd 163 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

164 Chapter 8 Programming Counters

it allows logic continuity for a single scan whenever the
trigger signal goes from an on to an off state.

The conveyor motor PLC program of Figure 8-18
illustrates the application of an up-counter along with a
programmed one-shot (OSR) transitional contact instruc-
tion. The counter counts the number of cases coming off
the conveyor. When the total number of cases reaches 50,
the conveyor motor stops automatically. The trucks being
loaded will take a total of only 50 cases of this particular
product; however, the count can be changed for different
product lines. The operation of the program can be sum-
marized as follows:

• The momentary start button is pressed to start the
conveyor motor M1.

• The passage of cases is sensed by the proximity switch.
• Cases move past the proximity switch and incre-

ment the counter’s accumulated value with each
false-to-true transition of the switch.

goes from off to on. The contact will allow logic continu-
ity for one scan and then open, even though the trigger-
ing signal may stay on. The on-to-off transitional contact,
shown in Figure 8-17b, provides the same operation as
the off-to-on transitional contact instruction, except that

Figure 8-16 One-shot, or transitional, contact program.

A

A

A

Trigger
input

Internal
relay contact

One-shot
output

Internal
relay coil

L1 Input

Figure 8-17 Transitional contact instructions.

On

O�

On

O�

One
scan

(a) O�-to-on transitional contact

Symbol
On

O�

On

O�

One
scan

(b) On-to-o�-transitional contact

Symbol

Figure 8-18 Case-counting program.

O:2/0O:2/0

Inputs Output

L1 L2
Stop

Start

Proximity
switch

OL
I:1/1 M1

Reset

Ladder logic program

I:1/1 I:1/2

O:2/0C5:0/DN

I:1/3

I:1/4

RES

C5:0C5:0/DN

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:0
50

0

CU

DN O:2/0

I:1/2

I:1/3

I:1/4

B3:0/0

OSR

pet73842_ch08_156-183.indd 164 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Chapter 8 165

instruction conditions the rung so that the counter
C5:1 reset output instruction goes true for one pro-
gram scan.

• The output reset instruction goes false and remains
false for successive scans until the input makes
another false-to-true transition.

• The OSR bit is set to 1 as long as the limit switch
remains closed.

• The OSR bit is reset to 0 when the limit switch is
opened.

Applications for the OSR instruction include freez-
ing rapidly displayed LED values. Figure 8-20 shows a
one-shot instruction used to send data to an output LED
display. The one-shot allows the rapidly changing ac-
cumulated time from the timer to be frozen to ensure a
readable, stable display. The operation of the program is
summarized as follows:

• The accumulated value of timer T4:1 is converted
to Binary Coded Decimal (BCD) and moved
to output word O:6 where an LED display is
connected.

Figure 8-19 One-shot rising (OSR) instruction.

C5:1

B3:0/0

One PLC scan

RES

OSR rungInput

B3:0/0

OSR

L1

LS1

LS1

LS1

Figure 8-20 OSR instruction used to freeze rapidly displayed LED values.

B3:0/0

OSR
TOD
To BCD
Source
Destination

T4:1.ACC
O:6

O:6I:1/1

PB

SW

I:1/0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

T4:1
1.0

1000
0

EN

DN

I:1/0

I:1/1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0000

OutputInputs
L1

• The retentive OSR instruction is true for only
one scan and then false again, even if the trig-
gering proximity switch signal stays true. This
may be required for the count pulse to operate
properly.

• After a count of 50, the done bit of the counter
changes state to stop the conveyor motor automati-
cally and reset the counter’s accumulated value to
zero.

• The conveyor motor can be stopped and started
manually at any time without loss of the accumu-
lated count.

• The accumulated count of the counter can be reset
manually at any time by means of the count reset
button.

The Allen-Bradley SLC 500 one-shot rising (OSR)
instruction is an input instruction that triggers an event
to occur one time. The OSR instruction is placed in the
ladder logic before the output instruction. When the
rung conditions preceding the OSR instructions go from
false-to-true, the OSR instruction goes true also but for
only one scan. Figure 8-19 illustrates the operation of an
OSR rung which can be summarized as follows:

• The OSR, one-shot rising instruction is used to
make the counter reset instruction (RES) true for
one scan when limit switch input LS1 goes from
false to true.

• The OSR is assigned a Boolean bit (B3:0/0) that is
not used anywhere else in the program.

• The OSR instruction must immediately precede the
output instruction.

• When the limit switch closes the LS1 and OSR,
input instructions go from false to true. The OSR

pet73842_ch08_156-183.indd 165 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

166 Chapter 8 Programming Counters

8.3 Down-Counter
The down-counter instruction will count down or dec-
rement by 1 each time the counted event occurs. Each
time the down-count event occurs, the accumulated
value is decremented. Normally the down-counter is
used in conjunction with the up-counter to form an up/
down-counter.

Figure 8-22 shows the program and timing dia-
gram for a generic, block-formatted up/down-counter.
The operation of the program can be summarized as
follows:

• Separate count-up and count-down inputs are
provided.

• Assuming the preset value of the counter is 3 and
the accumulated count is 0, pulsing the count-up
input (PB1) three times will switch the output light
from off to on.

• This particular PLC counter keeps track of the
number of counts received above the preset value.

• When the timer is running, SW (I:1/1) closed, the
accumulated value changes rapidly.

• Closing the momentary pushbutton PB (I:1/0)
will freeze and display the value at that point in
time.

The alarm monitor PLC program of Figure 8-21 illus-
trates the application of an up-counter used in conjunction
with the programmed timed oscillator circuit studied in
Chapter 7. The operation of the program can be summa-
rized as follows:

• The alarm is triggered by the closing of float switch FS.
• The light will flash whenever the alarm condition is

triggered and has not been acknowledged, even if
the alarm condition clears in the meantime.

• The alarm is acknowledged by closing selector
switch SS.

• The light will operate in the steady on mode when
the alarm trigger condition still exists but has been
acknowledged.

Figure 8-21 Alarm monitor program.

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

T4:5
1.0

1
0

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:1
1

0

Ladder logic program Output

L2T4:6

C5:1

 DN

T4:5

 DN

C5:1

 DN

FS

FS

SS C5:1
RES

Light

Light

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

T4:6
1.0

1
0

OFF ON

L1

Inputs

FS

SS

DN

T4:5

DN

EN

EN

CU

DN

DN

DN

pet73842_ch08_156-183.indd 166 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Chapter 8 167

down-counters may count below zero and begin count-
ing down from the largest preset value that can be set
for the PLC’s counter instruction. For example, a PLC
up/down-counter that has a maximum counter preset
limit of 999 may count up as follows: 997, 998, 999,
000, 001, 002, and so on. The same counter would count
down in the following manner: 002, 001, 000, 999, 998,
997, and so on.

One application for an up/down-counter is to keep
count of the cars that enter and leave a parking garage.
Figure 8-23 shows a typical PLC program that could be
used to implement this. The operation of the program can
be summarized as follows:

• As a car enters, the enter switch triggers the up-
counter output instruction and increments the accu-
mulated count by 1.

As a result, three additional pulses of the count-up
input (PB1) produce an accumulated value of 6 but
no change in the output.

• If the count-down input (PB2) is now pulsed
four times, the accumulated count is reduced to
2 (6 – 4). As a result, the accumulated count
drops below the preset count and the output light
switches from on to off.

• Pulsing the reset input (PB3) at any time will reset the
accumulated count to 0 and turn the output light off.

Not all counter instructions count in the same manner.
Some up-counters count only to their preset values, and
additional counts are ignored. Other up-counters keep
track of the number of counts received above the coun-
ter’s preset value. Conversely, some down-counters
will simply count down to zero and no further. Other

Figure 8-22 Generic up/down-counter program. (a) Program. (b) Counting
diagram.

Count
up

Count
down

UDC

PR: 003

AC: 000

Ladder logic program Inputs

L1

LightLight

Output

L2

Reset

PB3

PB3

PB2

PB2
PB1

PB1

(a)

(b)

Count up

Count down

Counter
accumulated

value

Output

Reset

On

O�

On

O�

On

O�

On

O�

1 2 3 4 5 6

1 2 3 4

0
1 2 3 4 5 6 5 4 3 2

0Preset value

pet73842_ch08_156-183.indd 167 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

168 Chapter 8 Programming Counters

• When the input rung condition makes another
false-to-true transition, the accumulated value will
decrease to 2.

• When the input makes one more false-to true transi-
tion, the accumulated value will drop to 1.

• At this point the accumulated value of 1 is less than
the preset value of 2 so the done bit will be reset (0)
de-energizing output O:2/0.

Figure 8-25 shows an up/down-counter program
that will increase the counter’s accumulated value
when pushbutton PB1 is pressed and will decrease the
counter’s accumulated value when pushbutton PB2
is pressed. Note that the same address is given to the
up-counter instruction, the down-counter instruction,
and the reset instruction. All three instructions will be
looking at the same address in the counter file. When
input A goes from false to true, one count is added to
the accumulated value. When input B goes from false

• As a car leaves, the exit switch triggers the down-
counter output instruction and decrements the accu-
mulated count by 1.

• Because both the up- and down-counters have the
same address, C5:1, the accumulated value will
be the same in both instructions as well as the
preset.

• Whenever the accumulated value of 150 equals
the preset value of 150, the counter output is
energized by the done bit to light up the Lot
Full sign.

• A reset button has been provided to reset the accu-
mulated count.

Figure 8-24 shows an example of the count-down
counter instruction used as part of the Allen-Bradley
SLC 500 controller instruction set. The information to be
entered into the instruction is the same as for the count-up
counter instruction.

The CTD instruction decrements its accumulated value
by 1 every time it is transitioned. It sets its done bit when
the accumulated value is equal to or greater than the preset
value. The program of Figure 8-24 contains a count-down
counter instruction, the operation of which can be sum-
marized as follows:

• With the program in the state shown, the CTD done
bit will be set (1) and output 0:2/0 will be energized
because the accumulated value of 4 is greater than
the preset value of 2.

• When the CTD instruction rung makes a
false-to-true transition, the accumulated value
decreases by one count to 3.

Figure 8-23 Parking garage counter.

Lot full
light

Lot full
light

Ladder logic program

C5:1/DN

Enter
switch

Enter
switch

Exit
switch

Exit
switch

Reset

Reset

InputsL1

C5:1

Output L2
CTU
COUNT-UP COUNTER
Counter C5:1
Preset 150
Accumulated 0

CTD
COUNT-DOWN COUNTER
Counter C5:1
Preset 150
Accumulated 0

CU

CD

DN

DN

RES

Figure 8-24 Count-down counter instruction.

I:1/0
L1 L2

Ladder logic programInput Output

I:1/0

C5:0
0:2/0

DN

CTD
COUNT-DOWN COUNTER
Counter C5:0
Preset 2
Accumulated 4

CU
0:2/0

DN

PL

pet73842_ch08_156-183.indd 168 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Chapter 8 169

Figure 8-25 Up/down-counter program.

Input A

Input B

Input C

L1 L2
Ladder logic programInputs

PB1

PB2

Reset

Outputs

Input A

Input B

Input C

CU

DN

CD

C5:2

C5:2

C5:2

CTU
COUNT-UP COUNTER
Counter C5:2
Preset 10
Accumulated 0

CTD
COUNT-DOWN COUNTER
Counter C5:2
Preset 10
Accumulated 0

C5:2

Output B

Output C

Output A

RES

Output A

Output B

Output C

CU

CU
C

B

A

DN

DN

to true, one count is subtracted from the accumulated
value. The operation of the program can be summa-
rized as follows:

• When the CTU instruction is true, C5:2/CU will be
true, causing output A to be true.

• When the CTD instruction is true, C5:2/CD will be
true, causing output B to be true.

• When the accumulated value is greater than or equal
to the preset value, C5:2/DN will be true, causing
output C to be true.

• Input C going true will cause both counter instruc-
tions to reset. When reset by the RES instruction,
the accumulated value will be reset to 0 and the
done bit will be reset.

Figure 8-26 illustrates the operation of the up/down-
counter program used to provide continuous monitor-
ing of items in process. An in-feed photoelectric sensor
counts raw parts going into the system, and an out-feed
photoelectric sensor counts finished parts leaving the
machine. The number of parts between the in-feed
and out-feed is indicated by the accumulated count of
the counter. Counts applied to the up-input are added,
and counts applied to the down-input are subtracted.

The operation of the program can be summarized as
follows:

• Before start-up, the system is completely empty of
parts, and the counter is reset manually to 0.

• When the operation begins, raw parts move through
the in-feed sensor, with each part generating an up
count.

• After processing, finished parts appearing at the out-
feed sensor generate down counts, so the accumu-
lated count of the counter continuously indicates the
number of in-process parts.

• The counter preset value is irrelevant in this
application. It does not matter whether the counter
outputs are on or off. The output on-off logic is not
used. We have arbitrarily set the counter’s preset
values to 50.

The maximum speed of transitions that you can count
is determined by your program’s scan time. For a reli-
able count, your counter input signal must be fixed for one
scan time. If the input changes faster than one scan period,
the count value will become unreliable because counts
will be missed. When this situation occurs, you need to
use a high-speed counter input or a separate counter I/O
module designed for high-speed applications.

pet73842_ch08_156-183.indd 169 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

170 Chapter 8 Programming Counters

• The status bits of both counters are programmed in
series to produce an output.

• These two counters allow twice as many counts to
be measured.

• A CTU instruction that is reset while the counter
logic remains true will result in an accumulated value
of 1 instead of 0. Using the OSR instruction in the
counter enabling logic prevents this from happening.

Another method of cascading counters is sometimes
used when an extremely large number of counts must
be stored. For example, if you require a counter to
count up to 250,000, it is possible to achieve this by
using only two counters. Figure 8-28 shows how the

8.4 Cascading Counters
Depending on the application, it may be necessary to count
events that exceed the maximum number allowable per coun-
ter instruction. One way of accomplishing this count is by
interconnecting, or cascading, two counters. The program
of Figure 8-27 illustrates the application of the technique.
The operation of the program can be summarized as follows:

• The output of the first counter is programmed into
the input of the second counter.

• When the accumulated value of the second counter
is equal to its preset, the DN bit will be true, which
allows the first counter to count.

Figure 8-26 In-process monitoring program. (a) Process. (b) Program.

(a)

In-feed
(raw parts)

Out-feed
(finished parts)

Photoelectric
sensor

Photoelectric
sensor

Material
processing system

(b)

Ladder logic program

RESETReset

IN-Feed
count

IN-Feed
count

OUT-Feed
count

OUT-Feed
count

Inputs

L1

Reset to
zero

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

Accumulated = No. in-process parts

C5:1
50

0

CTD
COUNT-DOWN COUNTER
Counter
Preset
Accumulated

C5:1
50

0

C5:1

CU

CD

DN

DN

RES

pet73842_ch08_156-183.indd 170 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Chapter 8 171

Figure 8-27 Counting beyond the maximum count.

Ladder logic program

Count
button

Inputs

L1

Light

Light

PB1 B3:0/0

C5:0/DN C5:1/DN

C5:0/DN

PB2

Output L2

Reset
button

C5:1
32000

0

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

Second counter

First counter

C5:0
32000

0

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:0

C5:1

PB1

PB2

CU

DN

CU

DN

RES

RES

OSR

B3:0/0

OSR

Figure 8-28 Cascading counters for extremely large counts.

Ladder logic program

Reset

Reset

Reset

C5:1

PB1

PB2

Inputs

L1

Count

Count

Output

L2CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:1
500

0

C5:1

 DN

C5:1

 DN

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:2
500

0

C5:2

 DN

C5:2

CU

DN

CU

DN

RES

RES

Light

Light

B3:0/0

OSR

pet73842_ch08_156-183.indd 171 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

172 Chapter 8 Programming Counters

are represented by the accumulated count value of
counter C5:0.

• The timer displays the seconds of a minute as its
current, or accumulated, time value.

The 24-hour clock can be used to record the time of
an event. Figure 8-30 illustrates the principle of this tech-
nique. In this application the time of the opening of a
pressure switch is to be recorded. The operation of the
program can be summarized as follows:

• The circuit is set into operation by pressing the
reset button and setting the clock for the time
of day.

• This starts the 24-hour clock and switches the set
indicating light on.

• Should the pressure switch open at any time, the
clock will automatically stop and the trip indicating
light will switch on.

• The clock can then be read to determine the time of
opening of the pressure switch.

two counters would be programmed for this purpose.
The operation of the program can be summarized as
follows:

• Counter C5:1 has a preset value of 500 and counter
C5:2 has a preset value of 500.

• Whenever counter C5:1 reaches 500, its done bit
resets counter C5:1 and increments counter C5:2
by 1.

• When the done bit of counter C5:1 has turned
on and off 500 times, the output light becomes
energized. Therefore, the output light turns on after
500 × 500, or 250,000, transitions of the count
input.

Some PLCs include a real-time clock as part of their
instruction set. A real-time clock allows you to display the
time of day or to log data pertaining to the operation of the
process. The logic used to implement a clock as part of a
PLC’s program is straightforward and simple to accom-
plish. A single timer instruction and counter instructions
are all you need.

Figure 8-29 illustrates a timer-counter program that
produces a time-of-day clock measuring time in hours
and minutes. The operation of the program can be sum-
marized as follows:

• An RTO timer instruction (T4:0) is programmed
first with a preset value of 60 seconds.

• The T4:0 timer times for a 60-second period, after
which its done bit is set.

• This, in turn, causes the up-counter (C5:0) of rung
001 to increment 1 count.

• On the next processor scan, the timer is reset and
begins timing again.

• The C5:0 counter is preset to 60 counts, and each
time the timer completes its time-delay period, its
count is incremented.

• When the C5:0 counter reaches its preset value of
60, its done bit is set.

• This, in turn, causes the up-counter (C5:1) of rung
002, which is preset for 24 counts, to increment
1 count.

• Whenever the C5:1 counter reaches its preset value
of 24, its done bit is set to reset itself.

• The time of day is generated by examining the cur-
rent, or accumulated, count or time for each counter
and the timer.

• Counter C5:1 indicates the hour of the day in
24-h military format, while the current minutes

Figure 8-29 24-hour clock program.

001

002

003

004

005

RTO
RETENTIVE TIMER ON
Timer
Time base
Preset
Accumulated

T4:0
1.0
60

0

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:0
60

0

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:1
24

0

000

T4:0

C5:0

C5:1

Ladder logic program

Seconds

T4:0/DN

T4:0/DN

C5:0/DN

C5:0/DN

C5:1/DN

Minutes

Hours

EN

CU

CU

DN

DN

DN

RES

RES

RES

pet73842_ch08_156-183.indd 172 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Chapter 8 173

The number of square waves obtained from the output of
the encoder can be made to correspond to the mechanical
movement required. For example, to divide a shaft revolution
into 100 parts, an encoder could be selected to supply 100
square wave-cycles per revolution. By using a counter to count
those cycles, we could tell how far the shaft had rotated.

Figure 8-32 illustrates an example of cutting objects to
a specified length. The object is advanced for a specified
distance and measured by encoder pulses to determine the
correct length for cutting.

Figure 8-33 shows a counter program used for length
measurement. This system accumulates the total length

8.5 Incremental Encoder-Counter
Applications
Incremental encoders are used to track motion. They
provide a specific number of equally spaced pulses
per revolution or per inch or millimeter of linear mo-
tion. Incremental encoders output pulses each time and
only when the shaft is turned. The incremental optical
encoder shown in Figure 8-31creates a series of square
waves as its shaft is rotated. The encoder disk interrupts
the light as the encoder shaft is rotated to produce the
square wave output waveform.

Figure 8-30 Monitoring the time of an event.

Ladder logic program

Internal
B3:0/0

Internal
B3:0/0

Set

Outputs

L2

Set

Trip

Pressure
switch

Pressure
switch

Inputs

L1

Reset

Reset

Internal
B3:0/0

Trip
Internal
B3:0/0

Internal
B3:0/0

RTO
RETENTIVE TIMER ON
Timer
Time base
Preset
Accumulated

T4:0
1.0
60

0

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:1
24

0

Seconds

C5:0/DN

C5:0/DN

C5:1/DN

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:0
60

0

T4:0/DN

T4:0/DN

Minutes

Hours

C5:1

C5:0

T4:0

EN

CU

CU

DN

DN

DN

RES

RES

RES

pet73842_ch08_156-183.indd 173 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

174 Chapter 8 Programming Counters

• The photoelectric sensor monitors a reference point
on the conveyor. When activated, it prevents the unit
from counting, thus permitting the counter to accu-
mulate counts only when bar stock is moving.

• The counter is reset by closing the reset button.

8.6 Combining Counter
and Timer Functions
Many PLC applications use both the counter function and
the timer function. Figure 8-34 illustrates an automatic
stacking program that requires both a timer and counter.

of random pieces of bar stock moved on a conveyor. The
operation of the program can be summarized as follows:

• Count input pulses are generated by the magnetic
sensor, which detects passing teeth on a conveyor
drive sprocket.

• If 10 teeth per foot of conveyor motion pass the
sensor, the accumulated count of the counter would
indicate feet in tenths.

Figure 8-32 Cutting objects to a specified length.

Pulses

Rotary
encoder

Programmable
controller

Wood

Cutter
control

Figure 8-31 Optical incremental encoder.
Source: Courtesy of Nidec Avtron Automation.

Optical
encoder

Generated pulses

Optical
sensor

Light
source

Optical
disk

Lines

Figure 8-33 Counter used for length measurement. (a) Process. (b) Program.

(a)

Magnetic
sensor

Sprocket

Conveyor Reflector

Photoelectric
sensor

(b)

Ladder logic program

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:1
10
0

C5:1

Magnetic
sensor

Inputs
Photo
sensor

L1 10 counts per foot

Magnetic
sensor

Reset

Reset

Photo
sensor

CU

DN

RES

pet73842_ch08_156-183.indd 174 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Chapter 8 175

Figure 8-34 Automatic stacking program. (a) Process. (b) Program.

(b)

Ladder logic program

Outputs
L2

Stop

M2

C5:1

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

T4:1
1.0

5
0

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:1
15
0

T4:1

 DN

T4:1

 DN

Stop

T4:1

C5:1

 DN

M1 M2

M1

M1

M2

M2

T4:1

 DN

M2

Photo
sensor

Photo
sensor

Stop

StopStart Start

Inputs
L1

M2 run time

Number of plates

EN

CU

DN

DN

RES

RES

(a)

Complete stack

Metal plates

M1
Conveyor

M2
Conveyor

Light
source

Sensor

pet73842_ch08_156-183.indd 175 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

176 Chapter 8 Programming Counters

• After conveyor M2 has been operated for 5 s, it
stops and the sequence is repeated automatically.

• The done bit of the timer resets the timer and the
counter and provides a momentary pulse to auto-
matically restart conveyor M1.

Figure 8-35 shows a motor lock-out program. This pro-
gram is designed to prevent a machine operator from starting
a motor that has tripped off more than 5 times in an hour.
The operation of the program can be summarized as follows:

• The normally open overload (OL) relay contact momen-
tarily closes each time an overload current is sensed.

In this process, conveyor M1 is used to stack metal plates
onto conveyor M2. The photoelectric sensor provides an
input pulse to the PLC counter each time a metal plate
drops from conveyor M1 to M2. When 15 plates have
been stacked, conveyor M2 is activated for 5 s by the PLC
timer. The operation of the program can be summarized
as follows:

• When the start button is pressed, conveyor M1
begins running.

• After 15 plates have been stacked, conveyor M1
stops and conveyor M2 begins running.

Figure 8-35 Motor lock-out program.
Source: This material and associated copyrights are proprietary to, and used with the permission of Schneider Electric.

Ladder logic program

Outputs
L2

Reset-PB

Reset-PB

C5:0

RES

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

T4:0
1

300
0

EN

5 min

DN

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

T4:1
1

3600
0

EN

1 hr

DN

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:0
6
0

CU

DN

T4:0

EN

T4:0

EN

T4:1

DN

T4:1

DN

C5:0

DN

L

L

U

Motor

Motor

Motor

OL
Lock-out

light

Lock-out
light

Lock-out
light

OL

OL

Reset
PB

OL relay

Stop

Stop

Start

StartInputs
L1

OL

T4:0

 DN

Lock-out
light

pet73842_ch08_156-183.indd 176 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Chapter 8 177

A timer is sometimes used to drive a counter when
an extremely long time-delay period is required. For
example, if you require a timer to time to 1,000,000 s,
you can achieve this by using a single timer and counter.
Figure 8-37 shows how the timer and counter would be
programmed for such a purpose. The operation of the pro-
gram can be summarized as follows:

• Timer T4:0 has a preset value of 10,000, and coun-
ter C5:0 has a preset value of 100.

• Each time the timer T4:0 input contact closes for
10,000 s, its done bit resets timer T4:0 and incre-
ments counter C5:0 by 1.

• When the done bit of timer T4:0 has turned on
and off 100 times, the output light becomes
energized.

• Therefore, the output light turns on after 10,000 ×
100, or 1,000,000, seconds after the timer input
contact closes.

8-7 High-Speed Counters
The maximum counting frequency of a traditional PLC’s
counter is limited by the scan time of the processor. When
the frequency of the input signal is higher than that of
the scan time, it is necessary to utilize a high-speed
counter (HSC), to avoid errors. For example, using an
incremental encoder in a length-measuring application
generally requires the use of a high-speed counter. The

• Every time the motor stops due to an overload
condition, the motor start circuit is locked out for
5 min.

• If the motor trips off more than 5 times in an
hour, the motor start circuit is permanently locked
out and cannot be started until the reset button is
actuated.

• The lock-out pilot light is switched on whenever a
permanent lock-out condition exists.

Figure 8-36 shows a product part flow rate program.
This program is designed to indicate how many parts pass
a given process point per minute. The operation of the
program can be summarized as follows:

• When the start switch is closed, both the timer and
counter are enabled.

• The counter is pulsed for each part that passes the
parts sensor.

• The counting begins and the timer starts timing
through its 1-minute time interval.

• At the end of 1 minute, the timer done bit causes the
counter rung to go false.

• Sensor pulses continue but do not affect the PLC
counter.

• The number of parts for the past minute is repre-
sented by the accumulated value of the counter.

• The sequence is reset by momentarily opening and
closing the start switch.

Figure 8-36 Product flow rate program.
Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

Ladder logic program

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

T4:1
 1.0
60

0

EN

DN

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:1
 0
0

CU

DN

Inputs
L1

Start SW

Start SW

Start SW

Sensor

O� On

Total
parts

1 min timer

T4:1

DN

C5:1

RES

Start SW

Sensor

pet73842_ch08_156-183.indd 177 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

178 Chapter 8 Programming Counters

counter. Only one HSC instruction can be used in a
program.

• The high-speed counter instruction address is fixed
at C5:0.

• This counter instruction can be programmed as
either an up-counter or bidirectional (Up/Down)
counter.

• The hardware counter’s accumulator increments
or decrements in response to external input
signals.

• The input filter response time is the time from the
external input voltage reaching an on or off state
to the micro controller recognizing that change of
state. The higher you set the response time, the lon-
ger it takes for the input state change to reach the
micro controller. However, setting higher response
times also provides better filtering of high frequency
noise.

• When the high-speed counter is enabled, data table
counter C5:0 is used by the ladder program for
monitoring the high-speed counter accumulator and
status.

HSC instruction may be imbedded in the CPU, or fixed
hardware, or a separate module.

Figure 8-38 shows a high-speed up-counter instruction
for an Allen-Bradley MicroLogix controller. This particu-
lar controller has an imbedded high-speed counter that is
able to perform counts of events between the scan of the
program. Then, when the program actually scans through
it can see the count value that the counter has reached.

• The controller has one 20 KHz high-speed coun-
ter, which means it would be able to count 20,000
pulses per second.

• The high-speed counter operates independently of
the controller scan.

• The HSC instruction is used to configure, control,
and monitor the controller’s internal hardware

Figure 8-37 Timer driving a counter to produce an extremely long time-delay period.

Ladder logic program

Timer
input

Timer
input

Timer
inputInput

L1

S1

Light

Output

L2

Light

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

T4:0
1.0

10000
0

EN

DN

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:0
100

0

CU

DN

C5:0

DN

T4:0

DN

T4:0

DN

C5:0

RES

Figure 8-38 Program for Problem 1.

HSC
High-speed counter
Type Up
Counter C5:0
Preset 0
Accum 0

CU

CD

DN

pet73842_ch08_156-183.indd 178 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Chapter 8 179

1. Name the three forms of PLC counter instructions,
and explain the basic operation of each.

2. State four pieces of information usually associated
with a PLC counter instruction.

3. In a PLC counter instruction, what rule applies to
the addressing of the counter and reset instructions?

4. When is the output of a PLC counter energized?

5. When does the PLC counter instruction increment
or decrement its current count?

6. The counter instructions of PLCs are normally
retentive. Explain what this means.

7. a. Compare the operation of a standard Examine-
on contact instruction with that of an off-to-on
transitional contact.

b. What is the normal function of a transitional
contact used in conjunction with a counter?

8. Explain how an OSR (one-shot rising) instruction
can be used to freeze rapidly changing data.

1. Study the ladder logic program in Figure 8-39, and
answer the questions that follow:
a. What type of counter has been programmed?
b. When would output O:2/0 be energized?
c. When would output O:2/1 be energized?

9. Identify the type of counter you would choose for
each of the following situations:
a. Count the total number of parts made during

each shift.
b. Keep track of the current number of parts in a

stage of a process as they enter and exit.
c. There are 10 parts in a full hopper. As parts

leave, keep track of the number of parts remain-
ing in the hopper

10. Describe the basic programming process involved
in the cascading of two counters.

11. a. When is the overflow bit of an up-counter
set?

b. When is the underflow bit of a down-counter
set?

12. Describe two common applications for counters.

13. What determines the maximum speed of transitions
that a PLC counter can count? Why?

d. Suppose your accumulated value is 24 and you
lose ac line power to the controller. When power
is restored to your controller, what will your ac-
cumulated value be?

e. Rung 4 goes true and, while it is true, rung 1
goes through five false-to-true transitions of rung
conditions. What is the accumulated value of the
counter after this sequence of events?

f. When will the count be incremented?
g. When will the count be reset?

2. Study the ladder logic program in Figure 8-40, and
answer the questions that follow:
a. Suppose the input pushbutton is actuated from

off to on and remains held on. How will the
status of output B3:0/9 be affected?

b. Suppose the input pushbutton is now released to
the normally off position and remains off. How
will the status of output B3:0/9 be affected?

3. Study the ladder logic program in Figure 8-41, and
answer the questions that follow:
a. What type of counter has been programmed?
b. What input address will cause the counter to

increment?

CHAPTER 8 REVIEW QUESTIONS

CHAPTER 8 PROBLEMS

Figure 8-39 Program for Problem 1.

Ladder logic program

I:1/1 CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:1
50

0

CU

DN

C5:1/DN O:2/0

C5:1/DN O:2/1

I:1/2 C5:1

Res

Rung 1

Rung 2

Rung 3

Rung 4

pet73842_ch08_156-183.indd 179 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

180 Chapter 8 Programming Counters

c. What input address will cause the counter to
decrement?

d. What input address will reset the counter to a
count of zero?

e. When would output O:6/2 be energized?
f. Suppose the counter is first reset, and then

input I:2/6 is actuated 15 times and input I:3/8
is actuated 5 times. What is the accumulated
count value?

4. Design a PLC program and prepare a typical I/O
connection diagram and ladder logic program for
the following counter specifications:
• Counts the number of times a pushbutton is

closed.
• Decrements the accumulated value of the counter

each time a second pushbutton is closed.

• Turns on a light anytime the accumulated value
of the counter is less than 20.

• Turns on a second light when the accumulated
value of the counter is equal to or greater than 20.

• Resets the counter to 0 when a selector switch is
closed.

5. Design a PLC program and prepare a typical I/O
connection diagram and ladder logic program that
will execute the following control circuit correctly:
• Turns on a nonretentive timer when a switch is

closed (preset value of timer is 10 s).
• Resets timer automatically through a pro-

grammed transitional contact when it times out.
• Counts the number of times the timer goes

to 10 s.
• Resets counter automatically through a second

programmed transitional contact at a count of 5.
• Latches on a light at the count of 5.
• Resets light to off and counter to 0 when a selec-

tor switch is closed.

6. Design a PLC program and prepare a typical I/O
connection diagram and ladder logic program that
will correctly execute the industrial control process
in Figure 8-42. The sequence of operation is as
follows:
• Product in position (limit switch LS1 contacts

close).
• The start button is pressed and the conveyor

motor starts to move the product forward toward
position A (limit switch LS1 contacts open when
the actuating arm returns to its normal position).

• The conveyor moves the product forward to posi-
tion A and stops (position detected by 8 off-to-on
output pulses from the encoder, which are
counted by an up-counter).

• A time delay of 10 s occurs, after which the con-
veyor starts to move the product to limit switch
LS2 and stops (LS2 contacts close when the actu-
ating arm is hit by the product).

Figure 8-40 Program for Problem 2.

L1

Input

B3:0/1

B3:0/1

B3:0/9Input

Input

Figure 8-41 Program for Problem 3.

Ladder logic program

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:2
25

0

CU

DN

I:2/6

CTD
COUNT-DOWN COUNTER
Counter
Preset
Accumulated

C5:2
25

0

CU

DN

C5:2

DN

O:6/2

I:3/8

C5:2

RES

I:4/1

Figure 8-42 Control process for Problem 6.

LS1 LS2

Forward

Position
A

Encoder

pet73842_ch08_156-183.indd 180 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Chapter 8 181

• An emergency stop button is used to stop the pro-
cess at any time.

• If the sequence is interrupted by an emergency
stop, counter and timer are reset automatically.

7. Answer the following questions with reference
to the up/down-counter program shown in Fig-
ure 8-43. Assume that the following sequence of
events occurs:
• Input C is momentarily closed.
• 20 on/off transitions of input A occur.
• 5 on/off transitions of input B occur.

 As a result:
a. What is the accumulated count of counter CTU?
b. What is the accumulated count of counter CTD?
c. What is the state of output A?
d. What is the state of output B?
e. What is the state of output C?

8. Write a program to implement the process
illustrated in Figure 8-44. An up-counter must be
programmed as part of a batch-counting operation
to sort parts automatically for quality control. The
counter is installed to divert 1 part out of every

Figure 8-43 Program for Problem 7.

Input A

PB1

PB2

Reset

Input B

Input C

L1 L2

Ladder logic programInputs Outputs

Input A

Input B

Input C

CU

DN

CD

C5:2

C5:2

C5:2

CTU
COUNT-UP COUNTER
Counter C5:2
Preset 10
Accumulated 0

CTD
COUNT-DOWN COUNTER
Counter C5:2
Preset 10
Accumulated 0

C5:2

CU

DN

CU

DN

Output B

Output C

Output A

RES

Output A

Output B

Output C

A

B

C

Figure 8-44 Control process for Problem 8.

Quality control line

Gate
solenoid drive

Parts conveyer
line

Proximity
switch

pet73842_ch08_156-183.indd 181 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

182 Chapter 8 Programming Counters

kit. The controller must stop the take-up spool
at a predetermined amount of resistors (100). A
worker on the floor will then cut the resistor strip
and place it in the kit. The circuit operates as
follows:
• A start/stop pushbutton station is used to turn the

spool motor drive on and off manually.
• A through-beam sensor counts the resistors as

they pass by.
• A counter preset for 100 (the amount of

resistors in each kit) will automatically stop
the take-up spool when the accumulated count
reaches 100.

• A second counter is provided to count the grand
total used.

• Manual reset buttons are provided for each
counter.

11. Write a program that will latch on a light 20 s after
an input switch has been turned on. The timer will
continue to cycle up to 20 s and reset itself until
the input switch has been turned off. After the third
time the timer has timed to 20 s, the light will be
unlatched.

12. Write a program that will turn a light on when a
count reaches 20. The light is then to go off when a
count of 30 is reached.

13. Write a program to implement the box-stacking
process illustrated in Figure 8-46. This applica-
tion requires the control of a conveyor belt that
feeds a mechanical stacker. The stacker can stack
various numbers of cartons of ceiling tile onto
each pallet (depending on the pallet size and the
preset value of the counter). When the required
number of cartons has been stacked, the conveyor
is stopped until the loaded pallet is removed and
an empty pallet is placed onto the loading area. A
photoelectric sensor will be used to provide count
pulses to the counter after each carton passes by.
In addition to a conveyor motor start/stop station,
a remote reset button is provided to allow the
operator to reset the system from the forklift after
an empty pallet is placed onto the loading area.

1000 for quality control or inspection purposes.
The circuit operates as follows:
• A start/stop pushbutton station is used to turn the

conveyor motor on and off.
• A proximity sensor counts the parts as they pass

by on the conveyor.
• When a count of 1000 is reached, the counter’s

output activates the gate solenoid, diverting the
part to the inspection line.

• The gate solenoid is energized for 2 s, which
allows enough time for the part to continue to the
quality control line.

• The gate returns to its normal position when the
2-s time period ends.

• The counter resets to 0 and continues to
accumulate counts.

• A reset pushbutton is provided to reset the
counter manually.

9. Write a program that will increment a counter’s
accumulated value 1 count every 60 s. A second
counter’s accumulated value will increment 1
count every time the first counter’s accumulated
value reaches 60. The first counter will reset when
its accumulated value reaches 60, and the second
counter will reset when its accumulated value
reaches 12.

10. Write a program to implement the process illus-
trated in Figure 8-45. A company that makes elec-
tronic assembly kits needs a counter to count and
control the number of resistors placed into each

Figure 8-45 Control process for Problem 10.

Spool
motor drive

Through-beam
sensor

Figure 8-46 Control process for Problem 13.

ReflectorCartons of
ceiling tile

Pallet

Sensor

Stacker

pet73842_ch08_156-183.indd 182 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Chapter 8 183

14. Write a program to operate a light according to the
following sequence:
• A momentary pushbutton is pressed to start the

sequence.
• The light is switched on and remains on for 2 s.
• The light is then switched off and remains off

for 2 s.
• A counter is incremented by 1 after this

sequence.
• The sequence then repeats for a total of 4 counts.
• After the fourth count, the sequence will stop and

the counter will be reset to zero.

The operation of this system can be summarized
as follows:
• The conveyor is started by pressing the start

button.
• As each box passes the photoelectric sensor, a

count is registered.
• When the preset value is reached (in this

case 12), the conveyor belt turns off.
• The forklift operator removes the loaded pallet.
• After the empty pallet is in position, the forklift

operator presses the remote reset button, which
then starts the whole cycle over again.

pet73842_ch08_156-183.indd 183 03/11/15 3:58 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

184

LBL

Q2:0

JMP

Q2:0

PL3

PL3

PL2

PL1

PB

Switch

Switch

PL2

PB

PB

PL1 L2L1

OutputsInputs

1

2

3

4

Ladder logic program

PB

9
Program Control

Instructions

Chapter Objectives

After completing this chapter, you will be able to:

 • State the purpose of program control instructions

 • Describe the operation of the master control reset
instruction and develop an elementary program
illustrating its use

 • Describe the operation of the jump instruction and the
label instruction

 • Explain the function of subroutines

 • Describe the immediate input and output instructions
function

 • Describe the forcing capability of the PLC

 • Describe safety considerations built into PLCs and
programmed into a PLC installation

 • Explain the differences between standard and safety PLCs

 • Describe the function of the selectable timed interrupt
and fault routine files

 • Explain how the temporary end instruction can be used
to troubleshoot a program

The program control instructions covered in this
chapter are used to alter the program scan from
its normal sequence. The use of program con-
trol instructions can shorten the time required to
complete a program scan. Portions of the pro-
gram not being utilized at any particular time can
be jumped over, and outputs in specific zones in
the program can be left in their desired states.
Typical industrial program control applications
are explained.

pet73842_ch09_184-206.indd 184 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Program Control Instructions Chapter 9 185

9.1 Program Control
Several output-type instructions, which are often referred
to as override instructions, provide a means of execut-
ing sections of the control logic if certain conditions are
met. These program control instructions allow for greater
program flexibility and greater efficiency in the program
scan. Portions of the program not being utilized at any
particular time can be jumped over, and outputs in specific
zones in the program can be left in their desired states.

Program control instructions are used to enable or dis-
able a block of logic program or to move execution of a
program from one place to another place. Figure 9-1 shows
the Program Control menu tab for the Allen- Bradley
SLC 500 PLC and its associated RSLogix software. The
program control commands can be summarized as follows:

JMP (Jump to Label)—Jump forward/backward to a
corresponding label instruction.
LBL (Label)—Specifies label location.
JSR (Jump to Subroutine)—Jump to a designated
subroutine instruction.
RET (Return from Subroutine)—Exits current sub-
routine and returns to previous condition.

SBR (Subroutine)—Identifies the subroutine program.
TND (Temporary End)—Makes a temporary end
that halts program execution.
MCR (Master Control Reset)—Clears all set non-
retentive output rungs between the paired MCR
instructions.
SUS (Suspend)—Identifies conditions for debugging
and system troubleshooting.

9.2 Master Control Reset Instruction
Hardwired master control relays are used in relay con-
trol circuitry to provide input/output power shutdown of
an entire circuit. Figure 9-2 shows a typical hardwired
master control relay circuit. In this circuit, unless the
master control relay coil is energized, there is no power
flow to the load side of the MCR contacts.

 The equivalent PLC instruction to a Master Control
Relay is the Master Control Reset (MCR) instruction.
This instruction functions in a similar manner to the
hardwired master control relay; that is, when the instruc-
tion is true, the circuit functions normally, and when the
instruction is false, nonretentive outputs are switched off.

Figure 9-2 Hardwired master control relay.
 Source: This material and associated copyrights are proprietary to, and used with the permission of
Schneider Electric.

CR2

MCR

MCR MCR

Master stop
Master start

CR4

CR

M1
OL

CR1

M2
OLM1

L1 L2

MCR

Figure 9-1 Program Control menu tab.

JMP LBL JSR RET SBR TND

Program Control

MCR SUS

Ascii Control Ascii String Micro

pet73842_ch09_184-206.indd 185 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

186 Chapter 9 Program Control Instructions

The programmed MCR instruction is not a substitute for
a hardwired Master Control Relay. It is highly recom-
mended that all PLC systems include a hardwired MCR
and Emergency Stop switches to provide safe, effective
shutdown of I/O power.

A Master Control Reset (MCR) instruction is an out-
put coil instruction that functions like a master control
relay. MCR coil instructions are used in pairs and can
be programmed to control an entire circuit or to con-
trol only selected rungs of a circuit. In the program of
Figure 9-3, the MCR is programmed to control an entire
circuit. The operation of the program can be summa-
rized as follows:

• The section or zone being controlled begins with the
first MCR instruction and ends with the second MCR.

• When the first MCR instruction is false, or disabled,
all nonretentive rungs below it, in this case, outputs
M and PL1, will be de-energized even if the pro-
grammed logic for each rung is true.

• All retentive rungs, in this case SOL, will remain in
their last state.

• Assume the motor M is running and the MCR
instruction becomes disabled. The motor will im-
mediately become de-energized and stop operating.
When the MCR instruction then becomes enabled,
the motor will not revert back to its previous

running state but will have to be restarted via the
start pushbutton.

• Assume the level switch is closed and the MCR in-
struction becomes disabled. Pilot light PL1 will im-
mediately become de-energized even though the level
switch instruction is true and the rung appears to have
logic continuity. When the MCR instruction then be-
comes enabled, PL1 will automatically be energized,
provided the level switch has remained closed.

• Assume solenoid SOL has been latched energized,
both limit switches LS1 and LS2 are open, and the
MCR instruction becomes disabled. Solenoid SOL
will remain energized. When the MCR instruction
then becomes enabled, the SOL will remain ener-
gized, provided both LS1 and LS2 remained open.

• Assume solenoid SOL has been latched de-
energized, both limit switches LS1 and LS2 are
open, and the MCR instruction becomes disabled.
Solenoid SOL will remain de-energized. When the
MCR instruction then becomes enabled, the SOL
will remain de-energized, provided both LS1 and
LS2 remained open.

• Retentive instructions should not normally be
placed within an MCR zone because the MCR zone
maintains retentive instructions in the state last ac-
tive when the instruction disabled.

Figure 9-3 Master Control Reset (MCR) instruction.

ON/OFF

Ladder logic program
L1 L2

Inputs

Level switch PL1

LS1 SOL

LS2 SOL

L

U

Stop Start

M

M M

PL1

When MCR
is de-energized,
all nonretentive
outputs
de-energize.

When MCR
is de-energized,
all retentive
outputs remain
in last state.

Outputs

SOL

ON/OFF

Stop

Start

Level
switch

LS1

LS2

MCR

MCR

pet73842_ch09_184-206.indd 186 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Program Control Instructions Chapter 9 187

Allen-Bradley SLC 500 controllers use the master con-
trol reset instruction to set up single or multiple zones
within a program. The MCR instruction is used in pairs
to disable or enable a zone within a ladder program, and
it has no address. Figure 9-4 shows the programming of
an MCR fenced zone with the zone true. The operation of
the program can be summarized as follows:

• The MCR zone is enclosed by a start fence,
which is a rung with a conditional MCR, and an

end fence, which is a rung with an unconditional
MCR.

• Input A of the start rung is true so all outputs act ac-
cording to their rung logic as if the zone did not exist.

Figure 9-5 shows the programmed MCR fenced zone
with the zone false. The operation of the program can be
summarized as follows:

• When the MCR in the start fence is false, all rungs
within the zone are treated as false. The scan

Figure 9-5 MCR fenced zone with the zone false.

End fence

L1
Inputs

Input C

Input D

Input E

Input A

Input B

L2
Outputs

Output A

Output B

Start fence

OFF

ON

Input C

Input A
Ladder logic program

T4:1
1.0
10
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

Input D

Input E

Input B Output A

Latch output B

Unlatch output B

MCR

MCR

L

EN

DN

U

Figure 9-4 MCR fenced zone with the zone true.

L1 L2
Outputs

Output A

Output B

Inputs

Input C

Input C

Input A

Ladder logic program

T4:1
1.0
10
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

Input D

Input D

Input E

Input E

Input B Output A

Latch output B

Unlatch output B

Start fence

End fence

Active

ON

ON

Input A

Input B

MCR

MCR

DN

EN

L

U

pet73842_ch09_184-206.indd 187 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

188 Chapter 9 Program Control Instructions

ignores the inputs and de-energizes all nonretentive
outputs (that is, the output energize instruction, the
on-delay timer, and the off-delay timer).

• All retentive devices, such as latches, retentive tim-
ers, and counters, remain in their last state. TOF
timers will start timing when the MCR goes false.

• Input A of the start rung is false so output A and
T4:1 will be false and output B will remain in its
last state.

• The input conditions in each rung will have no
effect on the output conditions.

A common application of an MCR zone control in-
volves examining one or more fault bits as part of the start
fence and enclosing the portion of the program you want
de-energized in case of a fault in the MCR zone. In case of
a detected fault condition, the outputs in that zone would
be de-energized automatically.

If you start instructions such as timers or counters
in an MCR zone, instruction operation ceases when
the zone is disabled. The TOF timer will activate when
placed inside a false MCR zone. When troubleshooting
a program that contains an MCR zone, you need to be
aware of which rungs are within zones in order to cor-
rectly edit the circuit.

MCR-controlled areas must contain only two MCR
instructions—one to define the start and one to define the
end. Never overlap or nest MCR zones. Any additional
MCR instructions, or a jump instruction programmed
to jump to an MCR zone, could produce unexpected
and damaging results to your program and to machine
operation.

In addition to controlling power to an entire system,
MCRs are also used when only a portion of a program is
required to be isolated. For example:

• Inhibiting zones of the program while loading recipes.
• Monitoring emergency stops.
• Establishing preconditions to synchronize a ma-

chine on start-up.

9.3 Jump Instruction
In PLC programming it is sometimes desirable to be able
to jump over certain program instructions when certain
conditions exist. The jump (JMP) instruction is an output
instruction used for this purpose. When the jump instruc-
tion is used, the PLC will not execute the instructions of a
rung that is jumped. The jump instruction is often used to
jump over instructions not pertinent to the machine’s op-
eration at that instant. In addition, sections of a program
may be programmed to be jumped should a production
fault occur.

Some manufacturers provide a skip instruction, which
is essentially the same as the jump instruction.

The program of Figure 9-6 illustrates the use of a jump
instruction in conjunction with Allen-Bradley SLC 500
programmable controllers. In this example, Addresses
Q2:0 through Q2:255 are the addresses used for the jump
(JMP) instructions. The Q2 is internal and provided by
the software as you program the JMP instruction. The Q2
simply identifies this as ladder file 2. A JMP instruction in
ladder file 3 would be Q3. The label (LBL) instruction is
a target for the jump instruction.

• The jump instruction with its associated label in-
struction (LBL) must have the same address.

• The area of the program that the processor jumps
over is defined by the locations of the jump and
label instructions in the program.

• When the jump instruction is true, all logic between the
jump and label instructions is bypassed and the proces-
sor continues scanning after the LBL instruction.

• The label instruction must be programmed as the
first instruction on the rung where it resides.

• The label instruction is always true, and the remain-
ing instructions on the rung must make up a verifi-
able rung.

• The instructions to the right of the LBL on the label
rung are outside the jump zone and as such are not
affected by the jump.

The operation of the program can be summarized as
follows:

• When the switch is open the jump instruction is not
activated.

Figure 9-6 Jump (JMP) operation.

LBL

Q2:0

JMP

Q2:0

PL3

PL3

PL2

PL1

PB

Switch

Switch

PL2

PB

PB

PL1 L2L1

OutputsInputs

1

2

3

4

Ladder logic program

PB

pet73842_ch09_184-206.indd 188 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Program Control Instructions Chapter 9 189

• With the switch open, closing PB turns on all three
pilot lights.

• When the switch is closed the jump (JMP) instruc-
tion will activate.

• With the switch closed, pressing PB turns on pilot
lights PL1 and PL3 only.

• Rung 3 is skipped over during the PLC program
scan so PL2 will remain in its last state before the
JMP was enabled.

Figure 9-7 illustrates the effect on input and output in-
structions of jumped rungs in a program. The label in-
struction is used to identify the ladder rung that is the

target destination but does not contribute to logic continu-
ity. For practical purposes the label instruction is always
considered to be logically true. The operation of the pro-
gram can be summarized as follows:

• Rungs 1, 2, 3, 8, 9, 10 are programmed outside of
the jumped section and will always be executed as
normal rungs.

• If rung 4, which contains the JMP instruction, is
false, the Jump instruction is false and the jump is
not executed.

• Rungs 5, 6, and 7 are executed as normal and the
label instruction on rung 8 is transparent.

Figure 9-7 Effect on input and output instructions of jumped rungs.

PL1

L1 L2

Outputs

MM

PL2

Inputs

TS1

LS4SOL3 SOL4

SOL3

PL2

SOL2

SOL1

SOL1

SOL3

LS3

TS1

LS2
LS2

LS1
LS1

LS1

PS1 PL1

PS1

LLS1
LLS1

PB3

PB3

PB2

PB1

PB1 PB2

LS4

SOL2

SOL3

SOL4

1

2

3

4

5

6

7

8

9

10

T4:6
1.0

5
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

M

M

M

T4:6

DN

Heater

JMP

Q2:1

Q2:1

LBL

HeaterHeater

Timers should be
programmed outside
the jumped section.

Jumped program rungs
are not scanned by the
processor.

Input conditions are not
examined, and outputs
remain in their last state.

DN

T4:6

Ladder logic program

LS3

PL2

PL1

EN

DN

pet73842_ch09_184-206.indd 189 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

190 Chapter 9 Program Control Instructions

• When rung 4, containing the JMP instruction, is
true, the processor is instructed to jump to the LBL
target in rung 8 and continue to execute the main
program from that point.

• Instructions to the right of the LBL are out of the
jump zone and are executed as a normal rung.

• Jumped rungs 5, 6, and 7 are not scanned by the
processor.

• Input conditions for the jumped rungs are not exam-
ined and outputs controlled by these rungs remain in
their last state.

• Any timers or counters programmed within the
jump area cease to function and will not update
themselves during this period. For this reason they
are usually programmed outside the jumped section
in the main program zone.

• This is called a forward jump, as we are jumping
forward in the program.

You can jump to the same label from multiple jump
locations, as illustrated in the program of Figure 9-8. In
this example, there are two jump instructions addressed
Q2:5. There is a single label instruction addressed
Q2:5. The scan can then jump from either jump instruc-
tion to label Q2:5, depending on whether input A or
input D is true.

It is possible to jump backward in the program, but this
should not be done an excessive number of times. Care
must be taken that the scan does not remain in a loop too
long. The processor has a watchdog timer that sets the
maximum allowable time for a total program scan. If this
time is exceeded, the processor will indicate a fault and
shut down.

The forward jump is similar to an MCR instruction
in that both permit an input logic condition to skip over
a block of PLC ladder logic. The main difference be-
tween the two is in how the outputs are handled when
the instructions are executed. The MCR instruction sets
all nonretentive outputs to the false state and keeps the
retentive outputs in their last state. The JMP instruction
leaves all outputs in their last state. You should never
jump into a Master Control Reset zone. If you do, in-
structions that are programmed within the MCR zone
starting at the LBL instruction and ending at the end
MCR instruction will always be evaluated as though the
MCR zone is true, without consideration to the state of
the start MCR instruction.

9.4 Subroutine Functions
In addition to the main ladder logic program, PLC pro-
grams may also contain additional program files known
as subroutines. A subroutine is a short program that is
used by the main program to perform a specific func-
tion. Large programs are often broken into subroutine
program files, which are called and executed from the
main program. In the SLC 500 series PLCs, the main
ladder logic program is in program file two (shown as
LAD 2). Ladder logic programs for subroutines can be
placed in file number three (LAD 3) through file number
255 (LAD 255).

Use of subroutines is a valuable tool in PLC program-
ming. At times it is better to construct programs that
consist of several subroutines than a lengthy single pro-
gram. When programs are written with subroutines, each
subroutine can be tested individually for functionality.
These subroutines can then be called from the main pro-
gram as illustrated in Figure 9-9.

Figure 9-8 Jump-to-label from two locations.

Q2:5Input A

Ladder logic program

Output AInput B

Q2:5Input D

Output CInput E

Output DQ2:5

LBL

Input F

JMP

JMP

Figure 9-9 Main program with a call from a subroutine.

Main program rungs

Jumps

Unconditional return

Subroutine area

Returns to next
instruction after JSR

JSR

SBR

RET

pet73842_ch09_184-206.indd 190 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Program Control Instructions Chapter 9 191

When a subroutine is called from the main pro-
gram, the program is able to escape from the main
program and go to a program subroutine to perform
certain functions and then return to the main program.
In situations in which a machine has a portion of its
cycle that must be repeated several times during one
machine cycle, the subroutine can save a great deal of
duplicate programming. The sequence of rungs could
be programmed one time into a subroutine and just
called when needed.

The subroutine concept is the same for all program-
mable controllers, but the method used to call and return
from a subroutine uses different commands, depending on
the PLC manufacturer. The subroutine-related instructions
used in the Allen-Bradley PLCs shown in Figure 9-10 are
the jump to subroutine (JSR) output instruction, the sub-
routine (SBR) input instruction, and the return (RET) out-
put instruction.

The subroutine instructions can be summarized as
follows:

Jump to Subroutine (JSR)—The JSR instruction
redirects logic execution from the current ladder
file to the specific subroutine file. When rung condi-
tions are true for this output instruction, it causes
the processor to jump to the targeted subroutine file.
Each subroutine must have a unique file number
(decimal 3–255).
Subroutine (SBR)—The SBR instruction is the first
input instruction on the first rung in the subroutine
file. It serves as an identifier that the program file is
a subroutine. This file number is used in the JSR in-
struction to identify the target to which the program
should jump. It is always true, and although its use is
optional, it is still recommended.
Return (RET)—The RET instruction is an output
instruction that marks the end of the subroutine file.
It causes the scan to return to the main program at the
instruction following the JSR instruction where it ex-
ited the program. The scan returns from the end of the
file if there is no RET instruction. The rung containing

the RET instruction may be conditional if this rung
precedes the end of the subroutine. In this way, the
processor omits the balance of a subroutine only if its
rung condition is true.

The jump to subroutine (JSR), subroutine (SBR), and
return (RET) instructions are used to direct the controller
to execute a subroutine file. Figure 9-11 shows a materials
conveyor system with a flashing pilot light as a subrou-
tine. The operation of the program can be summarized as
follows:

• If the weight on the conveyor exceeds a preset
value, the solenoid is de-energized and pilot light
PL1will begin flashing.

• When the weight sensor switch closes, the JSR is
activated and directs the processor scan to jump to
the subroutine U:3.

• The subroutine program is scanned and pilot light
PL1 begins flashing.

• When the weight sensor switch opens, the proces-
sor will no longer scan the subroutine area and pilot
light PL1 will return to its normal on state.

The Allen-Bradley SLC 500 controller main program
is located in program file 2 whereas subroutines are as-
signed to program file numbers 3 to 255. Each subroutine
must be programmed in its own program file by assigning
it a unique file number. Figure 9-12 illustrates the proce-
dure for setting up a subroutine and can be summarized
as follows:

• Note each ladder location where a subroutine should
be called.

• Create a subroutine file for each location.
Each subroutine file should begin with an SBR
instruction.

• At each ladder location where a subroutine is called,
program a JSR instruction specifying the subroutine
file number.

• The RET instruction is optional.
 – The end of a subroutine program will cause a

return to the main program.
 – If you want to end a subroutine program before it

executes to the end of program file, a conditional
return (RET) instruction may be used.

Nesting subroutines allows you to direct program flow
from the main program to a subroutine and then to another
subroutine, as illustrated in Figure 9-13. Nested subrou-
tines make complex programming easier and program op-
eration faster because the programmer does not have to
continually return from one subroutine to enter another.

Figure 9-10 Allen-Bradley subroutine-related instructions.

JSR
JUMP-TO-SUBROUTINE
SBR file number U:3

SBR
SUBROUTINE

RET
RETURN

pet73842_ch09_184-206.indd 191 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

192 Chapter 9 Program Control Instructions

(a)

Solenoid

Weight
sensor

Pilot light

Figure 9-11 Flashing pilot light subroutine. (a) Process. (b) Program.

OFF/ON

Sensor

Sensor

Sensor

SBR
SUBROUTINE

Main program
file 2

Subroutine
file 3

(b)

L1 L2

Inputs

Stop

Stop

M1

Outputs

PL1

PL1

OFF/ON SOL

SOL

Motor

Motor

Motor

T4:1/EN

T4:0/DN

T4:1/DN

JSR
JUMP-TO-SUBROUTINE
SBR file number

T4:0
1.0

1
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

DN

EN

T4:1
1.0

1
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

DN

EN

RET
RETURN

U:3

Sensor

PL1

Start

Start

pet73842_ch09_184-206.indd 192 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Program Control Instructions Chapter 9 193

9.5 Immediate Input and Immediate
Output Instructions
The PLC input scan normally records the inputs before the
program scan, and the output scan normally updates the
outputs after the program scan. Immediate I/O instruc-
tions allow you to update data prior to the normal input
scan as illustrated in Figure 9-14.

Immediate I/O instructions interrupt the normal pro-
gram scan to update the input image table file with cur-
rent input data or to update an output module group with
the current output image table file data. Allen-Bradley
SLC 500 PLC’s immediate I/O instructions are called
immediate input with mask (IIM) and immediate
output with mask (IOM).

• Masking is a means of selectively screening out
data.

• Masking allows the programmer to specify which
of the 16 bits are to be copied from an input module
to the input image data table (or from the output
image table to an output module).

• The other bits in the input image table or output
module are not affected by these instructions.

The immediate input with mask (IIM) instruction is
shown in Figure 9-15. The IIM instruction operates on
the inputs assigned to a particular word of a slot. When
the IIM rung is true, the program scan is interrupted, and
data from a specific input slot are transferred through the
mask to the input data file. These data are then available

Figure 9-12 Setting up a subroutine file.

JSR
JUMP-TO-SUBROUTINE
SBR file number 3

Main program
file 2

SBR
SUBROUTINE

RET
RETURN

Subroutine
file 3

Figure 9-13 Nested subroutines.

JSR
JUMP-TO-SUBROUTINE
SBR file 3

JSR
JUMP-TO-SUBROUTINE
SBR file 4

Main program
file 2

SBR
SUBROUTINE

RET
RETURN

Level 1
 file 3

JSR
JUMP-TO-SUBROUTINE
SBR file 5

SBR
SUBROUTINE

RET
RETURN

Level 2
 file 4

SBR
SUBROUTINE

RET
RETURN

Level 3
 file 5

Programming nested subroutines may cause scan time
problems because while the subroutine is being scanned,
the main program is not. Excessive delays in scanning the
main program may cause the outputs to operate later than
required. This situation may be avoided by updating criti-
cal I/O using immediate input and/or immediate output
instructions.

pet73842_ch09_184-206.indd 193 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

194 Chapter 9 Program Control Instructions

to the commands in the ladder following the IIM in-
struction. The following parameters are entered in the
instruction:

Slot Specifies the slot and word that contain the data
to be updated. For example, I:3.0 means the input of
slot 3, word 0.
Mask Specifies either a hex constant or a register
address. For the mask, a 1 in the bit position passes
data from the source to the destination. A 0 inhibits
or blocks bits from passing from the source to the
destination.
Length Used to transfer more than one word per
slot.

The program operation of the instruction is summarized
as follows:

• The IIM instruction retrieves data from I:1.0 and
passes it through the mask.

• The mask permits only the four least significant bits
to be moved to the input register I:1.0.

• This allows the programmer to update only sections
of the inputs to be used throughout the rest of the
program.

The immediate output with mask (IOM) instruction
is shown in Figure 9-16. The IOM operates on the
physical outputs assigned to a particular word of a
slot. When the IOM rung is true, the program scan
is interrupted to update output data to the module lo-
cated in the slot specified in the instruction. These
data are then available to the commands in the lad-
der following the IOM instruction. The parameters
entered are basically the same as those entered for the
IIM instruction.

Processor communication with the local chassis is
many times faster than communication with the remote
chassis. This is due to the fact that local I/O scan is
synchronous with the program scan and communication
is in parallel with the processor, whereas the remote
I/O scan is asynchronous with the program scan and
communication with remote I/O is serial. For this rea-
son, fast-acting devices should be wired into the local
chassis.

ControlLogix PLCs have no immediate input instruc-
tion as they use asynchronous I/O control compared to the
SLC 500 controllers which use synchronous I/O control.
ControlLogix controllers do have an immediate output
(IOT) instruction, which operates the same as the immedi-
ate output instruction for the SLC 500. Figure 9-17 shows
an example of the IOT instruction. In this example, when
the IOT instruction executes, it immediately updates the
entire output module Local:3:0. When you use the in-
struction to update the output card, address the entire card
(Local:3:0), and not the individual outputs (Local:3:0.
Data 0).

Figure 9-14 Immediate I/O instructions.

Read inputs

Write inputs

Immediate output

Immediate input
Program

logic scan

I/O Data files

1 1 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Figure 9-15 Immediate input with mask (IIM) instruction.

IIM IOM SYC MSG IIE IID

Input/Output Compare Compute/Math

RPI REF

Move/Logic

IIM
Immediate Input w/ Mask

Slot
Mask
Length

I:1.0
000Fh

1

Figure 9-16 Immediate output with mask (IOM) instruction.

IIM IOM SYC MSG IIE IID

Input/Output Compare Compute/Math

RPI REF

Move/Logic

IOM
Immediate Output w/ Mask

Slot
Mask
Length

O:4.0
0FFFh

2

Figure 9-17 ControlLogix immediate output instruction.

Label_Sensor

Label_Sensor

Immediate output
Update tag Local:3:0

IOT

pet73842_ch09_184-206.indd 194 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Program Control Instructions Chapter 9 195

9.6 Forcing External I/O Addresses
The force function is essentially a manual override con-
trol function. Forcing allows the PLC user to turn an ex-
ternal input or output on or off from the keyboard of the
programming device. This is accomplished regardless of
the actual state of the field device. The forcing capability
allows a machine or process to continue operation until a
faulty field device can be repaired. It is also valuable dur-
ing start-up and troubleshooting of a machine or process
to simulate the action of portions of the program that have
not yet been implemented.

Forcing inputs manipulates the input image table file
bits and thus affects all areas of the program that use those
bits. The forcing of inputs is done just after the input scan.
When we force an input address, we are forcing the sta-
tus bit of the instruction at the I/O address to an on or
off state. Figure 9-18 illustrates how an input is forced

on. The operation of the program can be summarized as
follows:

• The processor ignores the actual state of input limit
switch I:1/3.

• Although limit switch I:1/3 is off (0 or false) the
processor considers it as being in the on (1 or true)
state.

• The program scan records this, and the program is
executed with this forced status.

• In other words, the program is executed as if the
limit switch were actually closed.

Forcing outputs affects only the addressed output termi-
nal. Therefore, since the output image table file bits are un-
affected, your program will be unaffected. When we force
an output address, we are forcing only the output terminal
to an on or off state. The status bit of the output instruction

OFF

Input image table

1

Input module

I:1/3

Field input
device

Programming terminal
forces the state of
input I:1/3 ON (1)

O:2/5

O:2/5 O:2/6

Ladder logic program

I:1/3

M

L2

OutputsInput

OFF
ON

ON

L1

Force> ON
O:2/5

O:2/6

I:1/3

Ladder
logic

program

Forces Installed

Forces Enabled

Remote Run

Actual state of input
device (0) ignored

Figure 9-18 Forcing an input on.

pet73842_ch09_184-206.indd 195 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

196 Chapter 9 Program Control Instructions

at the address is usually not affected. Figure 9-19 illustrates
how an output is forced on. The operation of the program
can be summarized as follows:

• The processor ignores the actual state of solenoid
output O:2/5.

• The programming device sets the force state in the
output force data file and the PLC implements the
force to turn solenoid output O:2/5 on even though
the output image table file indicates that the user
logic is setting the point to off.

• M output O:2/6 remains off because the status
bit of output O:2/5 is not affected by the force
instruction.

• Not all brands of PLCs operate this way. For ex-
ample, forcing an output with a GE Fanuc controller
will cause the contacts that have the same address as
the output to also change to the appropriate state.

Overriding of physical inputs on conventional relay
control systems can be accomplished by installing

hardwire jumpers. With PLC control, hardwire jump-
ers are not necessary because the input data table
values can be forced to an on or off state. The force
function allows you to override the actual status of
external input circuits by forcing external data bits on
or off. Similarly, you can override the processor logic
and status of output data file bits by forcing output bits
on or off. By forcing outputs off, you can prevent the
controller from energizing those outputs even though
the ladder logic, which normally controls them, may
be true. In other instances, outputs may be forced on
even though logic for the rungs controlling those out-
puts may be false.

Figure 9-20 shows the forces version of the data table
with bit I:1/3 forced on. You can enter and enable or dis-
able forces while you are monitoring your file offl ine, or
in any processor mode while monitoring your file online.
With RSLogix 500 software, the steps are as follows:

1. Open the program file in which you want to force
the logic on or off.

Figure 9-19 Forcing an output on.

O:2/5

O:2/5 O:2/6

Ladder logic program

I:1/3

M

L2

OutputsInput

OFF
ON

OFF

L1

Force> ON

Force> ON

O:2/5

O:2/6

I:1/3

Ladder
logic

program
Forces Installed

Forces Enabled

Remote Run

Output image table

Status of bit
O:2/5 remains
at 0

Field output
devices

O:2/5

O:2/6
OFF

ON

Output module

M
0 0

pet73842_ch09_184-206.indd 196 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Program Control Instructions Chapter 9 197

2. With the right mouse button, click the I/O bit you
want to force.

3. From the menu that appears, select Go to Data Table
or select Force On or Force Off.

4. From the associated data table that appears, click on
the Forces button.

5. The Forces version of the data table appears with
the selected bit highlighted. Click on this bit
with the right mouse button.

6. From the menu that appears, you can force the
selected bit on or off.

Exercise care when you use forcing functions. If
used incorrectly, force functions can cause injuries
to persons working around a system, and/or equip-
ment damage. For this reason, forcing functions should
be used only by personnel who completely understand
the circuit and the process machinery or driven equip-
ment (Figure 9-21). You must understand the potential
effect that forcing given inputs or outputs will have on
machine operation in order to avoid possible personal
injury and equipment damage. Before using a force
function, check whether the force acts on the I/O point
only or whether it acts on the user logic as well as on the
I/O point. Most programming terminals and PLC CPUs
provide some visible means of alerting the user that a
force is in effect.

In situations in which rotating equipment is involved,
the force instruction can be extremely dangerous. For
example, if maintenance personnel are performing routine
maintenance on a de-energized motor, the machine may
suddenly become energized by someone forcing the motor
to turn on. This is why a hardwired master control circuit
is required for the I/O rack. The hardwired circuit will pro-
vide a method of physically removing power to the I/O
system, thereby ensuring that it is impossible to energize
any inputs or outputs when the master control is off.

9.7 Safety Circuitry
Sufficient emergency circuits must be provided to stop
either partially or totally the operation of the controller or
the controlled machine or process. These circuits should
be hardwired outside the controller so that in the event
of total controller failure, independent and rapid shut-
down is available.

Figure 9-22 shows typical safety wiring requirements
for a PLC installation. The safety requirements of this
installation can be summarized as follows:

• A main disconnect switch is installed on the incom-
ing power lines as a means of removing power from
the entire programmable controller system.

• The main power disconnect switch should be
located where operators and maintenance personnel
have quick and easy access to it. Ideally, the discon-
nect switch is mounted on the outside of the PLC
enclosure so that it can be accessed without opening
the enclosure.

• In addition to disconnecting electrical power, you
should de-energize, lock out, and tag all other
sources of power (pneumatic and hydraulic) before
you work on a machine or process controlled by the
controller.

• An isolation transformer is used to isolate the con-
troller from the main power distribution system and
step the voltage down to 120 VAC.

Figure 9-20 Forces version of the data table with bit I:1/3
forced on.

O�set 15

.

14

.

13

.

12

.

11

.

10

.

9

.

8

.

7

.

6

.

5

.

4

.

2

.

.

1

.

.

0

.

.

3

1I:1.0

I:2.0 .

Data File I1 (bin) . . INPUT Forces

Radix:

Columns:Symbol:

Desc:

Enable Remove All Data File Help

I:1.0/3

Figure 9-21 Exercise care when you use forcing functions.
 Source: Courtesy Givens Engineering Inc.

pet73842_ch09_184-206.indd 197 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

198 Chapter 9 Program Control Instructions

• A hardwired master control relay is included to pro-
vide a convenient means for emergency controller
shutdown. Because the master control relay allows
the placement of several emergency-stop switches
in different locations, its installation is important
from a safety standpoint.

• Overtravel limit switches or mushroom head emer-
gency stop pushbuttons are wired in series so that
when one of them opens, the master control is
de-energized.

• This removes power to input and output device
circuits. Power continues to be supplied to the
controller power supply so that any diagnostic

indicators on the processor module can still be
observed.

• Note that the master control relay is not a substitute
for a disconnect switch. When you are replacing
any module, replacing output fuses, or working on
equipment, the main disconnect switch should be
pulled and locked out.

The master control relay must be able to inhibit all
machine motion by removing power to the machine I/O
devices when the relay is de-energized. This hardwired
electromechanical component must not be dependent
on electronic components (hardware or software). Any
part can fail, including the switches in a master control

L

Power
mains

Main disconnect switch

Step-down
isolation transformer

Fuse 120
VAC

Emergency stop switches

Emergency
stop

Overtravel
limit

switch

Stop Start
MCR

Machine
start/stop
buttons

Master
control
relay

PLC Control Panel

PLC power
supply

GND

L3
L2
L1

MCR

L 1 2

MCR

L1 L2

PLC output module

PLC input module

L287654321L1

L287654321L1

Figure 9-22 Safety wiring requirements for a PLC installation.
 Source: Courtesy Minarik Automation & Control.

pet73842_ch09_184-206.indd 198 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Program Control Instructions Chapter 9 199

relay circuit. The failure of one of these switches would
most likely cause an open circuit, which would be a safe
power-off failure. However, if one of these switches shorts
out, it no longer provides any safety protection. These
switches should be tested periodically to ensure that they
will stop machine motion when needed. Never alter these
circuits to defeat their function. Serious injury or machine
damage could result.

Safety PLCs, such as the one shown in Figure 9-23,
are now available for applications that require more ad-
vanced safety functionality. A safety PLC is typically
certified by third parties to meet rigid safety and reliabil-
ity requirements of international standards. Both stan-
dard and safety PLCs have the ability to perform control
functions but a standard PLC was not initially designed
to be fault tolerant and fail-safe. That is the fundamental
difference.

Some of the differences between standard and safety
PLCs include the following:

• A standard PLC has one microprocessor that
executes the program, Flash memory area that
stores the program, RAM for making calcula-
tions, ports for communications, and I/O for
detection and control of the machine. In contrast,
a safety PLC has redundant microprocessors,
Flash and RAM that are continuously moni-
tored by a watchdog circuit, and a synchronous
detection circuit. Redundancy is duplication. The
probability of hazards arising from one malfunc-
tion in an electrical circuit can be minimized
by creating partial or complete redundancy
(duplication).

• Standard PLC inputs provide no internal means for
testing the functionality of the input circuitry. By
contrast, safety PLCs have an internal output circuit
associated with each input for the purpose of testing
the input circuitry. Inputs are driven both high and
low for very short cycles during runtime to verify
their functionality.

• Safety PLCs use power supplies designed specifi-
cally for use in safety control systems and redun-
dant backplane circuitry between the controller and
I/O modules.

Safety considerations should be developed as part
of the PLC program. A PLC program for any applica-
tion will be only as safe as the time and thought spent
on both personnel and hardware considerations make
it. One such consideration involves the use of a motor
starter auxiliary seal-in contact, shown in Figure 9-24,
in place of the programmed contact referenced to the
output coil instruction. The use of the field-generated
starter auxiliary contact status in the program is more
costly in terms of field wiring and hardware, but it is
safer because it provides positive feedback to the pro-
cessor about the exact status of the motor. Assume, for
example, that the OL contact of the starter opens under
an overload condition. The motor, of course, would stop
operating because power would be lost to the starter coil.
If the program was written using an examine-on con-
tact instruction referenced to the output coil instruction
as the seal-in for the circuit, the processor would never
know that power had been lost to the motor. When the
OL was reset, the motor would restart instantly, creating
a potentially unsafe operating condition.

71246

11

5

1 2

10

3 7

8

9

Number Feature
 1 Module status indicators
 2 Alphanumeric display
 3 Node address switches
 4 Baud rate switches
 5 USB port
 6 DeviceNet communication connector
 7 Terminal connectors
 8 Input status indicators
 9 Output status indicators
10 IP address display switch
11 Ethernet connector
12 Service switch

Figure 9-23 Safety PLC.
 Source: Image Courtesy of Rockwell Automation, Inc.

pet73842_ch09_184-206.indd 199 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

200 Chapter 9 Program Control Instructions

Another safety consideration concerns the wiring of
stop buttons. A stop button is generally considered a
safety function as well as an operating function. As such,
all stop buttons should be wired using a normally closed
contact programmed to examine for an on condition
(Figure 9-25). Using a normally open contact programmed
to examine for an off condition will produce the same
logic but is not considered to be as safe. Assume that the
latter configuration is used. If, by some chain of events,
the circuit between the button and the input point were to
be broken, the stop button could be depressed forever, but
the PLC logic could never react to the stop command be-
cause the input would never be true. The same holds true
if power were lost to the stop button control circuit. If the
normally closed wiring configuration is used, the input
point receives power continuously unless the stop func-
tion is desired. Any faults occurring with the stop circuit
wiring, or a loss of circuit power, would effectively be
equivalent to an intentional stop.

9.8 Selectable Timed Interrupt
The selectable timed interrupt (STI) instruction is used
to interrupt the scan of the main program file automati-
cally, on a time basis, to scan a specified subroutine file.
For Allen-Bradley SLC 500 controllers, the time base at
which the program file is executed and the program file
assigned as the selectable timed interrupt file are deter-
mined by the values stored in words S:30 and S:31 of the
status section of the data files. The value in S:30 stores
the time base, which may be from 1 through 32,767, at
10 millisecond increments. Word S:31 stores the pro-
gram file assigned as the selectable interrupt file, which
may be any program file from 3 through 999. Entering
a 0 in the time-base word disables the selectable timed
interrupt.

Programming the selectable timed interrupt is done
when a section of program needs to be executed on a
time basis rather than on an event basis. For example, a

L1 L2Stop

Stop

Start

Start

OL

OutputInputs Ladder logic program

Main power
contact

Auxiliary
contact

M

M

M

Starter
auxiliary
contact

Starter
auxiliary
contact

Figure 9-24 Motor starter programmed using the starter auxiliary seal-in contact.
 Source: Image Courtesy of Rockwell Automation, Inc.

L1

Inputs Ladder logic program

Stop M

M

L2

OL

Output

MMStop

Start

Start

Figure 9-25 Wiring of stop buttons.

pet73842_ch09_184-206.indd 200 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Program Control Instructions Chapter 9 201

program may require certain calculations to be executed
at a repeatable time interval for accuracy. These calcula-
tions can be accomplished by placing this programming
in the selectable timed-interrupt file. This instruction can
also be used for process applications that require periodic
lubrication.

The immediate input and immediate output instruc-
tions are often located in a selectable timed interrupt file,
so that a particular section of program is updated on a
timed basis. This process could be done on a high-speed
line, when items on the line are being examined and the
rate at which they pass the sensor is faster than the scan
time of the program. In this way, the item can be scanned
multiple times during the program scan, and the appro-
priate action may be taken before the end of the scan.

The selectable timed disable (STD) instruction
is generally paired with the selectable timed enable
(STE) instruction to create zones in which STI inter-
rupts cannot occur. Figure 9-26 illustrates the use of

the STD and STE instructions and can be summarized
as follows:

• In this program, STI is assumed to be in effect.
• The STD and STE instructions in rungs 6 and 12

are included in the ladder program to avoid having
STI subroutine execution at any point in rungs 7
through 11.

• The STD instruction (rung 6) resets the STI enable
bit, and the STE instruction (rung 12) sets the
enable bit again.

• The SELECTABLE TIMED ENABLE instruction
of rung 0 is triggered by the first pass bit status file
S:1/15. The first pass bit, S:1/15, will only be true
for the first scan through ladder file 3 when the PLC
processor goes into the run mode. On subsequent
scans, S:1/15 will not be true. This ensures that the
STI function is initialized after each power cycle.

9.9 Fault Routine
Allen-Bradley SLC 500 controllers allow you to designate
a subroutine file as a fault routine. If used, it determines
how the processor responds to a programming error. The
program file assigned as the fault routine is determined
by the value stored in word S:29 of the status file. Enter-
ing a 0 in word S:29 disables the fault routine.

There are two kinds of major faults that result in a
processor fault: recoverable and nonrecoverable faults.
When the processor detects a major fault, it looks for a
fault routine. If a fault routine exists, it is executed; if one
does not exist, the processor shuts down. When there is a
fault routine, and the fault is recoverable, the fault routine
is executed. If the fault is nonrecoverable, the fault rou-
tine is scanned once and shuts down. Either way, the fault
routine allows for an orderly shutdown.

9.10 Temporary End Instruction
The temporary end (TND) instruction is an output
instruction used to progressively debug a program or
conditionally omit the balance of your current program
file or subroutines. When rung conditions are true, this
instruction stops the program scan, updates the I/O, and
resumes scanning at rung 0 of the main program file.

Figure 9-27 illustrates the use of the TND instruction
in troubleshooting a program. The TND instruction lets
your program run only up to this instruction. You can
move it progressively through your program as you debug
each new section. You can program the TND instruction
unconditionally, or you can condition its rung according
to your debugging needs.

S:1

15

2

1

0

Program file 3

3

4

5

8

9

10

7

14

15

16

17

13

11

STE
SELECTABLE TIMED ENABLE

6
STD
SELECTABLE TIMED DISABLE

12
STE
SELECTABLE TIMED ENABLE

End

STI execution
will not occur
between STD

and STE.

Figure 9-26 Selectable timed disable (STD) and selectable
timed enable (STE) instructions.

pet73842_ch09_184-206.indd 201 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

202 Chapter 9 Program Control Instructions

9.11 Suspend Instruction
The suspend (SUS) instruction is used to trap and iden-
tify specific conditions during system troubleshooting
and program debugging. Figure 9-28 shows a suspend
instruction in a ladder logic rung. The execution of the
instruction can be summarized as follows:

• When you program the SUS instruction, you must
enter a suspend ID number (number 100 is used in
this example).

• When the rung is true, the SUS output
instruction places the controller in the suspend
mode and the PLC immediately terminates
scan cycling.

• All ladder logic outputs are de-energized, but other
status files have the data present when the suspend
instruction is executed.

• The SUS instruction writes the suspend ID number
(100) to S:7 as it executes.

• You can include several SUS instructions in a pro-
gram, each with a different suspend ID and read S:7
to determine which SUS instruction caused the PLC
to halt.

• Status file S:8 will contain the number of the pro-
gram file that was executing when the SUS instruc-
tion executed.

T4:2
1.0

5
0

DN

ENTON
TIMER ON DELAY
Timer
Time base (sec)
Preset
Accumulated

SW 12

T4:3
1.0
50

0

DN

ENRTO
RETENTIVE TIMER ON
Timer
Time base (sec)
Preset
Accumulated

SW 3

LT4T4:2

DN

TND

SW 13

L

SW 1

U

LT1

LT1SW 2

RES

T4:3PB 1

Main program

Remainder of main program

Temporary end

L1
Inputs

SW 13

Figure 9-27 Temporary end (TND) instruction.

100
Suspend
Suspend ID

SUS

Figure 9-28 Suspend (SUS) instruction.

pet73842_ch09_184-206.indd 202 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Program Control Instructions Chapter 9 203

1. a. Two MCR output instructions are to be pro-
grammed to control a section of a program.
Explain the programming procedure to be
followed.

b. State how the status of the output devices within
the fenced zone will be affected when the MCR
instruction makes a false-to-true transition.

c. State how the status of the output devices within
the fenced zone will be affected when the MCR
instruction makes a true-to-false transition.

2. What is the main advantage of the jump
instruction?

3. What types of instructions are not normally in-
cluded inside the jumped section of a program?
Why?

4. a. What is the purpose of the label instruction in
the jump-to-label instruction pair?

b. When the jump-to-label instruction is executed,
in what way are the jumped rungs affected?

5. a. Explain what the jump-to-subroutine instruction
allows the program to do.

b. In what type of machine operation can this
instruction save a great deal of duplicate
programming?

6. What advantage is there to the nesting of
subroutines?

7. a. When are the immediate input and immediate
output instructions used?

b. Why is it of little benefit to program an immedi-
ate input or immediate output instruction near
the beginning of a program?

8. a. What does the forcing capability of a PLC allow
the user to do?

b. Outline two practical uses for forcing functions.
c. Why should extreme care be exercised when

using forcing functions?

9. Why should emergency stop circuits be hardwired
instead of programmed?

10. State the function of each of the following in the
basic safety wiring for a PLC installation:
a. Main disconnect switch
b. Isolation transformer
c. Emergency stops
d. Master control relay

11. Compare standard and safety PLCs with regard to:
a. Processors
b. Input circuitry
c. Output circuitry
d. Power supplies

12. When programming a motor starter circuit, why is
it safer to use the starter seal-in auxiliary contact
in place of a programmed contact referenced to the
output coil instruction?

13. When programming stop buttons, why is it safer
to use an NC pushbutton programmed to examine
for an on condition than an NO pushbutton pro-
grammed to examine for an off condition?

14. Explain the selectable timed interrupt function.

15. Explain the function of the fault routine file.

16. How is the temporary end instruction used to trou-
bleshoot a program?

CHAPTER 9 REVIEW QUESTIONS

c. With switches S2 and S3 still on, switch S1 is
turned off. Will both outputs PL1 and PL2 de-
energize? Why?

d. With all other switches off, switch S6 is turned
on. Will the timer time? Why?

e. With switch S6 still on, switch S5 is turned on.
Will the timer time? Why?

f. With switch S6 still on, switch S5 is turned off.
What happens to the timer? If the timer was an

CHAPTER 9 PROBLEMS

1. Answer the questions, in sequence, for the MCR
program in Figure 9-29, assuming the program has
just been entered and the PLC is placed in the RUN
mode with all switches turned off.
a. Switches S2 and S3 are turned on. Will outputs

PL1 and PL2 come on? Why?
b. With switches S2 and S3 still on, switch S1 is

turned on. Will output PL1 or PL2 or both come
on? Why?

pet73842_ch09_184-206.indd 203 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

204 Chapter 9 Program Control Instructions

RTO type instead of a TON, what would happen
to the accumulated value?

2. Answer the questions, in sequence, for the jump-to-
label program in Figure 9-30. Assume all switches
are turned off after each operation.
a. Switch S3 is turned on. Will output PL1 be ener-

gized? Why?
b. Switch S2 is turned on first, then switch S5

is turned on. Will output PL4 be energized?
Why?

c. Switch S3 is turned on and output PL1 is ener-
gized. Next, switch S2 is turned on. Will output
PL1 be energized or de-energized after turning
on switch S2? Why?

d. All switches are turned on in order according
to the following sequence: S1, S2, S3, S5, S4.
Which pilot lights will turn on?

Figure 9-29 Program for Problem 1.

L1 L2
OutputsInputs Ladder logic program

MCR

MCR

S5

EN

DN

S6

MCR

S1

MCR

S2 PL1

S3

L

PL2

S4

U

PL2

1

2

3

4

5

6

7

8

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

T4:1
1:0
10
0

S2

S3

S4

S5

S6

PL1

PL2

S1

Figure 9-30 Program for Problem 2.

S4
10

LBL

L1 L2

OutputsInputs

S1

Ladder logic program

10

JMP

1

S2

S3

S5

2

4

3

5

PL1

PL4

PL3

PL2

PL2

PL3

PL4

PL1

S2

S3

S4

S5

S1

pet73842_ch09_184-206.indd 204 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Program Control Instructions Chapter 9 205

3. Answer the questions, in sequence, for the jump-
to-subroutine and return program in Figure 9-31.
Assume all switches are turned off after each
operation.
a. Switches S1, S3, S4, and S5 are all turned

on. Which pilot light will not be turned on?
Why?

b. Switch S2 is turned on and then switch S4
is turned on. Will output PL3 be energized?
Why?

c. To what rung does the RET instruction return the
program scan?

4. Answer the questions, in sequence, for Figure 9-32.
Assume all switches are turned off after each
operation.
a. Switches S2, S12, and S5 are turned on in order.

Will output PL5 be energized? Why?
b. All switches except S7 are turned off. Will RTO

start timing? Why?
c. Switches S3 and S8 are turned on in order. Will

pilot light PL2 come on? Why?
d. When will timer TON function?
e. Assume all switches are turned on. In what order

will the rungs be scanned?
f. Assume all switches are turned off. In what

order will the rungs be scanned?

Figure 9-31 Program for Problem 3.

Ladder logic program
Main program file 2

S1

S2

S3

S5 PL4

S4 PL3

PL2

PL1

JSR
JUMP-TO-SUBROUTINE
SBR file number

SBR
SUBROUTINE

Subroutine file 3

RET
RETURN

U:3

L1
Inputs

S2

S3

S4

S5

S1 1

2

3

4

5

6

L2

Outputs

PL2

PL3

PL4

PL1

pet73842_ch09_184-206.indd 205 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

206 Chapter 9 Program Control Instructions

Figure 9-32 Program for Problem 4.

S1

Ladder logic program
Main program file 2

SBR
SUBROUTINE

20

JMP

1

S2

S3

S4

S5

S7

S8

S9

S13

S12

S11

S10

2

3

4

20

JMP5

6

20

JMP7

8

LBL

LBL

9

T4:3/DN

10

11

1 2

JMP12

13

RET
RETURN15

PL2

PL3

PL4

PL5

PL6

PL1

S6

14

JSR
JUMP-TO-SUBROUTINE
SBR file number U:3

EN

DN

RES

EN

DN

RTO
RETENTIVE TIMER ON
Timer
Time base (sec)
Preset
Accumulated

T4:3
1.0
50

0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

T4:6
1.0

5
0

T4:3

Subroutine file 3

12

20

L1

Inputs

S2

S3

S4

S1

S6

S7

S8

S5

S10

S11

S9

S12

S13

L2

Outputs

PL2

PL3

PL1

PL4

PL5

PL6

pet73842_ch09_184-206.indd 206 03/11/15 4:01 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

207

10
Data Manipulation
Instructions

Chapter Objectives

After completing this chapter, you will be able to:

 • Execute data transfer of word and file level instructions
from one memory location to another

 • Interpret data transfer and data compare instructions as
they apply to a PLC program

 • Compare the operation of discrete I/Os with that of
multibit and analog types

 • Understand the basic operation of PLC closed-loop
control systems

Data manipulation involves transferring data and
operating on data with math functions, data con-
versions, data comparison, and logical opera-
tions. This chapter covers both data manipulation
instructions that operate on word data and those
that operate on file data, which involve multiple
words. Data manipulations are performed inter-
nally in a manner similar to that used in micro-
computers. Examples of processes that need
these operations on a fast and continuous basis
are studied.

L1 Inputs
Lime 1

Cola 2

Cherry 3

Selector switch

3

2

1

OSR

B3:0/0

Ladder logic program

COP
COPY FILE
Source #N12:0
Destination #N7:50
Length 5

OSR

B3:0/1 COP
COPY FILE
Source #N12:5
Destination #N7:50
Length 5

OSR

B3:0/2 COP
COPY FILE
Source #N12:10
Destination #N7:50
Length 5

Lime 1

Cola 2

Cherry 3

pet73842_ch10_207-233.indd 207 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

208 Chapter 10 Data Manipulation Instructions

can be placed in two broad categories: data transfer and
data comparison.

The manipulation of entire words is an important fea-
ture of a programmable controller. This feature enables
PLCs to handle inputs and outputs containing multiple
bit configurations such as analog inputs and outputs.
Arithmetic functions also require data within the pro-
grammable controller to be handled in word or register
format. To simplify the explanation of the various data
manipulation instructions available, the instruction proto-
col for the Allen-Bradley SLC 500 families of PLCs will
be used. Again, even though the format and instructions
vary with each manufacturer, the concepts of data manip-
ulation remain the same.

Figure 10-2 shows the Move/Logical menu tab for the
SLC 500 PLC and its associated RSLogix software. The
commands can be summarized as follows:

MOV (Move)—Moves the source value to the
destination.
MVM (Masked Move)—Moves data from a source
location to a selected portion of the destination.
AND (And)—Performs a bitwise AND operation.
OR (Or)—Performs a bitwise OR operation.
XOR (Exclusive Or)—Performs a bitwise XOR
operation.
NOT (Not)—Performs a bitwise NOT operation.
CLR (Clear)—Sets all bits of a word to zero.

10.2 Data Transfer Operations
Data transfer instructions simply involve the trans-
fer of the contents from one word or register to another.
Figure 10-3a and b illustrate the concept of moving
numerical binary data from one memory location to
another. Figure 10-3a shows the original data are in reg-
ister N7:30 and N7:20. Figure 10-3b shows that after
the data transfer has occurred register N7:20 now holds
a duplicate of the information that is in register N7:30.
The previously existing data stored in register N7:20 have
been replaced with those of N7:30. This process is re-
ferred to as writing over the existing data.

10.1 Data Manipulation
Data manipulation instructions allow numerical data
stored in the controller’s memory to be operated on
within the control program. It includes operations involv-
ing moving or transferring numeric information stored in
one memory word location to another word in a different
location, and carrying out simple operations such as con-
verting from one data format to another.

The use of data manipulation extends a controller’s ca-
pability from that of simple on/off control based on bi-
nary logic, to quantitative decision making involving data
comparisons, arithmetic, and conversions—which in turn
can be applied to analog and positioning control.

There are two basic classes of instructions to accom-
plish data manipulation: instructions that operate on word
data and those that operate on file, or block, data, which
involve multiple words.

Each data manipulation instruction requires words of
data memory for operation. The words of data memory in
singular form may be referred to either as registers or as
words, depending on the manufacturer. The terms table or
file are generally used when a consecutive group of related
data memory words is referenced. Figure 10-1 illustrates the
difference between a word and a file. The data contained in
files and words will be in the form of binary bits represented
as series of 1s and 0s. A group of consecutive elements or
words in an Allen-Bradley SLC 500 are referred to as a file.

The data manipulation instructions allow the move-
ment, manipulation, or storage of data in either single- or
multiple-word groups from one data memory area of the
PLC to another. Use of these PLC instructions in applica-
tions that require the generation and manipulation of large
quantities of data greatly reduces the complexity and
quantity of the programming required. Data manipulation

Figure 10-1 Data files, words, and bits.

1
1
0
1
1
0
0
1

0
1
1
1
0
0
0
0

1
1
0
0
1
1
0
1

1
1
1
1
1
1
1
1

0
1
1
0
0
1
1
1

1
1
0
1
0
1
0
1

1
1
0
1
0
1
0
1

1
1
0
0
0
0
1
1

1
0
1
1
1
1
1
1

1
1
1
1
1
0
1
1

1
0
0
0
0
1
0
1

1
1
1
0
1
1
1
1

0
0
0
0
0
0
0
0

0
0
1
1
1
0
0
1

0
1
0
1
0
1
0
1

0
0
1
1
1
1
0
1

11 0 1 1 0 1 1 1 0 1 0 1 0 1 1

Binary bit
Word or
register

File or
table

Section of
memory map

Figure 10-2 Move/Logical menu tab.

MOV MVM AND OR XOR NOT

Move/LogicalCompare Compute/Math

CLR

File/Misc

pet73842_ch10_207-233.indd 208 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Data Manipulation Instructions Chapter 10 209

• The instruction may be programmed with input
conditions preceding it, or it may be programmed
unconditionally.

A Masked Move (MVM) instruction functions like a
standard move (MOV) instruction, except that a masked
move allows data to be filtered out that is not required to
be moved. The mask parameter specified in the instruc-
tion block is what performs this filtering process. This
mask parameter can be either a word address location or a
numerical constant. The operation of the mask parameter
can be summarized as follows:

• The pattern of characters in the mask determines
which source bits will be passed through to the des-
tination address.

• The bits in the mask that are set to zero (0) do not
pass data.

• Only the bits in the mask that are set to one (1) will
pass the source data through to the destination.

• Bits in the destination are not affected when the cor-
responding bits in the mask are zero.

• The MVM instruction is used to copy the desired part
of a 16-bit word by masking the rest of the value.

Figure 10-5 shows an example of a mask move (MVM)
instruction. This instruction transfers data through the
mask from the source address, B3:0, to the destination
address, B3:4. The operation of the program can be sum-
marized as follows:

• The mask may be entered as an address or in hexa-
decimal format, and its value will be displayed in
hexadecimal.

Data transfer instructions can address almost any loca-
tion in the memory. Prestored values can be automatically
retrieved and placed in any new location. That location
may be the preset register for a timer or counter or even
an output register that controls a seven-segment display.

SLC 500 controllers use a block-formatted move
(MOV) instruction to accomplish data moves. The MOV
instruction is used to copy the value in one register or word
to another. This instruction copies data from a source reg-
ister to a destination register. Figure 10-4 shows an exam-
ple of the MOV instruction. The operation of the program
can be summarized as follows:

• When the rung is true, input switch A closed, the
value stored at the source address, N7:30, is copied
into the destination address, N7:20.

• When the rung goes false, input switch A opened,
the destination address will retain the value unless it
is changed elsewhere in the program.

• The source value remains unchanged and no data
conversion occurs.

Figure 10-3 Data transfer concept.

1 1 01 1 1 1 1 1 1 10 0 0 0 0

0 0 11 1 1 0 0 1 1 10 0 1 0 0N7:20

N7:28

N7:29

N7:30

N7:31

N7:20

N7:28

N7:29

N7:30

N7:31

Original data stored in registers N7:30 and N7:20

1 1 01 1 1 1 1 1 1 10 0 0 0 0

1 1 01 1 1 1 1 1 1 10 0 0 0 0

Data transferred from register N7:30 to N7:20

(b)

(a)

N7:30

N7:20

MOV
MOVE
Source

Destination

Ladder logic program

N7:30

N7:20

N7: Integer table

AL1

Input

A

Figure 10-4 SLC 500 block-formatted move instruction. Figure 10-5 Masked move (MVM) instruction.

B3:0

B3:1
FF0F
B3:4

MVM
MASKED MOVE
Source
1010101010101010
Mask

Destination
1010101011001010

Ladder logic program

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0

Source B3:0

Unchanged

Mask FF0F

Destination B3:4 before instruction
went true
Destination B3:4 after instruction
went true

AL1
Input

A

pet73842_ch10_207-233.indd 209 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

210 Chapter 10 Data Manipulation Instructions

• When pushbutton PB1 is closed, there will be
a 10 s delay period before the pilot light is
energized.

• When the selector switch is in the closed 5 s
position, rung 3 has logic continuity and rung 2
does not.

• As a result, the value 5 stored at the source address,
N7:2, is copied into the destination address, T4:1.
PRE.

• Closing pushbutton PB1 will now result in a
5 s time-delay period before the pilot light is
energized.

The program of Figure 10-7 illustrates how the move
(MOV) instruction can be used to create variable preset
counter values. The operation of the program can be sum-
marized as follows:

• Limit switch LSI is programmed to the input of
up-counter C5:1 and counts the number of parts
coming off a conveyor line onto a storage rack.

• Three different types of products are run on this line.
• The storage rack has room for only 300 boxes of

product A or 175 boxes of product B or 50 boxes of
product C.

• Where there is a 1 in the mask, data will pass from
the source to the destination.

• Where there is a 0 in the mask, data in the destina-
tion will remain in their last state.

• Status in bits 4–7 are unchanged due to zeroes in the
mask (remained in their last state).

• Status in bits 0–3 and 8–15 were copied from the source
to destination when the MVM instruction went true.

• The mask must be the same word size as the source
and destination.

The program of Figure 10-6 illustrates how the move
(MOV) instruction can be used to create variable preset
timer values. A two-position selector switch is operated
to select one of two preset timer values. Operation of the
program can be summarized as follows:

• When the selector switch is in the open 10 s
position, rung 2 has logic continuity and rung 3
does not.

• As a result, the value 10 stored at the source ad-
dress, N7:1, is copied into the destination address,
T4:1.PRE.

• Therefore, the preset value of timer T4:1 will
change from 0 to 10.

Figure 10-6 Move instruction used to change the preset time of a timer.

T4:1
1.0

0
0

DN

EN
TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

Ladder logic program

L1

PB1

PL1

L2

Output
PB1

SS1
SS1

SS1

5 s10 s

Inputs

N7:1
10

T4:1.PRE
0

MOV
MOVE
Source

Destination

N7:2
5

T4:1.PRE
0

MOV
MOVE
Source

Destination

T4:/DN

1

2

3

4

PL1

pet73842_ch10_207-233.indd 210 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Data Manipulation Instructions Chapter 10 211

In some instances it may be necessary to shift complete
files from one location to another within the program-
mable controller memory. Such data shifts are termed
file-to-file shifts. File-to-file shifts are used when the data
in one file represent a set of conditions that must interact
with the programmable controller program several times
and, therefore, must remain intact after each operation.
Because the data within this file must also be changed by
the program action, a second file is used to handle the data
changes, and the information within that file is allowed
to be altered by the program. The data in the first file,
however, remain constant and therefore can be used many
times. Other types of data manipulation used with file in-
structions include word-to-file and file-to-word moves, as
illustrated in Figure 10-8.

Files allow large amounts of data to be scanned
quickly and are useful in programs requiring the transfer,

• Three momentary switches are used to select the de-
sired preset counter value depending on the product
line (A, B, or C) being manufactured.

• A reset button is provided to reset the accumulated
count to 0.

• A pilot lamp is switched on to indicate when the
storage rack is full.

• The program has been constructed so that normally
only one of the three switches will be closed at any
one time. If more than one of the preset counter
switches is closed, the last value is selected.

A file is a group of related consecutive words in the
data table that have a defined start and end and are used to
store information. For example, a batch process program
may contain several separate recipes in different files that
can be selected by an operator.

Figure 10-7 Move instruction used to change the preset count of a counter.

L1
LS1

A

C

B

Inputs

Reset

C5:1
0
0

DN

CU
CTU
COUNT UP
Counter
Preset
Accumulated

Ladder logic program

N7:1
300

C5:1.PRE
0

MOV
MOVE
Source

Destination

Full

N7:2
175

C5:1.PRE
0

MOV
MOVE
Source

Destination

N7:3
50

C5:1.PRE
0

MOV
MOVE
Source

Destination

C5:1/DN

C5:1
RES

1

2

3

4

5

6

LS1

A

C

B

Reset

L2

Output

Full

A B C

pet73842_ch10_207-233.indd 211 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

212 Chapter 10 Data Manipulation Instructions

The basic operation of the FAL instruction is similar
in all functions and requires the following parameters and
PLC-5 addresses to be entered in the instruction:

Control

• Is the first entry and the address of the control struc-
ture in the control area (R) of processor memory.

• The processor uses this information to run the
instruction.

• The default file for the control file is data file 6.
• The control element for the FAL instruction must be

unique for that instruction and may not be used to
control any other instruction.

• The control element is made up of three words.
• The control word uses four control bits: bit 15

(enable bit), bit 13 (done bit), bit 11 (error bit), and
bit 10 (unload bit).

• For ControlLogix the control address would be a tag
such as control_1 with a data type of control.

Length
• Is the second entry and represents the file length.
• This entry will be in words, except for the floating-

point file, for which the length is in elements. (A
floating-point element consists of two words.)

• The maximum length possible is 1000 elements.
Enter any decimal number from 1 to 1000.

• For ControlLogix the number would be a double
integer (DINT).

comparison, or conversion of data. Most PLC manufac-
turers display file instructions in block format on the pro-
gramming terminal screen. Figure 10-9 compares the SLC
500 controller word and file addressing. The addressing
formats can be summarized as follows:

• The address that defines the beginning of a file or
group of words starts with the pound sign #.

• The # prefix is omitted in a single word or element
address.

• Address N7:30 is a word address that represents a
single word: word number 30 in integer file 7.

• Address #N7:30 represents the starting address of
a group of consecutive words in integer file 7. The
length is eight words, which is determined by the
instruction where the file address is used.

The file arithmetic and logic (FAL) instruction is
used to copy data from one file to another and to do file
math and file logic. This instruction is available on Allen-
Bradley PLC-5 and ControlLogix platforms. An example
of the FAL instruction is shown in Figure 10-10.

Figure 10-8 Moving data using file instructions.

Word-to-file move

File

Word Word

File File File

File-to-word moveFile-to-file move

Figure 10-9 SLC 500 word and file address.

Integer Table

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N7:30/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N7:31/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N7:32/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N7:33/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N7:34/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N7:35/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N7:36/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N7:37/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Radix: Table: N7: Integer

File
#N7:30
Length = 8

N7:37

Word
N7:30

Binary

Figure 10-10 File Arithmetic/Logical (FAL) instruction.

EN

DN

ER

FAL
File Arith/Logical

Control
Length
Position
Mode
Destination
Expression

pet73842_ch10_207-233.indd 212 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Data Manipulation Instructions Chapter 10 213

into multiple scans, thereby cutting down on the in-
struction execution time per scan.

Incremental mode
• For this mode you enter the letter I.
• In the incremental mode, one element of data is

operated on for every false-to-true transition of the
instruction.

• The first time the instruction sees a false-to-true
transition and the position is at 0, the data in the first
element of the file are operated on. The position will
remain at 0 and the UL bit will be set. The EN bit
will follow the instruction’s condition.

• On the second false-to-true transition, the position
will index to 1, and data in the second word of the
file will be operated on.

• The UL bit controls whether the instruction will
operate just on data in the current position, or
whether it will index the position and then trans-
fer data. If the UL bit is reset, the instruction—on
a false-to-true transition of the instruction—will
operate on the data in the current position and set
the UL bit. If the UL bit is set, the instruction—on
a false-to-true transition of the instruction—will
index the position by 1 and operate on the data in
their new position.

Destination
• Is the fifth entry and is the address at which the pro-

cessor stores the result of the operation.
• The instruction converts to the data type specified

by the destination address.
• It may be either a file address or an element address.

Expression
• Is the last entry and contains addresses, program

constants, and operators that specify the source of
data and the operations to be performed.

• The expression entered determines the function of
the FAL instruction.

• The expression may consist of file addresses, ele-
ment addresses, or a constant and may contain only
one function because the FAL instruction may per-
form only one function.

Figure 10-11 shows an example of a file-to-file copy
function using the FAL instruction. The operation of the
program can be summarized as follows:

• When input A goes true, data from the expression
file #N7:20 will be copied into the destination file
#N7:50.

Position
• Is the third entry and represents the current location

in the data block that the processor is accessing.
• It points to the word being operated on.
• The position starts with 0 and indexes to 1 less than

the file length.
• You generally enter a 0 to start at the beginning of

a file. You may also enter another position at which
you want the FAL to start its operation.

• When the instruction resets, however, it will reset
the position to 0.

• You can manipulate the position from the program.

Mode
• Is the fourth entry and represents the number of file

elements operated on per program scan. There are
three choices: all mode, numeric mode, and incre-
mental mode.

All Mode
• For this mode you enter the letter A.
• In the all mode, the instruction will transfer the

complete file of data in one scan.
• The enable (EN) bit will go true when the instruc-

tion goes true and will follow the rung condition.
• When all of the data have been transferred, the done

(DN) bit will go true. This change will occur on the
same scan during which the instruction goes true.

• If the instruction does not go to completion due to
an error in the transfer of data (such as trying to
store too large or too small a number for the data-
table type), the instruction will stop at that point
and set the error (ER) bit. The scan will continue,
but the instruction will not continue until the error
bit is reset.

• If the instruction goes to completion, the enable bit
and the done bit will remain set until the instruction
goes false, at which point the position, the enable
bit, and the done bit will all be reset to 0.

Numeric Mode
• For this mode you enter a decimal number (1–1000).
• In the numeric mode, the file operation is distributed

over a number of program scans.
• The value you enter sets the number of elements to

be transferred per scan.
• The numeric mode can decrease the time it takes

to complete a program scan. Instead of waiting for
the total file length to be transferred in one scan, the
numeric mode breaks up the transfer of the file data

pet73842_ch10_207-233.indd 213 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

214 Chapter 10 Data Manipulation Instructions

• If we start with position 0, the data from N7:100
will be copied into N7:101 on the first false-to-true
transition of input A.

• The second false-to-true transition of input A will
copy the data from N7:100 into N7:102.

• On successive false-to-true transitions of the instruc-
tion, the data will be copied into the next position in
the file until the end of the file, N7:106, is reached.

• The length of the two files is set by the value en-
tered in the control element word R6:1.LEN.

• In this instruction, we have also used the ALL
mode, which means all of the data will be trans-
ferred in the first scan in which the FAL instruction
sees a false-to-true transition.

• The DN bit will also come on in that scan unless an
error occurs in the transfer of data, in which case the
ER bit will be set, the instruction will stop operation
at that position, and then the scan will continue at
the next instruction.

Figure 10-12 shows an example of a file-to-word copy
function using the FAL instruction. The operation of the
program can be summarized as follows:

• With each false-to-true rung transition of input
A, the processor reads one word of integer
file N29.

• The processor starts reading at word 0, and writes
the image into word 5 of integer file N29.

• The instruction writes over any data in the
destination.

Figure 10-13 shows an example of a word-to-file copy
function using the FAL instruction. It is similar to the file-
to-word copy function except that the instruction copies
data from a word address into a file. The operation of the
program can be summarized as follows:

• The expression is a word address (N7:100) and the
destination is a file address (#N7:101).

Figure 10-11 File-to-file copy function using the FAL
instruction.

EN

DN

ER

FAL
FILE ARITH/LOGICAL
Control
Length
Position
Mode
Destination

Expression

R6:1
6
0

All
#N7:50

528
#N7:20

L1

A

Input Ladder logic program

528

621

778

986

342

135

N7:20

File

N7:25

528

621

778

986

342

135

N7:50

Destination
#N7:50

Expression
#N7:20

N7:55

A

Figure 10-12 File-to-word copy function using the FAL
instruction.

FAL
FILE ARITH/LOGICAL
Control
Length
Position
Mode
Destination

Expression

R6:6
5
0

INC
N29:5

#N29:0

Ladder logic program

Word 0

1

2

3

4

Word

Word N29:5File # N29:0

First move

Second move

Fifth move
Fourth move

Third move

EN

DN

ER

L1

A

Input

A

FAL
FILE ARITH/LOGICAL
Control
Length
Position
Mode
Destination

Expression

R6:2
6
0

Incremental
#N7:101

0
N7:100

Ladder logic program

N7:101

N7:106

N7:100
First move

EN

DN

ER

L1

A

Input

A

Figure 10-13 Word-to-file copy function using the FAL
instruction.

pet73842_ch10_207-233.indd 214 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Data Manipulation Instructions Chapter 10 215

• Because the instruction transfers to the end of the
file, the file will be filled with the same data value in
each word.

The FLL instruction is frequently used to zero all of
the data in a file, as illustrated in the program of Fig-
ure 10-17. The operation of the program can be summa-
rized as follows:

• Momentarily pressing pushbutton PB1 copies the
contents of file #N10:0 into file #N12:0.

• Momentarily pressing pushbutton PB2 then clears
file #N12:0.

• Note that 0 is entered for the source value.

The exceptions to the rule that file addresses must take
consecutive words in the data table are in the timer, coun-
ter, and control data files for the FAL instruction. In these
three data files, if you designate a file address, the FAL in-
struction will take every third word in that file and make a
file of preset, accumulated, length, or position data within
the corresponding file type. This might be done, for exam-
ple, so that recipes storing values for timer presets can be
moved into the timer presets, as illustrated in Figure 10-14.

The file copy (COP) instruction and the fill file (FLL)
instruction are high-speed instructions that operate more
quickly than the same operation with the FAL instruc-
tion. Unlike the FAL instruction, there is no control ele-
ment to monitor or manipulate. Data conversion does not
take place, so the source and destination should be the
same file types. An example of the file COP instruction is
shown in Figure 10-15. The operation of the program can
be summarized as follows:

• Both the source and destination are file addresses.
• When input A goes true, the values in file N40 are

copied to file N20.
• The instruction copies the entire file length for each

scan during which the instruction is true.

An example of the fill file (FLL) instruction is shown in
Figure 10-16. It operates in a manner similar to the FAL
instruction that performs the word-to-file copy in the ALL
mode. The operation of the program can be summarized
as follows:

• When input A goes true, the value in N15:5 is cop-
ied into N20:1 through N20:6.

Figure 10-14 Copying recipes and storing values for timer
presets.

3452

6789

8321

983

#N7:10
Length = 4

Recipe A

T4:0 preset value

T4:1 preset value

T4:2 preset value

T4:3 preset value

#T4:0.PRE
Length = 4

File of timer preset values

778

986

342

135

#N7:20
Length = 4

Recipe B

File-to-file copy

File-to-file copy

Figure 10-15 File copy (COP) instruction.

N20:1
N20:2
N20:3
N20:4
N20:5
N20:6

N40:1
N40:2
N40:3
N40:4
N40:5
N40:6

COP
COPY FILE
Source
Destination
Length

#N40:1
#N20:1

6

Ladder logic program
L1

A

Input

A

COP FLL DDV SCL INT STE

File / MiscMove/Logical

STS STD PID

File Shift/Sequencer Prog

Location in RSLogix software

Figure 10-16 Fill file (FLL) instruction.

N20:1
N20:2
N20:3
N20:4
N20:5
N20:6

N15:5

COP FLL DDV SCL INT STE

File / MiscMove/Logical

STS STD PID

File Shift/Sequencer Prog

Location in RSLogix software

FLL
FILL FILE
Source
Destination
Length

N15:5
#N20:1

6

Ladder logic program
L1

A

Input

A

pet73842_ch10_207-233.indd 215 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

216 Chapter 10 Data Manipulation Instructions

• The OSR instruction ensures that the copy in-
struction is executed only once on a false-to-true
transition of the selector switch. In this way, if
making the same recipe over a long period of time,
the recipe needs to be copied only one time, not at
every scan.

10.3 Data Compare Instructions
Data transfer operations are all output instructions,
whereas data compare instructions are input instructions.
Data compare instructions are used to compare numerical
values. These instructions compare the data stored in two
or more words (or registers) and make decisions based on
the program instructions. Numeric values in two words
of memory can be compared for each of the basic data
compare instructions shown in Figure 10-19, depending
on the PLC.

Data comparison concepts have already been used with
the timer and counter instructions. In both these instructions,

Figure 10-18 is an example of the copy (COP) instruc-
tion used as part of a PLC drink-manufacturing program.
The operation of the program can be summarized as
follows:

• A three-position selector switch is used for drink
selection.

• Each selector switch position is electrically isolated
so that only one input circuit can be energized at
any one time.

• Each of the three selector switch inputs is wired to
its corresponding input module address.

• Each recipe uses 5 memory words.
• Depending on the type of drink selected, the recipe

is copied to the common working register #N7:50.

Figure 10-17 Using the FLL instruction to change all the
data in a file to zero.

COP
COPY FILE
Source
Destination
Length

#N10:0
#N12:0

4

Ladder logic program

FLL
FILL FILE
Source
Destination
Length

0
#N12:0

4

L1
PB1

PB2

Inputs

PB1

PB2

Figure 10-18 The copy (COP) instruction used as part of a PLC drink-
manufacturing program.

L1 Inputs
Lime 1

Cola 2

Cherry 3

Selector switch

3

2

1

OSR

B3:0/0

Ladder logic program

COP
COPY FILE
Source #N12:0
Destination #N7:50
Length 5

OSR

B3:0/1 COP
COPY FILE
Source #N12:5
Destination #N7:50
Length 5

OSR

B3:0/2 COP
COPY FILE
Source #N12:10
Destination #N7:50
Length 5

Lime 1

Cola 2

Cherry 3

Figure 10-19 Basic PLC data compare instructions.

Name

Equal to

Not equal to

Less than

Greater than

Less than or equal to

Greater than or equal to

Symbol

(=)

(≠)

(<)

(>)

(≤)

(≥)

pet73842_ch10_207-233.indd 216 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Data Manipulation Instructions Chapter 10 217

of an EQU logic rung. The operation of the rung can be
summarized as follows:

• When the accumulated value of counter T4:0 stored
in source A’s address equals the value in source B’s
address, N7:40, the instruction is true and the output
is energized.

• Source A may be a word address or a floating-point
address.

• Source B may be a word address, a floating-point
address, or a constant value.

• With the equal instruction, the floating-point data
is not recommended because of the exactness re-
quired. One of the other comparison instructions,
such as the limit test, is preferred.

The not equal (NEQ) instruction is an input instruction that
compares source A to source B: when source A is not equal to
source B, the instruction is logically true; otherwise it is logi-
cally false. Figure 10-22 shows an example of an NEQ logic
rung. The operation of the rung can be summarized as follows:

• When the value stored at source A’s address, N7:5,
is not equal to 25, the output will be true; otherwise,
the output will be false.

• The value stored at Source A is 30.
• The value stored at Source B is 25.
• Since the two values are not the same the output

will be true or on.
• In all input-comparison instructions, Source A must be

an address and Source B can be an address or a constant.

The greater than (GRT) instruction is an input instruc-
tion that compares source A to source B: when source A
is greater than source B, the instruction is logically true;
otherwise it is logically false. Figure 10-23 shows an

an output was turned on or off when the accumulated value
of the timer or counter equaled its preset value. What actu-
ally occurred was that the accumulated numeric data in one
memory word was compared to the preset value of another
memory word on each scan of the processor. When the
processor saw that the accumulated value was equal to the
preset value, it switched the output on or off.

Comparison instructions are used to test pairs of val-
ues to determine if a rung is true. Figure 10-20 shows the
Compare menu tab for the Allen-Bradley SLC 500 PLC
and its associated RSLogix software. The compare in-
structions can be summarized as follows:

LIM (Limit test)—Tests whether one value is within
the limit range of two other values.
MEQ (Masked Comparison for Equal)—Tests
portions of two values to see whether they are equal.
Compares 16-bit data of a source address to 16-bit
data at a reference address through a mask.
EQU (Equal)—Tests whether the value of Source A
is equal to the value of Source B
NEQ (Not Equal)—Tests whether the value of
Source A is not equal to the value of Source B
LES (Less Than)—Tests whether the value of Source A
is less than the value of Source B
GRT (Greater Than)—Tests whether the value of
Source A is greater than the value of Source B
LEQ (Less Than or Equal)—Tests whether the value of
Source A is less than or equal to the value of Source B.
GEQ (Greater Than or Equal)—Tests whether the
value of Source A is greater than or equal to the value
of Source B

The equal (EQU) instruction is an input instruction
that compares source A to source B: when source A is
equal to source B, the instruction is logically true; other-
wise it is logically false. Figure 10-21 shows an example

Figure 10-20 Compare menu tab.

LIM MEQ EQU NEQ LES GRT

CompareBit Input/OutputTimer/Counter

LEQ GEQ

Com

Figure 10-21 EQU logic rung.

L2

Ladder logic program

PL1

PL1

EQU
EQUAL
Source A
T4:0.ACC
Source B
N7:40

Output

Figure 10-22 NEQ logic rung.

L2

OutputLadder logic program

PL1

PL1
N7:5

30
25

NEQ
NOT EQUAL
Source A

Source B

Figure 10-23 GRT logic rung.

Ladder logic program

GRT
GREATER THAN (A>B)
Source A
T4:10.ACC
Source B
200

L2

Output

PL1

PL1

pet73842_ch10_207-233.indd 217 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

218 Chapter 10 Data Manipulation Instructions

• The value stored at source B is 23.
• Therefore the output will be true or on.

The less than or equal (LEQ) instruction is an input
instruction that compares source A to source B: when
source A is less than or equal to source B, the instruction
is logically true; otherwise it is logically false. Figure 10-26
shows an example of an LEQ logic rung. The operation of
the rung can be summarized as follows:

• When the accumulated count of counter C5:1 is less
than or equal to 457, the pilot light will turn on.

• The accumulated value of the counter is less than 457.
• Therefore the output will be false or off.

Figure 10-27 shows an example of an up-counter used
in conjunction with the LES, EQU, and GRT compare
instructions to trigger outputs based on different values
of the counter’s accumulated count. The operation of the
program can be summarized as follows:

• A Less Than (LES) 10 comparison is made with the
counter’s accumulative value. As a result, the LESS
Output will be energized anytime the accumulated
count is 9 or less.

• An Equal (EQU) to 20 comparison is made with the
counter’s accumulative value. As a result, the EQU
Output will be energized only when the accumu-
lated count is 20.

• A Greater Than (GRT) 30 comparison is made with
the counter’s accumulative value. As a result, the
GRT Output will be energized anytime the accumu-
lated count is 31 or more.

The limit test (LIM) instruction is used to test whether
values are within or outside the specified range. Applica-
tions in which the limit test instruction is used include
allowing a process to operate as long as the temperature is
within or outside a specified range.

Programming the LIM instruction consists of entering
three parameters: low limit, test, and high limit. The limit
test instruction functions in the following two ways:

• The instruction is true if—The lower limit is
equal to or less than the higher limit, and the test

example of a GRT logic rung. The operation of the rung
can be summarized as follows:

• The instruction is either true or false, depending on
the values being compared.

• When the accumulated value of timer T4:10, stored
at the address of source A, is greater than the con-
stant 200 of source B, the output will be on; other-
wise the output will be off.

The less than (LES) instruction is an input instruction that
compares source A to source B: when source A is less than
source B, the instruction is logically true; otherwise it is logi-
cally false. Figure 10-24 shows an example of an LES logic
rung. The operation of the rung can be summarized as follows:

• The instruction is either true or false, depending on
the values being compared.

• When the accumulated value of counter C5:10,
stored at the address of source A, is less than the
constant 350 of source B, the output will be on;
otherwise, it will be off.

The greater than or equal (GEQ) instruction is an
input instruction that compares source A to source B:
when source A is greater than or equal to source B, the
instruction is logically true; otherwise it is logically false.
Figure 10-25 shows an example of a GEQ logic rung. The
operation of the rung can be summarized as follows:

• When the value stored at the address of source A,
N7:55, is greater than or equal to the value stored at
the address of source B, N7:12, the output will be
true; otherwise, it will be false.

• The value stored at source A is 100.

Figure 10-24 LES logic rung.

Ladder logic program

LES
LESS THAN (A<B)
Source A
C5:10.ACC
Source B
350

L2

Output

PL1

PL1

Figure 10-25 GEQ logic rung.

Ladder logic program

GEQ
GREATER THAN OR EQUAL

(A≥B)
Source A

Source B

N7:55
100

N7:12
23

L2

Output

PL1

PL1

Ladder logic program

LEQ
LESS THAN OR EQUAL

(A≤B)

Source A
C5:1.ACC
Source B
457

L2

Output

PL1

PL1

Figure 10-26 LEQ logic rung.

pet73842_ch10_207-233.indd 218 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Data Manipulation Instructions Chapter 10 219

value. The operation of the logic rung can be summarized
as follows:

• The high limit has a value of 50, and the low limit
has a value of 100.

• Instruction is true for test values of 50 and less
than 50 and for test values of 100 and greater
than 100.

parameter value is equal to or inside the limits.
Otherwise the instruction is false.

• The instruction is true if—The lower limit has a
value greater than the higher limit, and the instruc-
tion is equal to or outside the limits. Otherwise the
instruction is false.

The limit test instruction is said to be circular because
it can function in either of two ways. Figure 10-28 shows
an example of an LIM instruction where the low limit
value is less than the high limit value. The operation of
the logic rung can be summarized as follows:

• The high limit has a value of 50, and the low limit
has a value of 25.

• Instruction is true for values of the test from 25
through 50.

• Instruction is false for test values less than 25 or
greater than 50.

• Instruction is true because the test value is 48.

Figure 10-29 shows an example of an LIM instruction
where the low limit value is greater than the high limit

Figure 10-27 Triggering outputs based on the accumulated value of a counter.

LES
LESS THAN
Source A C5:1.ACC
 0
Source B 10

EQU Output

EQU Output

Input

Counter input

LESS Output

CU

DN

GRT Output

LESS Output

Output

GRT Output

Counter reset C5:1
RES

Ladder logic program

COMPARE COUNTER
CTU
COUNT UP
Counter C5:1
Preset 50
Accumulated 0

EQU
EQUAL
Source A C5:1.ACC
 0
Source B 20

GRT
GREATER THAN
Source A C5:1.ACC
 0
Source B 30

L1 L2

Counter input

Counter reset

Ladder logic program

LIM
LIMIT TEST
Low limit

Test

High limit

N7:22
25

N7:23
48

N7:24
50

25False (< 25) False (> 50)

True

50

L2
Output

PL1

PL1

Figure 10-28 LIM instruction where the low limit value is
less than the high limit value.

pet73842_ch10_207-233.indd 219 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

220 Chapter 10 Data Manipulation Instructions

source contains the limit switch address and the compare
stores their desired states. The mask can block out the
switches you don’t want to compare (Figure 10-31).

Figure 10-32 shows an example of an MEQ instruc-
tion. The operation of the logic rung can be summarized
as follows:

• When the data at the source address match the data
at the compare address bit-by-bit (less masked bits),
the instruction is true.

• The instruction goes false as soon as it detects a
mismatch.

• A mask passes data when the mask bits are set (1); a
mask blocks data when the mask bits are reset (0).

• Instruction is false for test values greater than 50
and less than 100.

• Instruction is true because the test value is 125.

The program of Figure 10-30 shows a practical ex-
ample of the ControlLogix program with the Limit Test
(LIM) instruction. In this program, the LIM instruction
will energize the Count_Within_Range output when the
counter is within the range of 6 to 12 counts. Note that the
range includes the values set as the low and high limits.

The masked comparison for equal (MEQ) instruction
compares a value from a source address with data at a com-
pare address and allows portions of the data to be masked.
One application for the MEQ instruction is to compare
the correct position of up to 16 limit switches when the

True (≤ 50) (≥ 100) True

Ladder logic program

LIM
LIMIT TEST
Low limit

Test

High limit

N7:28
100

N7:29
125

N7:27
50

50

False

100

L2
Output

PL1

PL1

Figure 10-29 LIM instruction where the low limit value is
greater than the high limit value.

Figure 10-30 ControlLogix program with the Limit Test (LIM) instruction.

CMP

Bit Timer/Counter Input/Output Compare

LIM MEQ EQU NEQ LES GRT

Ladder logic program

Compare toolbar

Counter_Range

RES

CU
Count_Within_Range_Output

Outputs
L2

DN

CTU
Count Up Counter_Range
Counter
Preset 20
Accum 0

Counter_Input
<Local:1:I.Data.1>

Counter_Input

Inputs
L1

Counter_Reset Count_Within_Range_Output
<Local:2:O.Data.1>

Counter_Reset
<Local:1:I.Data.2>

LIM
Limit Test (CIRC)
Low Limit 6
Test Counter_Range.ACC
 0
High Limit 12

Figure 10-31 MEQ instruction can be used to monitor the
state of limit switches.
 Source: Courtesy Jayashree Electrodevices.

pet73842_ch10_207-233.indd 220 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Data Manipulation Instructions Chapter 10 221

The operation of the hardwired circuit can be summarized
as follows:

• When the momentary start pushbutton is pressed
solenoid A is energized immediately.

• Solenoid B is energized 5 s later than solenoid A.
• Solenoid C is energized 10 s later than solenoid A.
• Solenoid D is energized 15 s later than solenoid A.

The hardwired time-delay circuit could be implemented
using a conventional PLC program and three internal
timers. However, the same circuit can be programmed
using only one internal timer along with data compare in-
structions. Figure 10-34 shows the program required to
implement the circuit using only one internal timer. The
operation of the program can be summarized as follows:

• The momentary stop button is closed.
• When the momentary start button is pressed,

SOL A output energizes immediately to switch
on solenoid A.

• SOL A examine-on contact becomes true to seal in
output SOL A and to start on-delay timer T4:1 timing.

• The timer preset time is set to 15 seconds.
• Output SOL B will energize after a total time delay

of 5 seconds, when the accumulated time becomes
equal to and then greater than 5 seconds. This, in
turn, will energize solenoid B.

• Output SOL C will energize after a total time delay
of 10 seconds, when the accumulated time becomes
equal to and then greater than 10 seconds. This, in
turn, will energize solenoid C.

• Output SOL D will energize (through the timer done
bit T4:1/DN) after a total time delay of 15 seconds
to energize solenoid D.

Figure 10-35 shows an application of an on-delay timer
program implemented using the EQU instruction. The op-
eration of the program can be summarized as follows:

• When the switch (S1) is closed, timer T4:1 will
begin timing.

• Both EQU instructions’ source As are addressed to
get the accumulated value from the timer while it is
running.

• The EQU instruction of rung 2 has the value of 5
stored in source B.

• When the accumulated value of the timer reaches 5,
the EQU instruction of rung 2 will become logic
true for 1 second.

• As a result, the latch output will energize to switch
the pilot light PL1 on.

• The mask must be the same element size (16 bits) as
the source and compare addresses.

• You must set mask bits to 1 to compare data. Bits
in the compare address that correspond to 0s in the
mask are not compared.

• If you want the ladder program to change mask
value, store the mask at a data address. Otherwise,
enter a hexadecimal value for a constant mask value.

10.4 Data Manipulation Programs
Data manipulation instructions give new dimension and
flexibility to the programming of control circuits. For ex-
ample, consider the hardwired relay-operated, time-delay
circuit in Figure 10-33. This circuit uses three electrome-
chanical time-delay relays to control four solenoid valves.

Ladder logic program

MEQ
MASKED EQUAL

Source

Mask

Compare

N7:5

N7:6

N7:10

Source N7:5 01010101 0 1 0 1 1 1 1 1
Mask N7:6 1 1 1 1 1 1 1 1
Compare N7:10 01010101 0 1 0 1 x x x x

1 1 1 1 0 0 0 0

L2
Output

PL1

PL1

Figure 10-32 Masked comparison for equal (MEQ)
logic rung.

Stop
Start

1TD

2TD

3TD

L2L1

CR

(5 s)

(5 s)

(5 s)

SOL D

SOL A

SOL B

SOL C

3TD

2TD

1TD

CR

Figure 10-33 Three electromechanical time-delay relays
used to control four solenoid valves.

pet73842_ch10_207-233.indd 221 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

222 Chapter 10 Data Manipulation Instructions

Figure 10-35 Timer program implemented using the EQU instruction.

T4:1
1.0
20

0

DN

EN
TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

L1

S1

S1

Input Ladder logic program

T4:1.ACC

15

EQU
EQUAL
Source A

Source B

L
T4:1.ACC

5

EQU
EQUAL
Source A

Source B

1

2

3

PL1

L2

Output

PL1

U

PL1

SOL A

T4:1
1.0
15
0

DN

EN
TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

Ladder logic program

SOL A

SOL A

SOL B

T4:1.ACC
0
5

GEQ
GREATER THAN OR EQUAL
Source A

Source B

SOL C

T4:1.ACC
0

10

GEQ
GREATER THAN OR EQUAL
Source A

Source B

L1

Inputs

SOL DT4:1

DN

SOL A

L2

Outputs

SOL B

SOL C

SOL D

Stop

Stop

Start

Start

A
B
C

D

Figure 10-34 Controlling multiple loads using one timer and the GEQ instruction.

pet73842_ch10_207-233.indd 222 03/11/15 4:02 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Data Manipulation Instructions Chapter 10 223

the flow in vessel filling operations (Figure 10-37). This
control scenario can be summarized as follows:

• The receiving vessel has its weight monitored con-
tinuously by the PLC program as it fills.

• When the accumulated value of the timer reaches 15,
the EQU instruction of rung 3 will be true for 1 second.

• As a result, the unlatch output will energize to
switch the pilot light PL1 off.

• Therefore, when the switch is closed, the pilot
light will come on after 5 seconds, stay on for
10 seconds, and then turn off.

Figure 10-36 shows an application of an up-counter
program implemented using the LES instruction. The op-
eration of the program can be summarized as follows:

• Up-counter C5:1 will increment by 1 for every false-
to-true transition of the proximity sensor switch.

• Source A of the LES instruction is addressed to the
accumulated value of the counter and source B has a
constant value of 20.

• The LES instruction will be true as the long as
the value contained in source A is less than that of
source B.

• Therefore, output solenoid SOL will be energized
when the accumulated value of the counter is be-
tween 0 and 19.

• When the counter’s accumulated value reaches 20,
the LES instruction will go false, de-energizing
output solenoid SOL.

• When the counter’s accumulated value reaches its
preset value of 50, the counter reset will be ener-
gized through the counter done bit (C5:1/DN) to
reset the accumulated count to 0.

The use of comparison instructions is generally
straightforward. However, one precaution involves the
use of these instructions in PLC programs used to control

Figure 10-36 Counter program implemented using the LES instruction.
Source: Photo courtesy Turck, Inc., www.turck.com.

C5:1
50

0
DN

CU
CTU
COUNT UP
Counter
Preset
Accumulated

L1

Sensor

Sensor

Input Ladder logic program

C5:1

DN

C5:1
RES

SOL

C5:1.ACC
0

20

LES
LESS THAN
Source A

Source B

L2
Output

SOL

Figure 10-37 Vessel filling operation.
Source: Courtesy Feige Filling.

pet73842_ch10_207-233.indd 223 03/11/15 4:03 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

224 Chapter 10 Data Manipulation Instructions

The seven-segment LED display board, shown in Fig-
ure 10-39, is a typical Binary Coded Decimal (BCD) output
device. It displays a decimal number that corresponds to the
BCD value it receives at its input. Conversion of the four bi-
nary bits to a single decimal digit on the display is performed
by the LED display device. The BCD output module is used
to output data from a specific register or word location in
memory. This type of output module enables a PLC to oper-
ate devices that require BCD coded signals.

Figure 10-40 shows a PLC program that uses a BCD
input interface module connected to a thumbwheel switch
and a BCD output interface module connected to an LED
display board. The program is designed so that the LEDs
display the setting of the thumbwheel switch. Both the
MOV and EQU instructions form part of the program. The
operation of the program can be summarized as follows:

• The LED display board monitors the decimal set-
ting of the thumbwheel switch.

• When the weight reaches a preset value, the flow is
cut off.

• While the vessel fills, the PLC performs a compari-
son between the vessel’s current weight and a pre-
determined constant programmed in the processor.

• If the programmer uses only the equal instruction,
problems may result.

• As the vessel fills, the comparison for equality will
be false. At the instant the vessel weight reaches the
desired preset value of the equal instruction, the in-
struction becomes true and the flow is stopped.

• However, should the supply system leak additional
material into the vessel, the total weight of the ma-
terial could rise above the preset value, causing the
instruction to go false and the vessel to overfill.

• The simplest solution to this problem is to program
the comparison instruction as a greater than or equal
to instruction. This way, any excess material enter-
ing the vessel will not affect the filling operation.

• It may be necessary, however, to include addi-
tional programming to indicate a serious overfill
condition.

10.5 Numerical Data I/O Interfaces
The expanding data manipulation processing capabilities
of PLCs led to the development of I/O interfaces known
as numerical data I/O interfaces. In general, numerical
data I/O interfaces can be divided into two groups: those
that provide interface to multibit digital devices and those
that provide interface to analog devices.

The multibit digital devices are like the discrete I/O
because processed signals are discrete (on/off). The dif-
ference is that, with the discrete I/O, only a single bit is
required to read an input or control an output. Multibit
interfaces allow a group of bits to be input or output as a
unit. They can be used to accommodate devices that re-
quire BCD inputs or outputs.

The thumbwheel switches (TWS), shown in Fig-
ure 10-38, are typical BCD input devices. Each one of the
four switches provides four binary digits at its output that
correspond to the decimal number selected on the switch.
The conversion from a single decimal digit to four binary
digits is performed by the TWS device. The BCD input
module allows the processor to accept the 4-bit digital
codes and input their data into specific register or word
locations in memory to be used by the control program.
Data manipulation instructions can be used to access the
data from the input module allowing a person to change
set points, timer, or counter presets externally without
modifying the control program.

7

8
9
10
11

12
13
14
15

L 2

L 1

0
0
0
0

1
0
1
0

0
1
1
0

1
1
1
0

0
1
2
3

4
5
6

Bit
address

BCD
input module

0

5

6

7

1s units

Decimal

10s units

100s units

1000s units

Thumbwheel
switch
(TWS)

BCD

Figure 10-38 BCD input interface module connected to a
thumbwheel switch.
Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

pet73842_ch10_207-233.indd 224 03/11/15 4:03 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Data Manipulation Instructions Chapter 10 225

• The MOV instruction is used to move the data from
the thumbwheel switch input to the LED display
output.

• Setting of the thumbwheel switch is compared to
the reference number 1208 stored in source B by the
EQU instruction.

• Pilot light output PL is energized whenever the
input switch S1 is true (closed) and the value of the
thumbwheel switch is equal to 1208.

Input and output modules can be addressed either at
the bit level or at the word level. Analog modules con-
vert analog signals to 16-bit digital signals (input) or
 16-bit digital signals to analog values (output). An analog
I/O will allow monitoring and control of analog voltages
and currents. Figure 10-41 illustrates how an analog input
interface operates. The operation of this input module can
be summarized as follows:

• The analog input module contains the circuitry nec-
essary to accept analog voltage or current signals
from field devices.

• The input signal is converted from an analog to a
digital value by an analog-to-digital (A/D) converter
circuit.

• The conversion value, which is proportional to the
analog signal, is passed through the controller’s
data bus and stored in a specific register or word
location in memory for later use by the control
program.

An analog output interface module receives numerical
data from the processor; these data are then translated into
a proportional voltage or current to control an analog field

Figure 10-39 BCD output interface module connected to
a seven-segment LED display board.
Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

7

8
9
10
11

12
13
14
15

L 2

L 1

0
1
0
0

0
0
0
1

0
0
1
0

1
1
0
0

0
1
2
3

4
5
6

Bit
address

BCD
output module

1s units

Decimal

10s units

100s units

1000s units

LED
display board

BCD

Figure 10-40 Monitoring the setting of a thumbwheel switch.

L1

S1

S1 PL

Thumbwheel switch

Inputs Ladder logic program

1

TWS

TWS

2

3

4

1208h

EQU
EQUAL
Source A

Source B

MOV
MOVE
Source

Destination

(All 16 bits)

TWS

LED

PL

LED display

L2
Outputs

(All 16 bits)
LED

1 2 0 81 2 0 8

pet73842_ch10_207-233.indd 225 03/11/15 4:03 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

226 Chapter 10 Data Manipulation Instructions

10.6 Closed-Loop Control
In open-loop control, no feedback loop is employed
and system variations which cause the output to deviate
from the desired value are not detected or corrected. A
closed-loop system utilizes feedback to measure the ac-
tual system operating parameter being controlled such as
temperature, pressure, flow, level, or speed. This feedback
signal is sent back to the PLC where it is compared with
the desired system set-point. The controller develops an
error signal that initiates corrective action and drives the
final output device to the desired value.

PLC set-point control in its simplest form compares
an input value, such as analog or thumbwheel inputs, to
a set-point value. A discrete output signal is provided
if the input value is less than, equal to, or greater than
the set-point value. The temperature control program
of Figure 10-43 is one example of set-point control.
In this application, a PLC is to provide for simple off/
on control of the electric heating elements of an oven.

device. Figure 10-42 illustrates how an analog output in-
terface operates. The operation of this output module can
be summarized as follows:

• The function of the analog output module is to ac-
cept a range of numeric values output from the PLC
program and to produce a varying current or voltage
signal required to control a connected analog output
device.

• Data from a specific register or word location in the
CPU memory are passed through the controller’s
data bus to the digital-to-analog (D/A) converter.

• The analog output from the D/A converter is then
used to control the analog output device.

• The level of the analog signal output is based on the
digital value of the data word supplied by the CPU
and manipulated by the control program.

• These output interfaces normally require an external
power supply that meets certain current and voltage
requirements.

Figure 10-41 Analog input interface module.

Thermocouple

L1

1
0
0
1

0
1
1
0

1
0
1
0

1
1
1
0

 12
 13
 14
 15

0
1
2
3

4
5
6
7

8
 9
10
11

Data
bus

A/D
c
o
n
v
e
r
t
e
r

Variable voltage
or current input

L2

BCD conversion value

Analog output module

Analog
input

device

Figure 10-42 Analog output interface module.

Isolation

Word
data
from
CPU

Digital
to

analog
converter

Voltage
and

current
driver

LoadAmplifier

Analog
output

Servo
motor

pet73842_ch10_207-233.indd 226 03/11/15 4:03 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Data Manipulation Instructions Chapter 10 227

• Once the temperature increases to 598°F the LEQ
instruction goes false but the heater output remains
on until the temperature rises to 603°F.

• At the 603°F point the GEQ instruction and
B3:0/2 will both be true and the heater will be
switched off.

Several set-point control schemes can be performed by
different PLC models. These include on/off control, pro-
portional (P) control, proportional-integral (PI) control,
and proportional-integral-derivative (PID) control. Each
involves the use of some form of closed-loop control to
maintain a process characteristic, such as a temperature,
pressure, flow, or level, at a desired value. When a control
system is designed such that it receives operating infor-
mation from the machine and makes adjustments to the
machine based on this operating information, the system
is said to be a closed-loop system.

The block diagram of a closed-loop control system is
shown in Figure 10-44. A measurement is made of the
variable to be controlled. This measurement is then com-
pared to a reference point, or set-point. If a difference
(error) exists between the actual and desired levels, the
PLC control program will take the necessary corrective

The operation of the program can be summarized as
follows:

• Oven is to maintain an average set-point tempera-
ture of 600°F with a variation of about 1 percent
between the off and on cycles.

• The electric heaters are turned on when the temper-
ature of the oven is 597°F or less and will stay on
until the temperature rises to 603°F or more.

• The electric heaters stay off until the temperature
drops to 597°F, at which time the cycle repeats
itself.

• Whenever the less than or equal (LEQ) instruction
is true, a low-temperature condition exists and the
program switches on the heater.

• Whenever the greater than or equal (GEQ) instruc-
tion is true, a high-temperature condition exists and
the program switches off the heater.

• For the program as shown the temperature is
595°F so the LEQ instruction and B3:0/1 will
both be true and the heater output will be switched
on and sealed-in through the heater examine-on
instruction.

Figure 10-43 Set-point control program.

Ladder logic program

B3:0/1

(Internal)

B3:0/2

(Internal)

LEQ
LESS THAN OR EQUAL
Source A

Source B

GEQ
GREATER THAN OR EQUAL
Source A

Source B

MOV
MOVE
Source

Destination

Low temp.
B3:0/1

Heater

Heater
High temp.

B3:0/2

L1
Inputs

S1

S1

S1

Thermocouple

Thermocouple

Thermocouple

Thermocouple

LED

Heater

L2
Outputs

LED Display

LED

5 9 5

597

603

pet73842_ch10_207-233.indd 227 03/11/15 4:03 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

228 Chapter 10 Data Manipulation Instructions

the output to degrade closing the valve by different per-
centages, adjusting the valve to maintain a set-point.

Proportional-integral-derivative (PID) control is the
most sophisticated and widely used type of process control.
PID operations are more complex and are mathematically
based. PID controllers produce outputs that depend on the
magnitude, duration, and rate of change of the system error
signal. Sudden system disturbances are met with an aggres-
sive attempt to correct the condition. A PID controller can
reduce the system error to 0 faster than any other controller.

A typical PID control loop is illustrated in Figure 10-46.
The loop measures the process, compares it to a set-point,
and then manipulates the output in the direction which
should move the process toward the set-point. The termi-
nology used in conjunction with a PID loop can be sum-
marized as follows:

• Operating information that the controller receives
from the machine is called the process variable
(PV) or feedback.

• Input from the operator that tells the controller the
desired operating point is called the set-point (SP).

• When operating, the controller determines whether
the machine needs adjustment by comparing (by
subtraction) the set-point and the process variable

action. Adjustments are made continuously by the PLC
until the difference between the desired and actual output
is as small as is practical.

With on/off PLC control (also known as two-position
and bang-bang control), the output or final control ele-
ment is either on or off—one for the occasion when the
value of the measured variable is above the set-point and
the other for the occasion when the value is below the
set-point. The controller will never keep the final control
element in an intermediate position. Most residential ther-
mostats are on/off type controllers.

On/off control is inexpensive but not accurate enough
for most process and machine control applications. On/
off control almost always means overshoot and resultant
system cycling. For this reason a deadband usually ex-
ists around the set-point. The deadband or hysteresis of
the control loop is the difference between the on and off
operating points.

Proportional controls are designed to eliminate
the hunting or cycling associated with on/off control.
They allow the final control element to take intermedi-
ate positions between on and off. This permits analog
control of the final control element to vary the amount
of energy to the process, depending on how much the
value of the measured variable has shifted from the
desired value.

The process illustrated in Figure 10-45 is an example
of a proportional control process. The PLC analog output
module controls the amount of fluid placed in the holding
tank by adjusting the percentage of valve opening. The
valve is initially open 100 percent. As the fluid level in the
tank approaches the preset point, the processor modifies

Figure 10-44 Closed-loop control system.

PLC
controller

Measurement of
variable to be

controlled
(sensor)

Control
element

(heater-valve)

Set-point
(potentiometer)

Figure 10-45 Proportional control process.

Ultrasonic
level sensor

Analog output

4 to 20 mA
analog input

Adjustable
valve

PLC

Figure 10-46 Typical PID control loop.

∑
ErrorSet-point

(SP) PID equation

Control
variable
(CV)

Process
variable
(PV)

Level
detector

Flow
rate

pet73842_ch10_207-233.indd 228 03/11/15 4:03 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Data Manipulation Instructions Chapter 10 229

of the PID instruction parameters can be summarized as
follows:

• Control Block is the file that stores the data required
to operate the instruction.

• Process Variable (PV) is an element address that
stores the process input value.

• Control Variable (CV) is an element address that
stores the output of the PID instruction.

to produce a difference (the difference is called the
error).

• Output from the loop is called the control variable
(CV), which is connected to the controlling part of
the process.

• The PID loop takes appropriate action to modify the
process operating point until the control variable
and the set-point are very nearly equal.

Programmable controllers are either equipped with
PID I/O modules that produce PID control or have suf-
ficient mathematical functions of their own to allow PID
control to be carried out. Figure 10-47 shows an SLC 500
PID instruction with typical addresses for the parameters
entered. The PID instruction normally controls a closed
loop using inputs from an analog input module and pro-
vides an output to an analog output module. Explanation

Figure 10-47 SLC 500 PID instruction.

PID

Setup Screen

PID
Control Block
Process Variable
Control Variable
Control Block Length

N10:0
N10:28
N10:29

 23

pet73842_ch10_207-233.indd 229 03/11/15 4:03 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

230 Chapter 10 Data Manipulation Instructions

1. In general, what do data manipulation instructions
allow the PLC to do?

2. Explain the difference between a register or word
and a table or file.

3. Into what two broad categories can data manipula-
tion instructions be placed?

4. What takes place with regard to a data transfer
instruction?

5. The MOV instruction is to be used to copy the
information stored in word N7:20 to N7:35.
What address is entered into the source and the
destination?

6. What is the purpose of the mask word in the MVM
instruction?

7. List three types of data shifts used with file
instructions.

8. List the six parameters and addresses that must
be entered into the file arithmetic and logic (FAL)
instruction.

9. Assume the ALL mode has been entered as part of
a FAL instruction. How will this affect the transfer
of data?

10. What is the advantage of using the file copy (COP)
or fill file (FLL) instruction rather than the FAL in-
struction for the transfer of data?

11. What are data compare instructions used for?

12. Name and draw the symbols for the six different
types of data compare instructions.

13. Explain what each of the logic rungs in
Figure 10-48 is instructing the processor to do.

14. What does the limit test (LIM) instruction test
values for?

15. How are multibit I/O interfaces different from the
discrete type?

16. Assume that a thumbwheel switch is set for the
decimal number 3286.
a. What is the equivalent BCD value for this

setting?
b. What is the equivalent binary value for this

setting?

17. Assume that a thermocouple is connected to an
analog input module. Explain how the tempera-
ture of the thermocouple is communicated to the
processor.

CHAPTER 10 REVIEW QUESTIONS

Figure 10-48 Logic rungs for Question 13.

(a)

(b)

(c)

GEQ
GREATER THAN OR EQUAL
Source A

Source B

F

N7:601

N7:600
30

E

F
E

Output
L2L1

Output
LES
LESS THAN
Source A

Source B

D L2

N7:500

250

L1 C

Input

D
C

Ladder logic program

EQU
EQUAL
Source A

Source B

B L2

Output

N7:400

N7:401

L1 A

Input

B
A

pet73842_ch10_207-233.indd 230 03/11/15 4:03 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Data Manipulation Instructions Chapter 10 231

18. Outline the process by which an analog output in-
terface module operates the field device connected
to it.

19. Compare the operation of open-loop and closed-
loop PLC systems.

20. Outline the control process involved with simple
PLC set-point control.

21. Compare the operation of the final control element
in on/off and proportional control systems.

22. Explain the meaning of the following terms as they
apply to a PID control:
a. Process variable
b. Set-point
c. Error
d. Control variable

after 25 off-to-on transitions of the count
PB input.

3. Construct a nonretentive timer program that will
turn on a pilot light after a time-delay period. Use
a thumbwheel switch to vary the preset time-delay
value of the timer.

4. Study the data compare program of Figure 10-51
and answer the following questions:
a. Will the pilot light PL1 come on whenever

switch S1 is closed? Why?
b. Must switch S1 be closed to change the num-

ber stored in source A of the EQU instruction?
c. What number or numbers need to be set on

the thumbwheel in order to turn on the pilot
light?

CHAPTER 10 PROBLEMS

1. Study the data transfer program of Figure 10-49
and answer the following questions:
a. When S1 is open, what decimal number will

be stored in integer word address N7:13 of the
MOV instruction?

b. When S1 is on, what decimal number will be
stored in integer word address N7:112 of the
MOV instruction?

c. When S1 is on, what decimal number will ap-
pear in the LED display?

d. What is required for the decimal number 216 to
appear in the LED display?

2. Study the data transfer counter program of
Figure 10-50 and answer the following questions:
a. What determines the preset value of the

counter?
b. Outline the steps to follow to operate the

program so that the PL1 output is energized

Figure 10-49 Program for Problem 1.

L1

Inputs

L2

OutputLadder logic program

Thumbwheel switch

N7:112

N7:13

LED display

MOV
MOVE
Source

Destination

S1

N7:112

N7:13

4

8

5

S1

pet73842_ch10_207-233.indd 231 03/11/15 4:03 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

232 Chapter 10 Data Manipulation Instructions

5. Study the data compare program in Figure 10-52
and answer the following questions:
a. List the values for the thumbwheel switch that

would allow the pilot light to turn on.
b. If the value in the word N7:112 is 003 and switch

S1 is open, will the pilot light turn on? Why?
c. Assume that source B is addressed to the accu-

mulated count of an up-counter. With S1 closed,
what setting of the thumbwheel switch would be
required to turn the pilot light off when the ac-
cumulated count reaches 150?

6. Write a program to perform the following:
a. Turn on pilot light 1 (PL1) if the thumbwheel

switch value is less than 4.
b. Turn on pilot light 2 (PL2) if the thumbwheel

switch value is equal to 4.
c. Turn on pilot light 3 (PL3) if the thumbwheel

switch value is greater than 4.
d. Turn on pilot light 4 (PL4) if the thumbwheel

switch value is less than or equal to 4.
e. Turn on pilot light 5 (PL5) if the thumbwheel

switch value is greater than or equal to 4.

Figure 10-50 Program for Problem 2.

L1

Count PB

Count PB

Inputs

L2

Output

PL1

PL1

Ladder logic program

N7:10

Reset PB

Reset PB

MOV
MOVE
Source

Destination

N7:10

C5:1.PRE

CTU
COUNT UP
Counter
Preset
Accumulated

C5:1
000
000

DN

CU

RES

C5:1/DN

C5:1

Figure 10-51 Program for Problem 4.

L1

Inputs Ladder logic program

Thumbwheel switch

N7:112

EQU
EQUAL
Source A

Source B

S1

N7:112

004

L2

Output

PL1

PL1

S1

pet73842_ch10_207-233.indd 232 03/11/15 4:03 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Data Manipulation Instructions Chapter 10 233

7. Write a program that will copy the value stored at
address N7:56 into address N7:60.

8. Write a program that uses the mask move instruc-
tion to move only the upper 8 bits of the value
stored at address I:2.0 to address O:2.1 and to
ignore the lower 8 bits.

9. Write a program that uses the FAL instruction to
copy 20 words of data from the integer data file,
starting with N7:40, into the integer data file,
starting with N7:80.

10. Write a program that uses the COP instruction to
copy 128 bits of data from the memory area, start-
ing at B3:0, to the memory area, starting at B3:8.

11. Write a program that will cause a light to come on
only if a PLC counter has a value of 6 or 10.

12. Write a program that will cause a light to come on if
a PLC counter value is less than 10 or more than 30.

13. Write a program for the following: The tempera-
ture reading from a thermocouple is to be read and
stored in a memory location every 5 minutes for
4 hours. The temperature reading is brought in con-
tinuously and stored in address N7:150. File #7:200
is to contain the data from the last full 4-hour
period.

Figure 10-52 Program for Problem 5.

L1

Inputs Ladder logic program

Thumbwheel switch

N7:112

GRT
GREATER THAN
Source A

Source B

S1

N7:112

12

L2

Output

PL1

PL1

S1

pet73842_ch10_207-233.indd 233 03/11/15 4:03 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

234

Ladder logic program OutputInput
L2

PL1

MUL
MULTIPLY
Source A

Source B

Destination

N7:1
123

N7:2
61

N7:3
7503

EQU
EQUAL
Source A

Source B

N7:3
7503
7503

PL1

L1

SW
SW

11
Math Instructions

Most PLCs have arithmetic function capabilities.
Basic PLC math instructions include add, sub-
tract, multiply, and divide to calculate the sum,
difference, product, and quotient of the content
of word registers. The PLC is capable of doing
many arithmetic operations per scan period for
fast updating of data. This chapter covers the
basic mathematical instructions performed by
PLCs and their applications.

Chapter Objectives

After completing this chapter, you will be able to:

 • Analyze and interpret math instructions as they apply to a
PLC program

 • Create PLC programs involving math instructions

 • Apply combinations of PLC arithmetic functions to
processes

pet73842_ch11_234-251.indd 234 03/11/15 4:07 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Math Instructions Chapter 11 235

11.1 Math Instructions
Math instructions, like data manipulation instructions, en-
able the programmable controller to take on more of the
qualities of a conventional computer. The PLC’s math func-
tions capability allows it to perform arithmetic functions on
values stored in memory words or registers. For example,
assume you are using a counter to keep track of the number
of parts manufactured, and you would like to display how
many more parts must be produced in order to reach a certain
quota. This display would require the data in the accumu-
lated value of the counter to be subtracted from the quota re-
quired. Other applications include combining parts counted,
subtracting detected defects, and calculating run rates.

Depending on what type of processor is used, various
math instructions can be programmed. The basic four
mathematical functions performed by PLCs are:

Addition—The capability to add one piece of data to
another.
Subtraction—The capability to subtract one piece of
data from another.
Multiplication—The capability to multiply one piece
of data by another.
Division—The capability to divide one piece of data
by another.

Math instructions use the contents of two words or regis-
ters and perform the desired function. The PLC instructions
for data manipulation (data transfer and data compare) are
used with the math symbols to perform math functions.
Math instructions are all output instructions. These instruc-
tions can be conditional or unconditional. With conditional
arithmetic instructions the input logic determines when the
instruction executes. Unconditional arithmetic instructions
execute with each scan.

Figure 11-1 shows the Compute/Math menu tab for the
SLC 500 PLC and its associated RSLogix software. The
commands can be summarized as follows:

CPT (Compute)—Evaluates an expression and stores
the result in the destination.
ADD (Add)—Adds source A to source B and stores
the result in the destination.
SUB (Subtract)—Subtracts source B from source A
and stores the result in the destination.

MUL (Multiply)—Multiplies source A by source B
and stores the result in the destination.
DIV (Divide)—Divides source A by source B and
stores the result in the math register and destination.
SQR (Square Root)—Calculates the square root of the
source and places the integer result in the destination.
NEG (Negate)—Changes the sign of the source and
places it in the destination.
TOD (To BCD)—Converts a 16-bit integer source
value to BCD and stores it in the math register or the
destination.
FRD (From BCD)—Converts a BCD value in the
math register or the source to an integer and stores it
in the destination.

The basic math instructions are ADD, SUB, MUL, and
DIV. Each of these instructions has three parameter fields.
Namely, Source A, Source B and Destination fields.

• The Source A and Source B fields can be an input
rack location, file address, instruction field, or a
fixed value. For example:

Input Location I:1
File Address N7:5
Instruction Field C5:2.ACC
Fixed Value 30

• The Destination fields can be an output location,
file address, or an instruction field. For example:

Output location O:2
File Address N7:8
Instruction Field T4:1.PRE

Figure 11-2 shows the CPT (compute) instruction used
with SLC 500 controllers. When CPT instruction is executed,
then copy, arithmetic, logical, or conversion operation resid-
ing in the expression field of this instruction is performed
and the result is sent to the destination. The execution time
of a CPT instruction is longer than that of a single arithmetic
operation and uses more instruction words.

The main advantage of the compute instruction is that
it allows you to enter quite complex expressions in one in-
struction. Figure 11-3 shows a ladder rung used to convert
a Fahrenheit temperature to a Celsius temperature using
a single RSLogix 5000 compute instruction. The CPT

Figure 11-1 Compute/Math menu tab.

CPT ADD SUB MUL DIV SQR

Compute/MathCompareInput/Output

NEG TOD FRD

Move/Logic

Figure 11-2 SLC 500 CPT (compute) instruction.

CPT

Compute

Destination

Expression

pet73842_ch11_234-251.indd 235 03/11/15 4:07 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

236 Chapter 11 Math Instructions

instruction for the SLC 500 and Logix 5000 processors
operate in the same manner. This operation of the rung
can be summarized as follows:

• The arithmetic operation [°C = (°F − 32) × (5/9)]
is defined in the Expression.

• The compute operation is performed whenever the
Temp_Convert input tag is true.

• When the CPT instruction is executed the result of
the equation is put into the DEST tag name Result.

• In this example a temperature of 140°F is pro-
grammed into N7:5 of the Expression and the com-
puted value of 60°C appears in the Result.

• The CPT has its own instruction set consisting of
commands, or operators, that can be embedded in
a mathematical expression. These commands range
from add and subtract to BCD conversion and abso-
lute values.

• The operations you write into the expression are
performed by the instruction in a prescribed order,
not necessarily the order you write them. The first
order is parentheses so you can override the order of
operation by grouping terms within parentheses. This
forces the instruction to perform an operation within
the parentheses ahead of other operations. In this case
parentheses were used to assure that the subtraction
was done before the multiplication and division.

11.2 Addition Instruction
Most math instructions take two input values, perform
the specified arithmetic function, and output the result
to an assigned memory location. For example, the ADD
instruction performs the addition of two values stored in
the referenced memory locations. How these values are
accessed depends on the controller. Figure 11-4 shows the
ADD instruction used with the SLC 500 controllers. The
operation of the logic rung can be summarized as follows:

• When input switch SW is closed the rung will be
true.

• The value stored at the source A address, N7:0 (25),
is added to the value stored at the source B address,
N7:1 (50).

• The answer (75) is stored at the destination address
N7:2.

• Source A and source B can be either values or
addresses that contain values, but A and B cannot
both be constants.

The program of Figure 11-5 illustrates how the ADD
instruction can be used to add the accumulated counts of
two up-counters. This application requires a pilot light to
come on when the sum of the counts from the two coun-
ters is equal to or greater than 350. The operation of the
program can be summarized as follows:

• Source A of the ADD instruction is addressed to the
accumulated value of counter C5:0.

• Source B of the ADD instruction is addressed to the
accumulated value of counter C5:1.

• The value at source A is added to the value at source
B, and the result (answer) is stored at destination
address N7:1.

• Source A of the GEQ (greater than or equal) instruc-
tion is addressed to the value of the destination ad-
dress N7:1.

• Source B of the GEQ instruction contains the con-
stant value of 350.

• The GEQ instruction and PL1 output will be true
whenever the accumulated sum of the values in the
two counters is equal to or greater than the constant
value 350.

• A reset button is provided to reset the accumulated
count of both counters to zero.

When performing math functions, care must be taken
to ensure that values remain in the range that the data
table or file can store; otherwise, the overflow bit will be
set. The arithmetic status bits for the SLC 500 controller
are found in word 0, bits 0 to 3 of the processor status
file S2 (Figure 11-6). After an instruction is executed, the

Figure 11-3 Compute instruction used to convert from
Fahrenheit to Celsius.

Ladder logic program Input

L1

Compute
Dest Result
 60

Expression (N7:5-32)*5/9

CPT
Temp_Convert

Temp_Convert

Figure 11-4 SLC 500 ADD instruction.

Ladder logic program Input

L1
ADD
ADD
Source A

Source B

Destination

N7:0
 25
N7:1

50
N7:2

75

SW

SW

pet73842_ch11_234-251.indd 236 03/11/15 4:07 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Math Instructions Chapter 11 237

arithmetic status bits in the status file are updated. The
description of each bit can be summarized as follows:

Carry (C)—Address S2:0/0, is set to 1 when there is
a carry in the ADD instruction or a borrow in the SUB
instruction.

Overflow (O)—Address S2:0/1, is set to 1 when
the result is too large to fit in the destination
register.
Zero Bit (Z)—Address S2:0/2, is set to 1 when the
result of the subtract instruction is zero.

Figure 11-5 Counter program that uses the ADD instruction.

L1

Inputs

S2

L2

OutputLadder logic program

S1

C5:0
350

0

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:1
350

0

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

PL1

C5:0.ACC

C5:1.ACC

N7:1

ADD
ADD
Source A

Source B

Destination

Reset C5:0

GEQ
GREATER THAN OR EQUAL
Source A

Source B

N7:1

350

CU

DN

CU

DN

RES

C5:1

RES

PL1

Reset

S1

S2

125

100

250

Figure 11-6 Processor status file S2.

Status Table

Address S2:0 Table: S2:Status

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S2:0/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S2:1/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S2:2/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S2:3/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S2:4/ 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1

S2:5/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pet73842_ch11_234-251.indd 237 03/11/15 4:07 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

238 Chapter 11 Math Instructions

SUB instruction used with the SLC 500 controllers. The
operation of the logic rung can be summarized as follows:

• When input switch SW is closed the rung will be true.
• The value stored at the source B address, N7:05

(322), is subtracted from the value stored at the
source A address, N7:10 (520).

• The answer (198) is stored at the destination ad-
dress, N7:20.

• Source A and source B can be either values or ad-
dresses that contain values, but A and B cannot both
be constants.

The program of Figure 11-8 shows how the SUB func-
tion can be used to indicate a vessel overfill condition.
This application requires an alarm to sound when a supply
system leaks 5 lb or more of raw material into the ves-
sel after a preset weight of 500 lb has been reached. The
operation of the program can be summarized as follows:

• When the start button is pressed, the fill solenoid
(rung 1) and filling indicating light (rung 2) are

Figure 11-7 SLC 500 SUB (subtract) instruction.

Ladder logic program Input

L1
SUB
SUBTRACT
Source A

Source B

Destination

N7:10
 520

N7:05
322

N7:20
198

SW

SW

Figure 11-8 Vessel overfill alarm program.

Ladder logic program

Full

Full

Fill
solenoid

Fill
solenoid

Fill
solenoid

Alarm

Full

Full

Filling

Outputs

L2Start

Inputs

L1

Weight
transducer

(All 16 bits)

Stop

SUB
SUBTRACT
Source A

Source B

Destination

I:012

500

N7:1

GEQ
GREATER THAN OR EQUAL
Source A

Source B

I:012

500

GEQ
GREATER THAN OR EQUAL
Source A

Source B

N7:1

5

1

2

3

4

5

Start

I:012

Stop

Full

Fill
solenoid

Alarm

Filling

Start

Stop

Sign Bit (S)—Address S2:0/3, is set to 1 when the
result is a negative number.

11.3 Subtraction Instruction
The SUB (subtract) instruction is an output instruction that
subtracts one value from another and stores the result in
the destination address. When rung conditions are true, the
subtract instruction subtracts source B from source A and
stores the result in the destination. Figure 11-7 shows the

pet73842_ch11_234-251.indd 238 03/11/15 4:07 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Math Instructions Chapter 11 239

turned on and raw material is allowed to flow into
the vessel.

• The vessel has its weight monitored continuously by
the PLC program (rung 3) as it fills.

• When the weight reaches 500 lb, the fill solenoid is
de-energized and the flow is cut off.

• At the same time, the filling pilot light indicator is
turned off and the full pilot light indicator (rung 3)
is turned on.

• Should the fill solenoid leak 5 lb or more of raw
material into the vessel, the alarm (rung 5) will en-
ergize and stay energized until the overflow level is
reduced below the 5-lb overflow limit.

11.4 Multiplication Instruction
The multiply (MUL) instruction is an output instruction
that multiplies two values and stores the result in the des-
tination address. Figure 11-9 shows the MUL instruction
used with the SLC 500 controllers. The operation of the
logic rung can be summarized as follows:

• When input switch SW is closed the rung will be
true.

• The data in source A (constant 20) will be multi-
plied by the data in source B (accumulated value of
counter C5:10).

• The resultant answer is placed in the destination N7:2.
• Similar to previous math instructions, source A and

B in multiplication instructions can be values (con-
stants) or addresses that contain values, but A and B
cannot both be constants.

The program of Figure 11-10 is an example of how
MUL instruction calculates the product of two sources. The
operation of the program can be summarized as follows:

• When input switch SW is closed the MUL instruc-
tion is executed.

• The value stored in source A, address N7:1 (123),
is then multiplied by the value stored in source B,
address N7:2 (61).

• The product (7503) is placed into destination word
N7:3.

• As a result, the equal instruction becomes true, turn-
ing output PL1 on.

The program of Figure 11-11 is an example of how the
MUL instruction is used as part of an oven temperature
control program. The operation of the program can be
summarized as follows:

• The PLC calculates the upper and lower deadband,
or off/on limits, about the set-point.

• Upper and lower temperature limits are set automati-
cally at ±1 percent regardless of the set-point value.

• Set-point temperature is adjusted by means of the
thumbwheel switch.

• The analog thermocouple interface module is used
to monitor the current temperature of the oven.

Figure 11-9 SLC 500 MUL (multiply) instruction.

Ladder logic program Input

L1

SW

SW
MUL
MULTIPLY
Source A

Source B

Destination

20

C5:10.ACC

N7:2

Figure 11-10 MUL instruction used to calculate the product of two sources.

Ladder logic program OutputInput
L2

PL1

MUL
MULTIPLY
Source A

Source B

Destination

N7:1
123

N7:2
61

N7:3
7503

EQU
EQUAL
Source A

Source B

N7:3
7503
7503

PL1

L1

SW
SW

pet73842_ch11_234-251.indd 239 03/11/15 4:07 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

240 Chapter 11 Math Instructions

• In this example, the set-point temperature is 400°F.
• Therefore, the electric heaters will be turned on

when the temperature of the oven drops to less than
396°F and stay on until the temperature rises above
404°F.

• If the set-point is changed to 100°F, the deadband
remains at ±1 percent, with the lower limit being
99°F and the upper limit being 101°F.

• The number stored in word N7:1 represents the
upper temperature limit, and the number stored in
word N7:2 represents the lower limit.

Figure 11-11 The MUL instruction used as part of a temperature control program.

Ladder logic program

ON/OFF PL1 PL2 Heater

Heater

PL2

PL1

MUL
MULTIPLY
Source A

Source B

Destination

I:012
400

0.0100000

N7:0
4

ADD
ADD
Source A

Source B

DestinationHigh limit

Low limit

I:012
400

N7:0
4

N7:1
404

SUB
SUBTRACT
Source A

Source B

Destination

I:012
400

N7:0
4

N7:2
396

LES
LESS THAN
Source A

Source B

I:013
0

N7:2
396

GRT
GREATER THAN
Source A

Source B

I:013
0

N7:1
404

Inputs

L1

ON/OFF

TWS

Thermocouple
input

1

2

3

I:013

I:012

PL1

PL2

4 0 0

Heater

L2

Outputs

11.5 Division Instruction
The divide (DIV) instruction divides the value in source A
by the value in source B and stores the result in the desti-
nation and math register. Figure 11-12 shows an example
of the DIV instruction. The operation of the logic rung
can be summarized as follows:

• When input switch SW is closed the rung will be true.
• The data in source A (the accumulated value of

counter C5:10) is then divided by the data in source
B (the constant 2).

pet73842_ch11_234-251.indd 240 03/11/15 4:07 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Math Instructions Chapter 11 241

• The result is placed in the destination N7:3.
• If the remainder is 0.5 or greater, a roundup occurs

in the integer destination.
• The value stored in the math register consists of the

unrounded quotient (placed in the most significant
word) and the remainder (placed in the least signifi-
cant word).

• Some PLCs support the use of floating point num-
bers as well as integer (whole number) values. As
an example, 10 divided by 3 may be expressed as
3.333333 (floating-point notation) or 3 with a re-
mainder of 1.

• A minor fault bit is set upon detection of a division
by zero.

The program of Figure 11-13 is an example of how the
DIV instruction calculates the integer value that results
from dividing source A by source B. The operation of the
program can be summarized as follows:

• When input switch SW is closed the DIV instruc-
tion is executed.

• The value stored in source A, address N7:0 (120),
is then divided by the value stored in source B,
address N7:1 (4).

• The answer, 30, is placed in the destination address
N7:5.

• As a result, the equal instruction becomes true, turn-
ing output PL1 on.

The program of Figure 11-14 is an example of how
the DIV function is used as part of a program to convert
Celsius temperature to Fahrenheit. The operation of the
program can be summarized as follows:

• The thumbwheel switch connected to the input
module indicates Celsius temperature.

• The program is designed to convert the recorded
Celsius temperature in the data table to Fahrenheit
values for display.

• The following conversion formula forms the basis
for the program:

F = (9 __
5
 × C) + 32

• In this example, a current temperature reading of
60°C is assumed.

• The PLC processor carries out its internal opera-
tions using binary numbers and the FRD instruction
is used to convert the 16-bit integer values from the
thumbwheel switch into BCD values.

• The MUL instruction multiplies the temperature
(60°C) by 9 and stores the product (540) in address
N7:0.

Figure 11-12 SLC 500 DIV (divide) instruction.

Ladder logic program Input

L1
DIV
DIVIDE
Source A

Source B

Destination

C5:10.ACC

2

N7:3

SW

SW

Figure 11-13 DIV instruction used to calculate the value that results
from dividing source A by source B.

Ladder logic program OutputInput
L2

PL1

DIV
DIVIDE
Source A

Source B

Destination

N7:0
120
N7:1

4
N7:5

30

EQU
EQUAL
Source A

Source B

N7:5
30
30

PL1

L1

SW
SW

pet73842_ch11_234-251.indd 241 03/11/15 4:07 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

242 Chapter 11 Math Instructions

Thumb_Value = 7

7 =12

11.6 Other Word-Level Math
Instructions
The program of Figure 11-16 is an example of the square
root (SQR) instruction. The operation of the logic rung
can be summarized as follows:

• When input switch SW is closed the SQR instruc-
tion is executed.

• The number whose square root we want to deter-
mine (144) is placed in the source.

• The function calculates the square root and places it
(12) in the destination.

• If the value of the source is negative, the instruction
will store the square root of the absolute (positive)
value of the source at the destination.

The program of Figure 11-17 is an example of the ne-
gate (NEG) instruction. This math function changes the
sign of the source value from positive to negative. The
operation of the logic rung can be summarized as follows:

• When input switch SW is closed the NEG instruc-
tion is executed.

• The DIV instruction divides 5 into the 540 and
stores the answer (108) in address N7:1.

• The ADD instruction adds 32 to the value of 108
and stores the sum (140) in address B3:1.

• Finally the TOD instruction is used to convert BCD
values into integers. to interface with the LED display.

• Thus 60°C is displayed as 140°F.

The Modulo (MOD) instruction, shown in Figure 11-15,
is part of the ControlLogix Compute/Math instruction set.
This instruction is used to calculate the remainder after the
value stored in Source A is divided by the value stored in
Source B. In this unconditional rung example:

Source A
 = Dest (remainder)Source B

Thumb_Value = Actual_Value
2

Figure 11-14 Program for converting Celsius temperature
to Fahrenheit.

Ladder logic programInput

Thumbwheel
switch

L1

1

2

3

Output

MUL
MULTIPLY
Source A

Source B

Destination

B3:0
60

9

N7:0
540

Source

Destination

I:012

B3:0
60

DIV
DIVIDE
Source A

Source B

Destination

N7:0
540

5

N7:1
108

ADD
ADD
Source A

Source B

Destination

N7:1
108
32

B3:1
140

Source

Destination

B3:1
140

O:013

I:012 O:013

0 6 0

L2

LED
Display

FahrenheitCelsius

1 4 0

FRD
From BCD

TOD
TO BCD

Figure 11-15 ControlLogix Modulo (MOD) instruction.

CPT

Compare Compute/Math Move/Logical File/Misc.

ADD SUB MUL DIV MOD SQR

MOD
Modulo
Source A Thumb_Value
 7
Source B 2

Dest Actual_Value
 1

Figure 11-16 SLC 500 SQR (square root) instruction.

Ladder logic program Input

L1
SQR
SQUARE ROOT
Source A

Destination

N7:101
144

N7:105
12

SW

SW

(144 = 12)√

pet73842_ch11_234-251.indd 242 03/11/15 4:07 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Math Instructions Chapter 11 243

• The positive value 101 stored at the source address
N7:52 is negated to –101 and stored in destination
address N7:53.

• Positive numbers will be stored in straight binary
format, and negative numbers will be stored as 2’s
complement.

The program of Figure 11-18 is an example of the clear
(CLR) instruction. The operation of the logic rung can be
summarized as follows:

• When input switch SW is closed the CLR instruc-
tion is executed.

• Upon execution it sets all bits of a word to zero.
• In this example it changes the value of all bits stored

in the destination address N7:22 to 0.

The convert to BCD (TOD) instruction is used to
convert 16-bit integers into binary-coded decimal
(BCD) values. This instruction could be used when
transferring data from the processor (which stores data
in binary format) to an external device, such as an LED
display, that functions in BCD format. The program of
Figure 11-19 is an example of the TOD instruction. The
operation of the logic rung can be summarized as follows:

• When input switch SW is closed the TOD instruc-
tion is executed.

• The binary bit pattern at the source address N7:23 is
converted into a BCD bit pattern of the same deci-
mal value at the destination address O:20.

• The source displays the value 10, which is the
correct decimal value; however, the destination
displays the value 16.

• The processor interprets all bit patterns as binary;
therefore the value 16 is the binary interpretation of
the BCD bit pattern.

• The bit pattern for 10 BCD is the same as the bit
pattern for 16 binary.

The convert from BCD (FRD) instruction is used to
convert binary-coded decimal (BCD) values to integer val-
ues. This instruction could be used to convert data from a
BCD external source, such as a BCD thumbwheel switch,
to the binary format in which the processor operates. The
program of Figure 11-20 is an example of the FRD instruc-
tion. The operation of the logic rung can be summarized as
follows:

• When input switch SW is closed the FDR instruc-
tion is executed.

• The BCD bit pattern stored at the source address
I:30 is converted into a binary bit pattern of the same
decimal value at the destination address, N7:24.

At times it is necessary to make conversions to ana-
log input and output values to ensure correct interpreta-
tion and processing. As a result, data must be scaled, or
resized, before it can be used by a PLC control algorithm
or output to a field device. The SLC 500 Scale data (SCL)
and Scale with Parameters (SCP) instructions are used to

Figure 11-17 SLC 500 NEG (negate) instruction.

Ladder logic program Input

L1
NEG
NEGATE
Source A

Destination

N7:52
101

N7:53
–101

SW

SW

Ladder logic program Input

L1
TOD
TO BCD
Source

Destination

N7:23
10

O:20
16

SW

SW

Figure 11-19 SLC 500 TOD (convert to BCD) instruction.

Figure 11-18 SLC 500 CLR (clear) instruction.

N7:22
 0000000000000000

Ladder logic program Input

L1
CLR
CLEAR
Destination

SW

SW

Figure 11-20 SLC 500 FRD (convert from BCD)
instruction.

Ladder logic program Input

L1
FRD
FROM BCD
Source

Destination

I:30
16

N7:24
10

SW

SW

pet73842_ch11_234-251.indd 243 03/11/15 4:07 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

244 Chapter 11 Math Instructions

• The result, 377, is placed in the destination address,
N7:1.

Figure 11-22 shows an example of an analog input to
a PLC, and the SCP instruction used to scale its data.
The execution of the instruction can be summarized as
follows:

• A strain-gage pressure transducer is connected to
input I:1.0.

• The gage measures pressure from 0 to 1000 psi and
provides an analog output of 0 to 10V.

• The unscaled range is 0 to 32,767, and the output is
loaded into N7:20.

• When executed, the SCP instruction places a num-
ber between 0 and 1000 into N7:20 (destination)
based on the input signal (0 to 10V) coming from
the transducer into the analog input module.

Figure 11-23 shows an example of an analog output
from a PLC, and the SCP instruction used to scale its data.
The execution of the instruction can be summarized as
follows:

• A proportional control valve is connected to the
PLC output O:1.0.

• A 4 to 20 mA signal operates the valve from closed
to 100% open.

• The percent open is in location N7:21.
• The PLC analog module provides a 4 to 20 mA

output signal for a number between from 6,242 to
31,208.

• The SCP directs analog output O:1.0 to provide a
4 to 20 mA signal, which is scaled to the valve posi-
tion based on a number between 0 and 100.

perform this task. Both instructions use the same formula
to perform the scaling function, which is:

y = mx + b

 Where: y is the output
m is the scaling rate
x is the input
b is the offset

Scaling rate (m) = (scaled Max − scaled Min) / (input Max −
input Min) Offset (b) = (scaled Min) − (input Min x m)

The ladder rung of Figure 11-21 is an example of the
use of the SCL instruction. When rung conditions are true,
this instruction multiplies the source by a specified rate.
The rounded result is then added to an offset value and
placed in the destination. The execution of the instruction
can be summarized as follows:

• When input switch SW is closed the SCL instruc-
tion is executed.

• The number 100 stored at the source address, N7:0,
is multiplied by the rate 25,000, divided by 10,000,
and added to 127.

Figure 11-22 Scale analog input using the SCP instruction.

Scale analog input

Strain-gage
pressure
transducer

Applied
pressure

Input I:1.0

Analog
Input

Module

Scaled output N7:20

15 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCALE W/PARAMETERS

Input I:1.0
 0 <
Input Min. 0
 0 <
Input Max. 32767
 32767 <
Scaled Min. 0
 0 <
Scaled Max. 1000
 1000 <
Scaled Output N7:20
 0 <

Transmitter ADC

Figure 11-21 SLC 500 SCL (scale) instruction.

Ladder logic program Input

L1

SW

SW
SCL
SCALE
Source

Rate (/10000)

O�set

Destination

N7:0
 100

25000

127

N7:1
377

pet73842_ch11_234-251.indd 244 03/11/15 4:07 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Math Instructions Chapter 11 245

data in file address N7:25 to the data stored in file
address N7:50 and store the result in file address
N7:100.

• The rate per scan is set at All, so the instruction
goes to completion in one scan.

The program of Figure 11-25 is an example of the file
subtract function of the FAL instruction. The operation of
the logic rung can be summarized as follows:

• When input switch SW is closed the rung goes true
and the processor subtracts a program constant (255)
from each word of file address N10:0 and stores the
result at the destination file address, N7:255.

• The rate per scan is set at 2, so it will take 2 scans
from the moment the instruction goes true to com-
plete its operation.

11.7 File Arithmetic Operations
File arithmetic functions include file add, file subtract,
file multiply, file divide, file square root, file convert from
BCD, and file convert to BCD. The file arithmetic and
logic (FAL) instruction can combine an arithmetic opera-
tion with file transfer. The arithmetic operations that can
be implemented with the FAL are ADD, SUB, MULT,
DIV, and SQR.

The file add function of the FAL instruction can be
used to perform addition operations on multiple words.
The program of Figure 11-24 is an example of the file add
function of the FAL instruction. The operation of the logic
rung can be summarized as follows:

• When input switch SW is closed the rung goes true
and the expression tells the processor to add the

Figure 11-23 Scale analog output using the SCP instruction.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCALE W/PARAMETERS

Input N7:21
 0 <
Input Min. 0
 0 <
Input Max. 100
 100 <
Scaled Min. 6242
 6242 <
Scaled Max. 31208
 31208 <
Scaled Output O:1.0
 0 <

Scale analog output

From
processor

Analog
Output
Module 4 to 20 mA

analog signal

Water
source

Proportional
control valve

Controlled
water flow

Scaled output
O:1.0

DAC

Percent open register N7:21

15 0

Transducer

Ladder logic program Input

L1

SW

SW
FAL
FILE ARITH/LOGICAL
Control
Length
Position
Mode
Destination

Expression
#N7:25 + #N7:50

R6:1
 4
0

All
#N7:100

25
234

1256
77

N7:25

N7:28

= N7:100

= N7:103

+ N7:50
+
+
+ N7:53

50
22

456
100

75
256
1712
177

#N7:25 #N7:50 #N7:100

EN

DN

ER

Figure 11-24 SLC 500 file add function of the FAL
instruction.

Figure 11-25 SLC 500 file subtract function of the FAL
instruction.

680
950

20
100

N10:0

N10:3

= N7:255

= N7:258

– 255 425
695

–235
–155

#N10:0 #N7:255

Ladder logic program Input

L1

SW

SW
FAL
FILE ARITH/LOGICAL
Control
Length
Position
Mode
Destination

Expression
#N10:0 – 255

R6:5
 4
0
2

#N7:255

EN

DN

ER

pet73842_ch11_234-251.indd 245 03/11/15 4:08 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

246 Chapter 11 Math Instructions

The program of Figure 11-27 is an example of the file
divide function of the FAL instruction. The operation of
the logic rung can be summarized as follows:

• When input switch SW is closed the rung goes true
and the data in file address F8:20 is divided by the
data in file address F8:100, with the result stored in
element address F8:200.

• The mode is Incremental, so the instruction operates
on one set of elements for each false-to-true transi-
tion of the instruction.

The program of Figure 11-26 is an example of the file
multiply function of the FAL instruction. The operation of
the logic rung can be summarized as follows:

• When input switch SW is closed the rung goes
true and the data in file address N7:330 is multi-
plied by the data in element address N7:23, with
the result stored at the destination file address
N7:500.

• The rate per scan is set at All, so the instruction
goes to completion in one scan.

Figure 11-26 SLC 500 file multiply function of the FAL
instruction.

20
240
–78
321

N7:330

N7:333

= N7:500

= N7:503

N7:23 100* 2000
24000
–7800
32100

#N7:330 #N7:500N7:23

Ladder logic program Input

L1

SW

SW
FAL
FILE ARITH/LOGICAL
Control
Length
Position
Mode
Destination

Expression
#N7:330 * N7:23

R6:8
 4
0

All
#N7:500

EN

DN

ER

Figure 11-27 SLC 500 file divide function of the FAL
instruction.

Ladder logic program Input

L1

SW

SW
FAL
FILE ARITH/LOGICAL
Control
Length
Position
Mode
Destination

Expression
#F8:20 / #F8:100

R6:7
4
1

Incremental
F8:200

100
25

1.33
586

F8:20

F8:23

= F8:200÷ F8:100

 F8:103

1000
2

1.5
3

0.1

#F8:20 #F8:100 F8:200

EN

DN

ER

pet73842_ch11_234-251.indd 246 03/11/15 4:08 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Math Instructions Chapter 11 247

destination if N7:3 contains a value of 15 and N7:4
contains a value of 4?

9. With reference to the instruction of Figure 11-32,
what is the value of the number stored at N7:20 if
N7:3 contains a value of 2345?

10. With reference to the instruction of Figure 11-33,
what will be the value of each of the bits in word
B3:3 when the rung goes true?

11. With reference to the instruction of Figure 11-34,
what is the value of the number stored at N7:101?

12. With reference to the instruction of Figure 11-35,
list the values that will be stored in file #N7:10
when the rung goes true.

CHAPTER 11 REVIEW QUESTIONS

1. Explain the function of math instructions as applied
to the PLC.

2. Name the four basic math functions performed by
PLCs.

3. What standard format is used for PLC math
instructions?

4. Would math instructions be classified as input or
output instructions?

5. With reference to the instruction of Figure 11-28,
what is the value of the number stored at source B
if N7:3 contains a value of 60 and N7:20 contains a
value of 80?

6. With reference to the instruction of Figure 11-29,
what is the value of the number stored at the desti-
nation if N7:3 contains a value of 500?

7. With reference to the instruction of Figure 11-30,
what is the value of the number stored at the des-
tination if N7:3 contains a value of 40 and N7:4
contains a value of 3?

8. With reference to the instruction of Figure 11-31,
what is the value of the number stored at the

Figure 11-28 Instruction for Question 5.

ADD
ADD
Source A
Source B
Destination

N7:3
N7:4

N7:20

Figure 11-29 Instruction for Question 6.

SUB
SUBTRACT
Source A
Source B
Destination

N7:3
338

N7:20

Figure 11-30 Instruction for Question 7.

DIV
DIVIDE
Source A
Source B
Destination

N7:3
N7:4

N7:20

Figure 11-31 Instruction for Question 8.

MUL
MULTIPLY
Source A
Source B
Destination

N7:3
N7:4

N7:20

Figure 11-32 Instruction for Question 9.

NEG
NEGATE
Source
Destination

N7:3
N7:20

Figure 11-33 Instruction for Question 10.

CLR
CLEAR
Destination B3:3

0000111100001111

Figure 11-34 Instruction for Question 11.

SQR
SQUARE ROOT
Source A
Destination

N7:101
N7:105

4

FAL
FILE ARITH/LOGICAL
Control
Length
Position
Mode
Destination
Expression
#N11:0 + 10

R6:0
 5
0

All
#N7:10

328
150
10
32
0

File #N11:0

EN

DN

ER

Figure 11-35 Instruction for Question 12.

pet73842_ch11_234-251.indd 247 03/11/15 4:08 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

248 Chapter 11 Math Instructions

(3) N7:1
(4) Source B of the GEQ instruction

d. Will output PL1 be energized at this point?
Why?

2. Answer each of the following with reference to the
overfill alarm program shown in Figure 11-37.
a. Assume that the vessel is filling and has reached

the 300-lb point. State the status of each of the
logic rungs (true or false) at this point.

b. Assume that the vessel is filling and has reached
the 480-lb point. State the value of the number
stored in each of the following words at this
point:
(1) I:012
(2) N7:1

c. Assume that the vessel is filled to a weight of
502 lb. State the status of each of the logic rungs
(true or false) for this condition.

CHAPTER 11 PROBLEMS

1. Answer each of the following with reference to the
counter program shown in Figure 11-36.
a. Assume the accumulated count of counters C5:0

and C5:1 to be 148 and 36, respectively. State
the value of the number stored in each of the fol-
lowing words at this point:
(1) C5:0.ACC
(2) C5:1.ACC
(3) N7:1
(4) Source B of the GEQ instruction

b. Will output PL1 be energized at this point?
Why?

c. Assume the accumulated count of counters C5:0
and C5:1 to be 250 and 175, respectively. State
the value of the number stored in each of the fol-
lowing words at this point:
(1) C5:0.ACC
(2) C5:1.ACC

Figure 11-36 Program for Problem 1.

L1

Inputs

S2

L2

OutputLadder logic program

S1

C5:0
350

0

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:1
350

0

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

PL1

C5:0.ACC

C5:1.ACC

N7:1

ADD
ADD
Source A

Source B

Destination

Reset C5:0

GEQ
GREATER THAN OR EQUAL
Source A

Source B

N7:1

350

CU

DN

CU

DN

RES

C5:1

RES

PL1

Reset

S1

S2

pet73842_ch11_234-251.indd 248 03/11/15 4:08 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Math Instructions Chapter 11 249

c. Assume that the set-point temperature is 600°F
and the thermocouple input module indicates a
temperature of 608°F. What is the status (energized
or not energized) of each of the following outputs?
(1) PL1
(2) PL2
(3) Heater

4. With reference to the Celsius to Fahrenheit con-
version program shown in Figure 11-39, state the
value of the number stored in each of the following
words for a thumbwheel setting of 035:
a. I:012
b. N7:0
c. N7:1
d. O:013

5. Design a program that will add the values stored
at N7:23 and N7:24 and store the result in N7:30
whenever input A is true, and then, when input B is
true, will copy the data from N7:30 to N7:31.

6. Design a program that will take the accumulated
value from TON timer T4:1 and display it on a
4-digit, BCD format set of LEDs. Use address

d. Assume that the vessel is filled to a weight of
510 lb. State the value of the number stored in
each of the following words for this condition:
(1) I:012
(2) N7:1

e. With the vessel filled to a weight of 510 lb, state
the status of each of the logic rungs (true or
false).

3. Answer the following with reference to the tem-
perature control program shown in Figure 11-38.
a. Assume that the set-point temperature is 600°F.

At what temperature will the electric heaters be
turned on and off?

b. Assume that the set-point temperature is 600°F
and the thermocouple input module indicates a
temperature of 590°F. What is the value of the
number stored in each of the following words at
this point?
(1) I:012
(2) I:013
(3) N7:0
(4) N7:1
(5) N7:2

Figure 11-37 Program for Problem 2.

Ladder logic program

Full

Fill
solenoid

Fill
solenoid Full

Full

Filling

Outputs

L2

Inputs

L1

Weight
transducer

(All 16 bits)

SUB
SUBTRACT
Source A

Source B

Destination

GEQ
GREATER THAN OR EQUAL
Source A

Source B

GEQ
GREATER THAN OR EQUAL
Source A

Source B

N7:1

5

1

2

3

4

5

Start

I:012

Stop

I:012

500

Full

Fill
solenoid

Alarm

StartStop

Filling

I:012

500

N7:1

Fill
solenoid

Alarm

Full

Filling

pet73842_ch11_234-251.indd 249 03/11/15 4:08 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

250 Chapter 11 Math Instructions

• Multiply the value in N7:3 by 25 and store the
result in N7:4.

• Divide the value in N7:4 by 35 and store the
result in F8:0.

8. a. There are three part conveyor lines (1-2-3) feed-
ing a main conveyor. Each of the three conveyor
lines has its own counter. Construct a PLC pro-
gram to obtain the total count of parts on the
main conveyor.

b. Add a timer to the program that will update the
total count every 30 s.

O:023 for the LEDs. Include the provision to
change the preset value of the timer from a set of
4-digit BCD thumbwheels when input A is true.
Use address I:012 for the thumbwheels.

7. Design a program that will implement the follow-
ing arithmetic operation:
• Use an MOV instruction and place the value 45

in N7:0 and 286 in N7:1.
• Add the values together and store the result in N7:2.
• Subtract the value in N7:2 from 785 and store the

result in N7:3.

Figure 11-38 Program for Problem 3.

Ladder logic program

ON/OFF PL1 PL2 Heater

Heater

PL2

PL1

MUL
MULTIPLY
Source A

Source B

Destination

I:012
400

0.0100000

N7:0
4

ADD
ADD
Source A

Source B

Destination

I:012
400

N7:0
4

N7:1
404

SUB
SUBTRACT
Source A

Source B

Destination

I:012
400

N7:0
4

N7:2
396

LES
LESS THAN
Source A

Source B

I:013
0

N7:2
396

GRT
GREATER THAN
Source A

Source B

I:013
0

N7:1
404

Inputs
L1

ON/OFF

TWS

Thermocouple
input

1

2

3

I:013

I:012 PL1

PL2

Heater

L2
Outputs

pet73842_ch11_234-251.indd 250 03/11/15 4:08 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Math Instructions Chapter 11 251

10. With reference to the math instruction program
shown in Figure 11-41, when the input goes
true, what value will be stored at each of the
following?
a. N7:3
b. N7:4
c. N7:5
d. N7:6

11. Two part conveyor lines, A and B, feed a main
conveyor line, M. A third conveyor line, R,
removes rejected parts a short distance away from
the main conveyor. Conveyors A, B, and R have
parts counters connected to them. Construct a PLC
program to obtain the total parts output of main
conveyor M.

12. A main conveyor has two conveyors, A and B,
feeding it. Feeder conveyor A puts six-packs of
canned soda on the main conveyor. Feeder con-
veyor B puts eight-packs of canned soda on the
main conveyor. Both feeder conveyors have coun-
ters that count the number of packs leaving them.
Construct a PLC program to give a total can count
on the main conveyor.

9. With reference to math instruction program shown
in Figure 11-40, when the input goes true, what
value will be stored at each of the following?
a. N7:3
b. N7:5
c. F8:1

Figure 11-39 Program for Problem 4.

Ladder logic programInput

Thumbwheel
switch

L1

Celsius
Fahrenheit

1

2

3

Output

MUL
MULTIPLY
Source A

Source B

Destination

I:012

9

N7:0

DIV
DIVIDE
Source A

Source B

Destination

N7:0

5

N7:1

ADD
ADD
Source A

Source B

Destination

N7:1

32

O:013

I:012 O:013

L2

LED
Display

Figure 11-40 Program for Problem 9.

MUL

MULTIPLY
Source A

Source B

Destination

N7:3

N7:4
4

N7:5

ADD

ADD
Source A

Source B

Destination

N7:1
208

N7:2
114

N7:3

DIV

DIVIDE
Source A

Source B

Destination

N7:5

5.000000

F8:1

Input

Figure 11-41 Program for Problem 10.

Input

MUL
MULTIPLY
Source A

Source B

Destination

N7:3

2

N7:4

SUB
SUBTRACT
Source A

Source B

Destination

N7:1
80

N7:2
20

N7:3

ADD
ADD
Source A

Source B

Destination

N7:4

24

N7:5

SQR
SQUARE ROOT
Source

Destination

N7:5

N7:6

pet73842_ch11_234-251.indd 251 03/11/15 4:08 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

252

12
Sequencer and Shift

Register Instructions

Image Courtesy Banner Engineering Corp.

Chapter Objectives

After completing this chapter, you will be able to:

 • Identify and describe the various forms of mechanical
sequencers and explain the basic operation of each

 • Interpret and explain information associated with PLC
sequencer output, compare, and load instructions

 • Compare the operation of an event-driven and a time-
driven sequencer

 • Describe the operation of bit and word shift registers

 • Interpret and develop programs that use shift registers

This chapter explains how the PLC sequencer
and shift register functions operate and how
they can be applied to control problems. The se-
quencer instruction evolved from the mechanical
drum switch, and it can handle complex sequenc-
ing control problems more easily than does the
drum switch. Shift registers are often used to
track parts on automated manufacturing lines by
shifting either status or values through data files.

pet73842_ch12_252-280.indd 252 03/11/15 7:18 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Sequencer and Shift Register Instructions Chapter 12 253

12.1 Mechanical Sequencers
Sequencer instructions are designed to operate much
like the mechanical rotating cam limit switch shown in
Figure 12-1. These mechanical type sequencers are often
referred to as drum switches, rotary switches, stepper
switches, or cam switches. They are often used to control
machinery that has a repetitive cycle of operation.

Figure 12-2 illustrates the operation of a cam-operated
sequencer switch. An electric motor is used to drive the
cams. A series of leaf-spring mounted contacts interacts
with the cam so that in different degrees of rotation of the
cam, various contacts are closed and opened to energize
and de-energize various electrical devices. As the cams
rotate, load devices connected to the contacts can change
from an on to an off state, from an off to an on state, or
remain at the same state.

Figure 12-3 illustrates a typical mechanical drum-
operated sequencer switch. The switch consists of a series
of normally open contact blocks that are operated by pegs
located on the motor-driven drum. The operation of this
sequencer can be summarized as follows:

• Pegs are placed at specific locations around the
circumference of the drum to operate the contact
blocks.

• When the drum is rotated, contacts that align with
the pegs will close, whereas the contacts where
there are no pegs will remain open.

• The presence of a peg can be interpreted as logic 1,
or on, and the absence of a peg as logic 0, or off.

• The equivalent sequencer data table illustrates the
logic state for the first four steps of the drum cylinder.

Figure 12-1 Rotating cam limit switch.
Source: Images Courtesy of Rockwell Automation, Inc.

SymbolEnclosureSwitch assembly

Figure 12-2 Mechanical cam-operated sequencer.

Motor

Contacts

Cam

Figure 12-3 Mechanical drum-operated sequencer switch.

Equivalent sequencer data table

10

1

0

0

1

1

1

2

4

1

30

0

1 1

1

0

1

0

1

0

0

1

11

1

00

0

1

0

01

0

1

0 1

0 0

0

1

0

1

1 0

0

0

0

0

0

1

1

0 0

0 0

0

1

0

1 0

0

1

1 0

0

1

3

1

4

2

Steps
NO

switch

Motor

Peg

• Each location where there was a peg is represented
by a 1 (on), and the positions where there were no
pegs are each represented by a 0 (off).

Sequencer switches are useful whenever a repeatable
operating pattern is required. One example is the timed

pet73842_ch12_252-280.indd 253 03/11/15 7:18 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

254 Chapter 12 Sequencer and Shift Register Instructions

sequencer switch used in dishwashers to pilot the ma-
chinery through a wash cycle (Figure 12-4). The cycle is
always the same with a fixed routine of actions at each
step for a specific time to complete its specified task. The

domestic washing machine is another example of the use
of a sequencer, as are dryers and similar time-clock con-
trolled devices.

An example of the wiring and timing chart for a dish-
washer that uses a cam-operated sequencer, commonly
known as the timer, is shown in Figure 12-5. A synchro-
nous motor drives a mechanical train that, in turn, drives a
series of cam wheels. The operation of this sequencer can
be summarized as follows:

• The timer motor operates continuously throughout
the cycle of operation.

• The cam advances in time increments of 45 seconds
in duration.

• The data timing chart shows the sequence of opera-
tion of the timer.

• A total of sixty 45 second steps are used to com-
plete the 45 minute operating cycle.

• Numbers in the active devices column refer to
control devices active during each step of the
cycle.

Figure 12-4 Dishwasher timed sequencer switch.

Contacts

Motor

Figure 12-5 Dishwasher wiring diagram and timing chart.

Machine function
Active

devices
Timer

increment

Off

First prerinse

Drain
Fill
Rinse
Drain

1 2 4
1 3 4 5
1 4 5 6
1 2 4 5

2
3

4–5
6

Prewash
Fill
Wash
Drain

1 3 4 5
1 4 5 6
1 2 4 5

7
8–10

11

0–1

Second prerinse
Fill
Rinse
Drain

1 3 4 5
1 4 5 6
1 2 4

12
13–15

16

Wash
Fill
Wash
Drain

1 3 4
1 4 5 6
1 2 4 5

17
18–30

31

First rinse
Fill
Rinse
Drain

1 3 4 5
1 4 5 6
1 2 4 5

32
33–34

35

Second rinse
Fill
Rinse
Drain

1 3 4 5
1 4 5 6
1 2 4 5

36
37–41

42

Dry
Dry
Drain
Dry

1 4 6
1 2 4 6
1 4 6

43–58
59
60

Ground

L1

Line
switch

L2L1

Timer

MTR

Safety water
level switch

1

Drain
pump2

Timer
motor 4

Circulating
motor5

Heater6

Fill
valve

3

MTR

MTR

pet73842_ch12_252-280.indd 254 03/11/15 7:18 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Sequencer and Shift Register Instructions Chapter 12 255

12.2 Sequencer Instructions
PLC sequencer instructions replace the mechanical
drum sequencer that is used to control machines that have
a stepped sequence of repeatable operations. Programmed
sequencers can perform the same specific on or off pat-
terns of outputs that are continuously repeated with a
drum switch, but with much more flexibility. Sequencer
instructions simplify your ladder program by allowing
you to use a single instruction or pair of instructions to
perform complex operations. For example, the on/off op-
eration of 16 discrete outputs can be controlled, using a
sequencer instruction, with only one ladder rung. By con-
trast, the equivalent contact-coil ladder control arrange-
ment would need 16 rungs in the program.

Depending on the PLC manufacturer, various sequencer
instructions can be programmed. Figure 12-6 shows
the Sequencer menu tab for the Allen-Bradley SLC 500
PLC and its associated RSLogix software. For the Allen-
Bradley line of controllers, sequencer commands may
include the following:

SQO (Sequencer Output)—Is an output instruction
that uses a file to control various output devices.
SQI (Sequencer Input)—Is an input instruction that
compares bits from an input file to corresponding bits
from a source address. The instruction is true if all
pairs of bits are the same.
SQC (Sequencer Compare)—Is an output instruc-
tion that compares bits from an input source file to
corresponding bits from data words in a sequence file.
If all pairs of bits are the same, then a bit in the con-
trol register is set to 1.
SQL (Sequencer Load)—Is an output instruction
used to capture reference conditions by manually
stepping the machine through its operating sequences.
It transfers data from the input source module to the
sequencer file. The instruction functions much like a
file-to-word transfer instruction.

Figure 12-7 shows an example of an SQO (Sequencer
Output) instruction. Its execution is summarized as
follows:

• The SQO instruction is placed on the right side of
the rung as an output.

• Each time the rung makes a false-to-true transition
the position is incremented to the next step in the
sequencer File.

• Data from the sequencer File are then transferred
through the Mask into the specified Destination
address.

• The data are updated during each scan where the
rung remains true.

• When the last word in the sequencer file is trans-
ferred the done bit is set.

• Then, on the next false-to-true transition, the Des-
tination data are cleared and the Position pointer is
reset to step one.

• At start-up, when the processor is switched from pro-
gram mode to the run mode the operation depends on
the rung being true or false on the initial scan.
 - If true, the instruction transfers the value in

step zero.
 - If false, the first rung transition from false-

to-true transfers the value in step one of the
instruction.

• The Mask bits must be set in order to change the
value in the Destination word. The bits mask data
when reset to 0 and pass data when set to 1.

The Sequencer Output (SQO) instruction is used to
control output devices sequentially. The desired sequence
operation is stored in a data file or array. As the sequencer
advances through its steps, the stored data are transferred
one word at a time through a Mask to the Destination.
Parameters that may be required to be entered in sequencer
instructions can be summarized as follows:

File—Is the starting address for the registers in the
sequencer file and you must use the indexed file
indicator (#) for this address. The file contains the
data that will be transferred to the destination address
when the instruction undergoes a false-to-true transi-
tion. Each word in the file represents a position, start-
ing with position 0 and continuing to the file length.
Mask—Is the bit pattern through which the sequencer
instruction moves source data to the destination address. Figure 12-6 Sequencer menu tab.

BSL BSR SQC SQL SQO FFL

File Shift / SequencerFile/Misc Program Control

FFU LFL LFU

Figure 12-7 SQO (Sequencer Output) instruction.

SQO
SEQUENCER OUTPUT
File
Mask
Destination
Control
Length
Position

DN

EN

pet73842_ch12_252-280.indd 255 03/11/15 7:18 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

256 Chapter 12 Sequencer and Shift Register Instructions

Recall that in the mask bit pattern, a 1 passes values
while a 0 blocks the data flow but the existing bit
value remains the same. You use a mask register or
file name when you want to change the mask pattern
under program control. An h is placed behind the
parameter to indicate that the mask is a hexadecimal
number or a B is placed to indicate binary notation.
Decimal notation is entered without any indicator.
Source—Is the address of the input word or file from
which the SQC and SQL instruction obtains data for
comparison or input to its sequencer file.
Destination—Is the address of the output word or file to
which the SQO moves the data from its sequencer file.
Control—Is the address that contains the parameters
with control information for the instruction. The con-
trol register stores the status byte of the instruction,
the length of the sequencer file, and the instantaneous
position in the file as follows:
 - The enable bit (EN; bit 15) is set by a false-to-true

rung transition and indicates that the instruction is
enabled. It follows the rung condition.

 - The done bit (DN; bit 13) is set after the last word
in the sequencer file is transferred. On the next
false-to-true transition of the rung with the done bit
set, the position pointer is reset to 1.

 - The error bit (ER; bit 11) is set when the proces-
sor detects a negative position value, or a negative
or zero length value.

Length—Is the number of steps of the sequencer file
starting at position 1. Position 0 is the start-up posi-
tion. The instruction resets (wraps) to position 1 at
each cycle completion. The actual file length will be
1 plus the file length entered in the instruction.
Position—Indicates the step that is desired to start
the sequencer instruction. The position is the word
location or step in the sequencer file from which the
instruction moves data. Any value up to the file length
may be entered, but the instruction will always reset
to 1 on the true-to-false transition after the instruc-
tion has operated on the last position. Before we start
the sequence, we need a starting point at which the
sequencer is in a neutral position. The start position is
all zeros, representing this neutral position; thus, all
outputs will be off in position 0.

To program a sequencer, binary information is first
entered into the sequencer file or register made up of
a series of consecutive memory words. The sequencer
file is typically a bit file that contains one bit file word
representing the output action required for each step of
the sequence. Data are entered for each sequencer step
according to the requirements of the control application.

As the sequencer advances through the steps, binary
information is transferred from the sequencer file to the
output word.

To illustrate the purpose and function of the sequencer
file, we will examine the operation of the four-step
sequence process shown in Figure 12-8. This sequencer is
to be used to control traffic in two directions. The opera-
tion of the process can be summarized as follows:

• Six outputs are to be energized from one 16-point
output module.

• Each light is controlled by one bit address of output
word O:2.

• The first 6 bits are programmed to execute the fol-
lowing sequence of light outputs:
 - Step 1: Outputs O:2/0 (red) and O:2/5 (green)

lights will be energized.
 - Step 2: Outputs O:2/0 (red) and O:2/4 (yellow)

will be energized.
 - Step 3: Outputs O:2/2 (green) and O:2/3 (red)

will be energized.
 - Step 4: Outputs O:2/1 (yellow) and O:2/3 (red)

will be energized.
• Words B3:0, B3:1, B3:2, B3:3, and B3:4 make up

the sequencer file.
• Binary information (1s and 0s) that reflects the

desired on or off light status for each of the four
steps is entered into each word of the sequencer file.

• Before starting the sequence, you need a starting
point where the sequencer is in a neutral position.
This is provided by the start position which is
all zeros.

Due to the way in which the sequencer instruction
operates, all output points must be on a single output mod-
ule. When a sequencer operates on an entire output word,
there may be outputs associated with the word that do not
need to be controlled by the sequencer. In our example,
bits 6 through 15 of output word O:2 are not used by the
sequencer but could be used elsewhere in the program. To
prevent the sequencer from controlling these bits of the
output word, a mask word is used. The use of a mask word
is illustrated in Figure 12-9. The operation of the mask
can be summarized as follows:

• The mask word selectively screens out data from
the sequencer word file to the output word.

• The hex number 003Fh is entered as the mask
parameter.

• For each bit of output word O:2 that the sequencer
is to control, the corresponding bit of the mask word
must be set to 1.

pet73842_ch12_252-280.indd 256 03/11/15 7:18 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Sequencer and Shift Register Instructions Chapter 12 257

• The arrows in the figure indicate the unmasked bits
that are passed through the mask and into the desti-
nation address.

• The dashes in the bits of the designation address
indicate that those bits remain unchanged in the des-
ignation location during the sequencing.

• These unchanged bits therefore can be used inde-
pendently of the sequencer.

The sequencer output instruction requires preceding
logic on the rung where it is located. When this logic goes
from false to true, it triggers the sequencer to perform its
functions. Only when the logic preceding the sequencer
instruction makes the transition from false to true will it
go through its functions of reading the data file, applying
the mask, and transferring the masked data file to the out-
put destination. After this cycle, it waits for another false-
to-true occurrence of the preceding logic to increment to
the next step.

Figure 12-10 illustrates how the sequencer moves data
from a file to an output. The operation of the logic rung
can be summarized as follows:

• Pushbutton PB is used to send false-to-true trigger
signals to the sequencer output instruction.

• The position of the sequencer instruction is incre-
mented by one for each false-to-true transition of
the sequencer rung.

• Whenever PB is momentarily closed, the
sequencer is both enabled and advanced to
the next position.

• When the sequencer is at step 1, the binary informa-
tion in word B3:1 (100001) of the sequencer file is
transferred into word O:2 of the output.

• As a result output O:2/0 and O:2/5 will be on and
all the rest will be off.

• Advancing the sequencer to step 2 will transfer the
data from word B3:2 (010001) into word O:2.

• As a result output O:2/0 and O:2/4 will be on and
all the rest will be off.

• Advancing the sequencer to step 3 will transfer the
data from word B3:3 (001100) into word O:2.

• As a result output O:2/2 and O:2/3 will be on and
all the rest will be off.

• Advancing the sequencer to step 4 will transfer the
data from word B3:4 (001010) into word O:2.

• As a result output O:2/1 and O:2/3 will be on and
all the rest will be off.

Figure 12-8 Four-step sequencer.

Start

Positions

Step 1

Step 2

Step 3

Step 4

O:2

B3:0

B3:1

B3:2

B3:3

B3:4

Output
word

Sequencer
file

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

1

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

015 14 13 12 11 10 9 8 7 6 5 4 3 2

0

0

0

0

0

0

0

0

0

0

1

N/S

O:2/0

O:2/1

O:2/2

O:2/3

O:2/4

O:2/5

E/W

Step 1

N/S E/W

Step 2

N/S E/W

Step 3

N/S E/W

Step 4

pet73842_ch12_252-280.indd 257 03/11/15 7:19 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

258 Chapter 12 Sequencer and Shift Register Instructions

• When the position parameter reaches 4 (the value
in the length parameter), all words would have been
moved so the DN (done bit) in the instruction is
set to 1.

• On the next false-to-true transition of the rung, with
done bit set, the position pointer is automatically
reset to 1.

Sequencer instructions are usually retentive, and there
can be an upper limit to the number of external outputs
and steps that can be operated on by a single instruction.
Many sequencer instructions reset the sequencer automat-
ically to step 1 on completion of the last sequence step.
Other instructions provide an individual reset control line
or a combination of both.

The ControlLogix Sequencer Output (SQO) instruc-
tion, shown in Figure 12-11, operates similarly to that of

Figure 12-9 Sequencer moving data through a mask word.

10 0 0 0 0 0 0 0 0 0 1 1 1 1 1
Mask

003Fh (hexadecimal)
11111B (binary)

Start

Step 1

Step 2

Step 3

Step 4

B3:0

B3:1

B3:2

B3:3

B3:4

Sequencer
file

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

O:2 Destination 0– – – – – – – – – – 0 0 0 0 0

015 14 13

EN

DN

12 11 10 9 8 7 6 5 4 3 2 1

SQO
SEQUENCER OUTPUT
File #B3:0
Mask 003Fh
Dest O:2
Control R6:0
Length 4
Position 1

Output module

0

L2

1

2

3

4

5

Figure 12-10 Sequencer moving data from a file to an output.

Ladder logic program
L1

Input

PB1

PB1

SEQUENCER OUTPUT
File
Mask
Dest
Control
Length
Position

#B3:0
3Fh
O:2

R6:0
4
1

SQO
EN

DN

L2
Output

O:2/5

O:2File #B3:0

O:2/0

O:2/1

O:2/2

O:2/3

O:2/4

1

2

Positions

3

4

1 0 0 0 0 1

0 1 0 0 0 1

0 0 1 1 0 0

0 0 1 0 1 0

Destination

pet73842_ch12_252-280.indd 258 03/11/15 7:19 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Sequencer and Shift Register Instructions Chapter 12 259

the SLC 500 Sequencer Output instruction. The six pa-
rameters entered into this instruction are:

• Array—An array tag of the type DINT is the first
entry you need to make. This is a word-level tag
that defines the starting word of the sequencer data
array. The desired output conditions for each step
are manually entered into the array in the tag editor.
The ControlLogix processor puts the radix and the
sign in front of the value to indicate the radix of the
displayed number. For example, 16# (hexadecimal)
or 2# (binary).

• Mask—The Mask works exactly like the mask in
the MVM instruction. It can be a word level tag or
a hexadecimal program constant. When the SQO
transfers 32-bits of data to an output word, there
might be outputs associated with the word that do
not need to be controlled by the SQO. By masking
these bits the SQO will not control them and they
could be used for other purposes in the program.

• DEST—This is the word level data type DINT tag
where the data from the instruction will be sent.

• Control—The tag of data type Control contains the
control structure for the instruction. The Control tag
has several bits that can be used: enable (EN), done
(DN), error (ER), and so on. The control element
also contains the Length of the sequencer (number of
steps) and the current Position (step in the sequence).

• Length—The length (LEN) parameter stores the
value that defines the number of steps the sequencer
should make. It also defines the number of words
required in the sequencer array. Position 0 is the
start-up position. The first time the SQO instruc-
tion is enabled it moves from position 0 to position
1 when the instruction is toggled. The instruction
resets to position 1 at the end of the last step. The
array size must be at least one element larger than
the size of the length.

• Position—The Position (POS) parameter stores the
current step of the sequencer. Steps are numbered
starting at zero.

Figure 12-12 shows an example of a ControlLogix
time-driven sequencer output program. The program is
designed to execute a sequential process involving five
steps which control several outputs. The outputs which
are on for each step are shown in the table. The operation
of the program can be summarized as follows:

• The array parameter SQO_Data_Array contains the
desired output states for each step.

• The output states for each step are entered at the
starting location SQO_Data_Array[0].

• In this application none of the outputs are energized
in step 0. When the SQO instruction executes, it
will be in step 0 on initial start-up.

• When the SQO instruction advances to step 5, it
will return to step 1 and continue from there.

• The mask has a constant hexadecimal value of
0000_00FF which is the same as 0000 0000 0000
0000 0000 0000 1111 1111 binary bits. Each bit
corresponds to one output in the SQO instruction.

• In this example the two hexadecimal Fs represent
8 binary 1s in memory. A value of 1 in the mask
allows the output state from the step to be sent to
the Dest.

• The DN (done) bit of the 5-second TON Step_
Timer is used to trigger the SQO instruction.

• Every time the timer ACC value reaches 5 seconds,
the timer DN bit changes state causing the SQO
instruction to increment the Position number of the
Control tag and move to the next step.

• Note that the timer DN bit also resets the ACC
value of the timer to 0 and the timer starts timing
to 5 seconds again.

12.3 Sequencer Programs
A sequencer program can be event-driven or time-driven.
An event-driven sequencer operates similarly to a me-
chanical stepper switch that increments by one step for
each pulse applied to it. A time-driven sequencer oper-
ates similarly to a mechanical drum switch that incre-
ments automatically after a preset time period.

A sequencer chart, such as the one shown in
Figure 12-13, is a table that lists the sequence of operation
of the outputs controlled by the sequencer instruction.
These tables use a matrix-style chart format. A matrix
is a two-dimensional, rectangular array of quantities. A
time-driven sequencer chart usually indicates outputs on
its horizontal axis and the time duration on its vertical
axis. An event-driven sequencer indicates outputs on its
horizontal axis and the input, or event, on its vertical axis.

Sequencer Output
Array
Mask
Dest
Control
Length
Position

?
?
?
?
?
?

SQO
EN

DN

Figure 12-11 ControlLogix Sequencer Output (SQO)
instruction.

pet73842_ch12_252-280.indd 259 03/11/15 7:19 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

260 Chapter 12 Sequencer and Shift Register Instructions

An example of a time-driven sequencer with timed
steps that are not all the same is shown in Figure 12-14.
This sequencer program is used for automatic traffic light
control at a four-way intersection. Output lights operate
in a sequential fashion with variably timed steps. The
system requires two SQO instructions: one for the light
outputs and the other for the timed steps. Both SQOs have
R6:0 for the control and 4 for the length. The first position
is on for 25 seconds, the second for 5 seconds, the third
for 25 seconds, and the fourth for 5 seconds.

The operation of the time-driven sequencer program
can be summarized as follows:

• The bits controlling the traffic light outputs are
stored in integer file #N7:0 of the first SQO instruc-
tion. The settings for the output bits for each posi-
tion are entered and stored in binary table format as
shown in Figure 12-15. Each word of the #N7:0 file

is moved from the file by the program to the desti-
nation output word O:2 as previously described.

• The second SQO instruction sequencer file, #N7:10,
contains the stored preset timer values 25, 5, 25,
5 seconds. These settings are stored in words
N7:11, N7:12, N7:13, and N7:15 as illustrated
in Figure 12-16. Each word of the #N7:10 file is
moved by the program to the destination address
T4:1.PRE, which is the preset value for the timer.
The program moves information from this file to
timer T4:1’s preset. The mask allows the proper data
to pass and blocks the unnecessary data.

• The timer cycles the two SQO instructions through
their four states.

• Since both of the SQO instructions have R6:0 for
control and 4 for length, they are stepped in unison
to provide a sequentially timed output.

[+] SQO_Data_Array[0]
[–] SQO_Data_Array {. . .}

2#0000_0000_0000_0000_0000_0000_0000_0000
2#0000_0000_0000_0000_0000_0000_0000_00 1 0
2#0000_0000_0000_0000_0000_0000_0000_0 1 10
2#0000_0000_0000_0000_0000_0000_0001_ 0000
2#0000_0000_0000_0000_0000_0000_1 1 00_0000
2#0000_0000_0000_0000_0000_0000_1 1 1 1_ 0000

[+] SQO_Data_Array[1]
[+] SQO_Data_Array[2]
[+] SQO_Data_Array[3]
[+] SQO_Data_Array[4]
[+] SQO_Data_Array[5]

Input

L1

Stop_Start_ Timer
<Local:1:I.Data.0 Step_Timer.DN

Step_Timer.DN

Output states entered into sequencer data array

Outputs which are On for each step

Outputs
7 6 5 4 3 2 1

On
OnOn

On
On

OnOnOn
On

On
On

0
0
1
2
3
4
5

Step

TON

SQO
Sequencer Output
Array SQO_Data_Array[0]
Mask 16#0000_00FE
Dest Output _Card
 <Local:2:0.Data>
Control Control_Tag
Length 5
Position 0

EN

Output L2

2:O.Data.1

2:O.Data.2

2:O.Data.3

2:O.Data.4

2:O.Data.5

2:O.Data.6

2:O.Data.7

DN

EN

DN

Timer On Delay
Timer
Preset
Accum

Step_Timer
5000

0

Ladder logic program

Stop_Start_ Timer

Figure 12-12 ControlLogix time-driven sequencer output program.

pet73842_ch12_252-280.indd 260 03/11/15 7:19 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Sequencer and Shift Register Instructions Chapter 12 261

An example of a time-driven sequencer program
in which the time interval between sequencer steps is
always a constant set value is shown in Figure 12-17.
The operation of the program can be summarized as
follows:

• The preset time of timer T4:0 is set for 3 seconds.
• The settings of the output bits for each sequencer

position are entered and stored in bit file #B3:0.
• The timer is started by the closing switch SW and

3 seconds later the timer done bit is set to 1.
• As a result the timer done bit increments the

SQO instruction to the next position and resets
the timer.

• The destination is O:2 and all 16 bits of this word
are used for outputs.

• The mask is FFFF hexadecimal or 1111111111111111
binary, which allows all 16 bits to pass through.

• As long as input SW is closed the program contin-
ues operating with 3 seconds between sequencer
steps.

Figure 12-13 Sequencer chart.

Matrix-style chart

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

L2

Output module
at position 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

1

0

1

0

0

1

0

1

0

0

0

1

0

1

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

1

1

0

0

0

1

0

0

1

0

1

0

1

0

0

0

1

0

0

1

Position

Outputs

Sequencer output file wordsIndicates that output is energized

1

2

3

4

5

6

7

8

1234567 0

Timing chart

N/S

E/W

Red

RedGreen Yellow

YellowGreen

25 s 25 s 5 s5 s

Ladder logic program Outputs

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

T4:1
1.0
25

0

EN

DN

O:2/5

O:2/6T4:1/DN

SQO
SEQUENCER OUTPUT
File
Mask
Dest
Control
Length
Position

#N7:0
00FFh

O:2
R6:0

4
0

North/South

East/West

EN

DN

L2

SQO
SEQUENCER OUTPUT
File
Mask
Dest
Control
Length
Position

#N7:10
00FFh

T4:1.PRE
R6:0

4
0

EN

DN

O:2/1

O:2/2

O:2/4

T4:1/DN

O:2/0

Figure 12-14 Time-driven sequencer output program.
Figure 12-15 Sequencer file #N7:0 light cycle settings.
Source: Courtesy of TheLearningPit

pet73842_ch12_252-280.indd 261 03/11/15 7:19 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

262 Chapter 12 Sequencer and Shift Register Instructions

With an event-driven sequencer, the SQO instruction
advances to the next step by an external pulsed input event
rather than a preset time. An example of an event-driven
sequencer is shown in Figure 12-18. The operation of the
program can be summarized as follows:

• The sequencer SQO instruction uses two OR con-
figured sensor switches (S1 and S2).

• Any one of the two parallel paths can make the
SQO rung true.

• As each event occurs, that OR branch makes a
false-to-true transition advancing the sequencer
position.

• Data are copied from file #B3:0 at the bit
locations through mask word, F0FF hex or
1111000011111111 binary, to the destination
O:2. Mask bits are set to 1 to pass data and reset
to 0 to mask data.

• Once the position reaches the last position on the
true-to-false transition of the instruction the position
will reset to 1.

• Note that the data in O:2 match the data in
position 2 in the file, except for the data in bits
8 through 11.

• Bits 8 through 11 may be controlled from else-
where in the program; they are not affected by the
sequencer instruction because of the 0 in these bit
positions in the mask.

The sequencer compare (SQC) instruction is an out-
put instruction used to compare bits from an input source
file to corresponding bits from data words in a sequencer
file. When the pairs of bits are the same, then the found
(FD) bit in the control register is set to 1. This instruction
can be used to compare the status of a machine’s input
devices with what is required for normal operation. When
the status of the input devices on the machine (on or off)

Figure 12-16 Sequencer file #N7:10 timer settings.
Source: Courtesy of TheLearningPit

SW

SQO
SEQUENCER OUTPUT
File
Mask
Dest
Control
Length
Position

T4:0/DN

#B3:0
0FFFFh

O:2.0
R6:0

8
0

EN

DN

SW

L2

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Input

L1

Ladder logic program

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

T4:1
1.0

3
0

EN

O:2

DN

T4:0/DN

Figure 12-17 Time-driven sequencer with constant time interval between steps.
Source: Courtesy of TheLearningPit

pet73842_ch12_252-280.indd 262 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Sequencer and Shift Register Instructions Chapter 12 263

are identical to the data stored in the sequencer file, the
control found bit is set to 1.

An example of an SLC 500 sequencer compare (SQC)
instruction program is shown in Figure 12-19. The opera-
tion of the program can be summarized as follows:

• The data in the highest 4 bits of the source (I:1)
are compared to the data in file #B3:22.

• In this example, the highest 4 bits in I:1 match
the status of the highest 4 bits in B3:25 at step
position 3.

• If the pushbutton input I:1/0 is true at this point,
the found (FD) bit is set, which turns output
PL1 on.

• Whenever the combination of opened and closed
switches connected to I:1/12, I:1/13, I:1/14, and
I:1/15 is equal to the combination of 1s and 0s
on a step in the sequencer reference file and the
input I:1/0 is true, the PL1 output will become
energized.

• The mask (F000h) allows unused bits of the
sequencer instruction to be used independently.
In this example, unused bit I:1/0 is used for the
conditional input of the sequencer compare
rung.

The sequencer load (SQL) instruction is used to read
the PLC input module and store the input data in the
sequencer file. Loading input conditions for a large num-
ber of process steps is prone to errors. In such instances
the sequencer load instruction can be used to load data
into a sequencer file one step at a time. For example, a
robot may be jogged manually through its sequence of
operation, with its input devices read at each step. At
each step, the status of the input devices is written to
the data file in the sequencer compare instruction. As a
result, the file is loaded with the desired input status at
each step, and these data are then used for comparison
with the input devices when the machine is run in auto-
matic mode.

EN

DN

SQO
SEQUENCER OUTPUT
File
Mask
Dest
Control
Length
Position

Ladder logic program

0
1
2
3
4
5
6
7
8

Output

015 11 10 9 8
O:2

Mask

File

Pos

#B3:0

Destination

Pos 2Current step

0
0
0
1
0
0
0
0
0

0
0
0
1
0
0
0
0
1

0
1
0
0
0
0
1
0
0

0
1
0
0
0
0
1
1
1

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
1
1
1
1
0
0

0
0
0
1
1
1
1
0
1

0
1
0
0
1
0
1
0
0

0
1
0
0
1
0
1
1
1

0
0
1
1
1
0
1
1
0

0
0
1
1
1
0
1
1
1

0
1
1
0
1
0
1
1
0

0
1
1
0
1
0
1
1
1

0 0 0 0 0 0 0 0 1 1 1 1

#B3:0
F0FF

O:2
R6:0

8
2

Pos

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

L2Module O:2

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1

Inputs

L1

S1

S2

S2

S1

Field triggered input events

S1 S2

Figure 12-18 Event-driven sequencer output program.

pet73842_ch12_252-280.indd 263 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

264 Chapter 12 Sequencer and Shift Register Instructions

An example of an SLC 500 sequencer load (SQL) in-
struction program is shown in Figure 12-20. The opera-
tion of the program can be summarized as follows:

• The sequencer load instruction is used to load the
file and does not function during the machine’s nor-
mal operation.

• It replaces the manual loading of data into the file
with the programming terminal.

• The sequencer load instruction does not use a mask.
It copies data directly from the source address to the
sequencer file.

• When the instruction goes from false to true, the
instruction indexes to the next position and copies
the data.

• When the instruction has operated on the last position
and has a true-to-false transition, it resets to position 1.

• It transfers data in position 0 only if it is at position
0 and the instruction is true and the processor goes
from the program to run mode.

• By manually jogging the machine through its
cycle, the switches connected to input I:2 of the
source can be read at each position and written

into the file by momentarily pressing PB1. Other-
wise, the data would have to be entered into the
file manually.

12.4 Bit Shift Registers
The PLC not only uses a fixed pattern of register (word)
bits, but also can easily manipulate and change individual
bits. A bit shift register is a register that allows the shift-
ing of bits through a single register or group of registers.
The bit shift register shifts bits serially (from bit to bit)
through an array in an orderly fashion.

A shift register can be used to simulate the movement,
or track the flow, of parts and information. We use the
shift register whenever we need to store the status of an
event so that we can act on it at a later time. Shift registers
can shift either status or values through data files. Com-
mon applications for shift registers include the following:

• Tracking of parts through an assembly line
• Controlling of machine or process operations
• Inventory control
• System diagnostics

SQC
SEQUENCER COMPARE
File
Mask
Source
Control
Length
Position

#B3:22
F000h

I:1
R6:7

5
0

EN

DN

FD

0

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15

I:1/0

PL1R6:7

FD

Position 3

OutputLadder logic programInputs

L2
L1

PL1

I:0/1 Input
module I:1

Figure 12-19 Sequencer compare (SQC) instruction program.
Source: Courtesy of TheLearningPit

pet73842_ch12_252-280.indd 264 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Sequencer and Shift Register Instructions Chapter 12 265

Figure 12-21 illustrates the basic concept of a shift
register. A shift pulse or clock causes each bit in the
shift register to move 1 position to the right. At some
point, the number of data bits fed into the shift register
will exceed the register’s storage capacity. When this
happens, the first data bits fed into the shift register by
the shift pulse are lost at the end of the shift register.
Typically, data in the shift register could represent the
following:

• Part types, quality, and size
• The presence or absence of parts
• The order in which events occur
• Identification numbers or locations
• A fault condition that caused a shutdown

You can program a shift register to shift status data
either right or left, as illustrated in Figure 12-22, by shift-
ing either status or values through data files. When you
want to track parts on a status basis, use bit shift registers.
Bit shift instructions will shift bit status from a source bit
address, through a data file, and out to an unload bit, one bit
at a time. There are two bit shift instructions: bit shift left
(BSL), which shifts bit status from a lower address number
to a higher address number through a data file, and bit shift
right (BSR), which shifts data from a higher address num-
ber to a lower address number through a data file. Some
PLCs provide a circulating shift register function, which
allows you to repeat a pattern again and again.

When working with a bit shift register, you can iden-
tify each bit by its position in the register. Therefore,

SQL
SEQUENCER LOAD
File
Source
Control
Length
Position

#N7:20
I:2

R6:22
5
3

Ladder logic program

PB1

00 00

15

Source word I:2

0

10 10 11 00 11 01

00 00

15 0

10 10 11 00 11 01

0

Source
I:2

Current
step

2

4

3

5

N70:20

121

Word

Destination file #N7:20

22

24

23

25

L1

Source
word I:2

Inputs

0

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15

PB1
EN

DN

Cam (on machine)
Operating

force

Limit switch

Figure 12-20 Sequencer load (SQL) instruction program.

pet73842_ch12_252-280.indd 265 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

266 Chapter 12 Sequencer and Shift Register Instructions

working with any bit in the register becomes a mat-
ter of identifying the position it occupies rather than
the conventional word number/bit number addressing
scheme.

Figure 12-23 shows the File Shift menu tab and BSL
and BSR instruction blocks that are part of the instruction
set for the Allen-Bradley SLC 500 controllers. The com-
mands can be summarized as follows:

BSL (Bit Shift Left)—Loads a bit of data into a
bit array, shifts the pattern of data through the array
to the left, and unloads the last bit of data in the
array.
BSR (Bit Shift Right)—Loads a bit of data into a bit
array, shifts the pattern of data through the array to the
right, and unloads the last bit of data in the array.

Shift registers are useful for tracking the status or iden-
tification of a part as it moves down an assembly line.
The data file used for a shift register usually is the bit file
because its data are displayed in binary format, making it
easier to read. BSL and BSR are output instructions that
load data into a bit array one bit at a time. The data are
shifted through the array, then unloaded one bit at a time.

The BSL instruction has the same operands as the BSR
instruction. The difference is the direction in which the
bits are indexed. A bit shift instruction will execute when
its input control logic goes from false to true. To program
a bit shift instruction, you need to provide the processor
with the following information:

File—The address of the bit array you want to manip-
ulate. The address must start with the # sign and at bit
0 of the first word or element. Any remaining bits in
the last word of the array cannot be used elsewhere in
the program because the instruction invalidates them.
Control—R data-table type. The address is unique to
the instruction and cannot be used to control any other
instruction. It is a three-word element that consists of
the status word, the length, and the position.

1 1 0 1 1 0 0 1

New data in shift right position

0 1 1 1 0 1 0 0

1 0 1 1 0 0 1 0

Original data in initial position

1 1 1 0 1 0 0 1

Data in = 1

Shift data
(clock)

0 1 1 0 1 1 0 0

New data in shift right position
Tracking the absence of bottles1 0 1 1 1 0 1 0

Data in = 0

Shift data
(clock)

Figure 12-21 Basic concept of a shift register.
 Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

Bit shift right (BSR) register

1 or 0

Most significant
bit address

Bit shift left (BSL) register

1 or 0

Least significant
bit address

Wraparound or circulating shift register

Figure 12-22 Types of shift registers.

BSL
BIT SHIFT LEFT
File
Control
Bit address
Length

BSL BSR SQC SQL SQO FFL

File Shift / SequencerFile/Misc Program Control

FFU LFL LFU

EN

DN

BSR
BIT SHIFT RIGHT
File
Control
Bit address
Length

EN

DN

Figure 12-23 Bit shift left and bit shift right instructions.

pet73842_ch12_252-280.indd 266 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Sequencer and Shift Register Instructions Chapter 12 267

Bit address—Is the address of the source bit. The instruc-
tion inserts the status of this bit in either the first (lowest)
bit position (for the BSL instruction) or the last (highest)
bit position (for the BSR instruction) in the array.
Length—Indicates the number of bits to be shifted,
or the file length, in bits. The status bits of the con-
trol word are the enable, done, error, and unload bits.
Their functions can be summarized as follows:
 - Enable Bit (EN)—The enable bit follows the instruc-

tions status and is set to 1 when the instruction is true.
 - Done Bit (DN)—The done bit is set to 1 when the

instruction has shifted all bits in the file one posi-
tion. It resets to 0 when the instruction goes false.

 - Error Bit (ER)—The error bit is set to 1 when the
instruction has detected an error, which can happen
when a negative number is entered in the length.

 - Unload Bit (UL)—The unload bit’s status is con-
trolled by shifting of the last bit of the file into the un-
load bit when the instruction is executed. It is the bit
location into which the status from the last bit in the
file shifts when the instruction goes from false to true.
When the next shift occurs, these data are lost, unless
additional programming is done to retain the data.

An example of a bit shift left (BSL) instruction pro-
gram is shown in Figure 12-24. The operation of the pro-
gram can be summarized as follows:

• Momentary actuation of limit switch LS causes the
BSL instruction to execute.

• When the rung goes from false to true, the enable
bit is set and the data block is shifted to the left (to a
higher bit number) one bit position.

• The specified bit, at sensor bit address I:1/1, is
shifted into the first bit position, B3:10/0.

• The last bit is shifted out of the array and stored in
the unload bit, R6:0/UL.

• The status that was previously in the unload bit is lost.
• All the bits in the unused portion of the last word of

the file are invalid and should not be used elsewhere
in the program.

• For wraparound operation, set the position of the bit
address to the last bit of the array or to the UL bit,
whichever applies.

An example of a bit shift right (BSR) instruction pro-
gram is shown in Figure 12-25. The operation of the pro-
gram can be summarized as follows:

• Before the rung goes from false to true, the status of
bits in words B3:50 and B3:51 is as shown.

• The status of the bit address, I:3/5, is a 0, and the
status of the unload bit, R6:1/UL, is a 1.

• When limit switch LS closes, the status of the bit
address, I:3/5, is shifted into B3:51/7, which is the
24th bit in the file.

• The status of all the bits in the file is shifted
one position to the right, through the length of
24 bits.

• The status of B3:50/0 is shifted to the unload bit,
R6:1/UL. The status that was previously in the un-
load bit is lost.

An example of a bit BSL instruction program with
wraparound operation is shown in Figure 12-26. The clock
pulse input is a fixed regular 3 second pulse–generated

Figure 12-24 Bit shift left (BSL) instruction program.

BSL
BIT SHIFT LEFT
File
Control
Bit address
Length

EN

DN

L1

Inputs Ladder logic program

Limit switch

Sensor

LS

LS

Ι:1/1

1

15 0

1 0 0 1 1 0 0 1 1 0 1 1 0 0 0

1 1

Unload bit
R6:0/UL

B3:10

B3:11

Bit address
I:1/1

1 0

Shift direction

20

1

B3:Table - Before limit switch clock pulse

B3:10

B3:11

Invalid

1

15

0 0 1 1 0 0 1 1 0 1 1 0 0 0

1 1

Unload bit
R6:0/UL

B3:10

B3:11

Bit address
I:1/1

0 1

Shift direction

20

1

1

B3:Table - After limit switch clock pulse

315 14 13 12 11 10 7 6 49 8 2 15 0
B3:10

B3:11

Invalid

1

01 0 0 1 1 0 1 0 10 1 0 01 1
10 0 0 0 0 0 0 0 00 0 1 00 1

3

1
1

15
1
0

14
1
0

13
0
0

12
0
0

11
1
0

10
1
0

7
1
0

6
1
0

4
1
0

9

0
0

8

0
0

2

1
0

1

1
0

5

0
0

0
0
0

#B3:10
R6:0

Ι:1/1
20

pet73842_ch12_252-280.indd 267 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

268 Chapter 12 Sequencer and Shift Register Instructions

on-delay timer T4:0. The operation of the program can be
summarized as follows:

• Go to the data tables and set bit addresses B3:0/0,
B3:0/1, B3:0/2 to logic 0 and bit address R6:0/UL
to logic 1.

• When the PLC is then placed in run, bit B3:0/0 is
set to logic 1 causing PL1 to turn on.

• Closing input switch SW starts timer T4:0
timing.

• After 3 seconds, the timer done bit is set to reset the
timer accumulated time to zero and shift the logic
bit 1 to the left to B3:0/1.

• This causes PL1 to turn off and PL2 to turn on.
• After another 3 seconds, the timer done bit is set

once again.
• The BSL instruction shifts the bits to the left

once more and causes PL2 to turn off and PL3
to turn on.

• The process continues with each of the pilot lights
turned on in sequence for 3 seconds.

A shift register is often used in material handling pro-
cesses where some form of binary information must be
synchronized with a moving part on a conveyor. The
binary information refers to any two conditions that can
be assigned to the moving product—for example, the
presence or absence of a part. As the part moves along
the conveyer, some form of sensing device will determine
which of these two categories the passing product falls
into. Figure 12-27 illustrates cartons traveling on a con-
veyor being detected by a photoelectric sensor. The sen-
sor that drives the data line on a shift register is fixed such
that the beam detects the presence or absence of a carton.
A logic 1 sensor condition state can indicate the presence
of a carton, and a 0 the absence.

The process of Figure 12-28 illustrates a spray-painting
operation controlled by a shift left register. As the parts
pass along the production line, the shift register bit pat-
terns represent the items on the conveyor hangers to be
painted. Each file bit location represents a station on the
line, and the status of the bit indicates whether or not a
part is present at that station.

The program for the spray-painting operation is shown
in Figure 12-29. Its operation can be summarized as
follows:

• Limit switch LS1 is used to detect the hanger and
limit switch LS2 the part.

• The pulse generated by the hanger-operated limit
switch LS1 shifts the status of the data provided by
part-detection limit switch LS2.

• The logic of this operation is such that when a part
to be painted and a part hanger occur together at
station 1 (indicated by simultaneous closing of LS2
and by LS1), logic 1 is input into the shift register at
B3:0/0.

• This causes the SOL 1 rung to be true and the
undercoat spray gun to energize.

• At station 5, a 1 appears in bit B3:0/5 of the shift
register to make the SOL 2 rung true and topcoat
spray gun energize.

BSR
BIT SHIFT RIGHT
File
Control
Bit address
Length

EN

DN

L1

Inputs Ladder logic program

Limit switch

Sensor

LS

LS

Ι:3/5

Ι:3/5
Bit address

1

15 0

0 1 1 0 0 0 1 1

1

0 0 1 0 1 1 0

01 0

B3:50

B3:51

Unload bit
R6:1/UL

1 10 1

Ι:3/5
Bit address

Shift direction

Shift direction

24

Unload bit
R6:1/UL

1

0

B3: Table - Before limit switch clock pulse

B3:50

B3:51

Invalid

1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1

11 0 0 11 0Invalid

B3:50

B3:51

24

0

0

B3: Table - After limit switch clock pulse

315 14 13 12 11 10 7 6 49 8 2 15 0
B3:50

B3:51
11 1 0 1 1 0 1 1 00 0 0 10 1
10 0 0 0 0 0 0 1 10 0 0 00 1

3

0
0

15
1
0

14
0
0

13
1
0

12
1
0

11
0
0

10
0
0

7
1
1

6
0
0

4
1
1

9

0
0

8

0
1

2

0
1

1

1
1

5

1
0

1
0
0

#B3:50
R6:1
Ι:3/5

24

0

Figure 12-25 Bit shift right (BSR) instruction program.

pet73842_ch12_252-280.indd 268 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Sequencer and Shift Register Instructions Chapter 12 269

• Logic 0 in the shift register indicates that the con-
veyor has no parts on it to be sprayed, and it there-
fore inhibits the operation of the spray guns.

• Counter C5:1 counts the parts as they enter the pro-
cess and counter C5:2 as they exit.

• The count obtained by the two counters should be
equal when no parts are being painted.

• Whenever the two counts are equal in value the equal
instruction executes to turn on pilot light PL1. This
is an indication that the parts commencing the spray-
painting run equal the parts that have completed it.

An example for a bit shift program used to keep track
of carriers flowing through a 16-station machine is shown
in Figure 12-30. The operation of the program can be
summarized as follows:

• Proximity switch 1 senses a carrier, and proximity
switch 2 senses a part on the carrier.

• Clock pulse generated by carrier proximity switch
I:1/1 shifts the status of the data provided by part
detection proximity switch I:1/2.

• When a part and carrier are sensed together, indi-
cated by simultaneous closing of I:1/2 and I:1/1,
logic 1 is input into the shift register at output O:4/0
to energize the pilot light connected to it.

• Remaining pilot lights connected to output module
O:4 turn on in sequence as carriers with parts move
through each station.

• They turn off or remain off as empty carriers move
through.

Inputs

L1

SW

Ladder logic program

T4:0
1.0

3
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

PL3B3:0/2

Outputs

L2

PL3

PL2

PL1

PL2B3:0/1

PL1B3:0/0

B3:0/0R6:0/UL

T4:0/DNSW

#B3:0
R6:0

B3:0/0
3

BSL
BIT SHIFT LEFT
File
Control
Bit address
Length

T4:0/DN

EN

EN

DN

DN

Figure 12-26 BSL instruction with a wraparound operation.

Figure 12-27 Cartons traveling on a conveyor being
detected by a photoelectric sensor.
 Source: Courtesy Banner Engineering Corp.

pet73842_ch12_252-280.indd 269 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

270 Chapter 12 Sequencer and Shift Register Instructions

Reset PL1

1

8 7 6 5 4 3 2

0 0 0 0 0 0 0
1

No
Yes

Part
present 1 1 1 1 1 1

0
1

1

Oven 2Oven 1

B3:0/7

LS1
(Hanger)

LS2
(Part enter)

(Part exit)

LS3

Storage
Undercoat
spray gun 1

Topcoat
spray gun 2

2 3 4 5 6 7 8

B3:0/6 B3:0/5 B3:0/4 B3:0/3

Station

B3:0/2 B3:0/1 B3:0/0
File

#B3:0

Figure 12-28 Spray-painting operation controlled by a shift left register.

Ladder logic program

EN

SOL 1

SOL 2

PL1

Outputs

L2

LS1

LS2

LS3

Inputs

B3:0/0

B3:0/5

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:1

CTU
COUNT-UP COUNTER
Counter
Preset
Accumulated

C5:2

Reset

BSL
BIT SHIFT LEFT
File
Control
Bit address
Length

#B3:0
R6:1
I:1/2

8

C5:2

C5:1

CU

CU

DN

DN

RES

RES

EQU
EQUAL
Source A
Source B

C5:1.ACC
C5:2.ACC

0:2/2

DN

Clock
pulse SOL 1

Spray gun 1

SOL 2
Spray gun 2

PL1

Data
pulse

Part
exit

L1

0:2/0

0:2/1

LS2
I:1/2

LS3
I:1/3

Reset
I:1/4

LS1
I:1/1

Figure 12-29 Spray-painting operation program.

pet73842_ch12_252-280.indd 270 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Sequencer and Shift Register Instructions Chapter 12 271

• Station 5 is an inspection station where parts are
examined.

• If the part fails, the inspectors push PB1 as they
remove the part from the system, which turns output
O:4/4 off.

• Rework parts can be added back into the system at
station 7.

• When the operator puts a part on an empty carrier,
he or she pushes PB2, turning output O:4/6 on to
resume tracking.

Allen Bradley ControlLogix has two shift register
instructions: Bit Shift Left (BSL) and Bit Shift Right
(BSR). The BSL instruction is shown in Figure 12-31.
Data are loaded into, shifted through, and unloaded from
a bit array, one bit at a time when the instruction transi-
tions from false to true. Bit shift instructions contain the
following parameters.

Array—A one-dimensional array of type DINT with
enough bits to accommodate the length.

Control—A tag of data type Control that stores the sta-
tus bits and the size (number of bits) of the bit array.
Source Bit—A tag of type BOOL, the status of
which the instruction inserts into the first bit position
of the bit array on every false-to-true rung transition.
Length—The size (number of bits) of the bit array.

Figure 12-32 illustrates an application for the Control-
Logix Bit Shift Left (BSL) instruction. A pass/fail inspec-
tion station is used in a conveyor system to keep track of
defective products as they move down the conveyor at an
equal distance. A partially completed product is moved
down a conveyor to an inspector before proceeding to the
final stages of manufacture. If a product is deemed defec-
tive, it is pointless to continue building it, so the part is iden-
tified as a reject. Before the part arrives at the reject bin, it
must pass through three more zones of manufacture. The
operation of the program can be summarized as follows:

• At the zone 1 pass/fail station an inspector examines
the product before it proceeds to the final 3 stages of
manufacture.

Ladder logic program

EN

O:4/4

PL4

PL6

O:4/6

I:1/1

Prox #1

Inputs

I:1/3

PB1

I:1/4

PB2

BSL
BIT SHIFT LEFT
File
Control
Bit address
Length

#O:4
R6:0
I:1/2

16

DN

U

L

O:4/6

I:1/1

I:1/4

Prox #1
(Carrier detection)

Prox #2
(Part detection)

PB2
(Reworked part)

L1

I:1/3

PB1
(Failed part)

I:1/2

Outputs

0

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15

L2O:4

Station

O:4O:4/15 O:4/14 O:4/13 O:4/12 O:4/11 O:4/10 O:4/9 O:4/8 O:4/7 O:4/6 O:4/5 O:4/4

Rework Inspection

O:4/3 O:4/2 O:4/1 O:4/0

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 12-30 Program for tracking of carriers flowing through a 16-station machine.
 Source: Photos courtesy Omron Industrial Automation, www.ia.omron.com.

pet73842_ch12_252-280.indd 271 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

272 Chapter 12 Sequencer and Shift Register Instructions

• If the product is deemed defective the inspector
actuates the Reject_Button energizing the Reject_
Source_Bit through its seal circuit.

• The rejected product passes by the Productor_
Sensor and as a result the Reject_Source_Bit (1) is
loaded into the first step of the BSL_Array which
energizes the Z1 reject pilot light.

• At the same time the Control_Status.DN bit mo-
mentarily changes state to open the seal-in circuit
to the Reject_Source_Bit, readying it for the next
product reject.

• Each of the remaining 3 zones is equipped with a
reject pilot light to warn the assembler to ignore the
product if the lamp is on.

• Each successive product activating the Product_
Sensor will advance the data bit one position to the
left in the register, energizing the 3 remaining reject
lamps in turn.

• The MOV instruction of rung 2 posts the BSL_
Array contents to the four Zone_Outputs.

• Activating the Reset_Button of rung 3 at any time
energizes both rung MOV instructions to reset the
BSL_Array and Control_Status to 0.

12.5 Word Shift Operations
The first in, first out (FIFO) instructions are word shift
operations that are similar to bit shift operations. Word
shifting provides a simpler method of loading and un-
loading data into a file, usually called the stack. It is often

Bit Shift Left
Array
Control
Source Bit
Length

?
?
?
?

BSL
EN

DN

Figure 12-31 ControlLogix Bit Shift Left (BSL) instruction.

L1

Inputs

0

1

2

3

Ladder logic program

Control_Status.DN

Reject_Source_Bit

Reject_Source_Bit

BSL
EN

DN

MOV

MOVMOV

Reject_Source_Bit

BSL_Array

Unload_Bit

Reject_Button Tag Name Value Style Data Type

DINT

DINT
CONTROL

BOOL
BOOL
BOOL

BOOL

BOOL
BOOL
BOOL
BOOL

Decimal

Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal

0

0
0
0
0
0
0
0
0
0

{. . . }
BSL_Array+

+
–

Control_Status
Zone_Outputs

Zone_Outputs.0
Zone_Outputs.1
Zone_Outputs.2
Zone_Outputs.3

Product_Sensor

Reject_Button

Reset_Button
Reject_Source_Bit

Bit Shift Left
Array BSL_Array
Control Control_Status
Source Bit Reject_Source_Bit
Length 4

Move
Source BSL_Array
 0
Dest Zone_Outputs
 0

Move
Source 0
Dest BSL_Array
 0

Move
Source 0
Dest Control_Status.POS
 0

Outputs
L2

Z1<Local:2:O.Data.0>

Z2<Local:2:O.Data.1>

Z3<Local:2:O.Data.2>

Z4<Local:2:O.Data.2>

Reject_Button
<Local:1:I.Data.1>

Product_Sensor
<Local:1:I.Data.0>

Reset_Button
<Local:1:I.Data.2>

Reset_Button

Product_Sensor

Reject_Button

Figure 12-32 ControlLogix pass/fail inspection program.
Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

pet73842_ch12_252-280.indd 272 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Sequencer and Shift Register Instructions Chapter 12 273

used for tracking parts through an assembly line, where
parts are represented by values that have a part number or
an assembly code. Figure 12-33 shows a barcode reader
used for reading printed barcode data on boxes.

A bit shift register operates synchronously; because
for every bit shifted in, one is shifted out. Data entered in
a bit shift register must be shifted the length of the register
(one position per shift pulse) before they are available to
shift out.

A FIFO function operates asynchronously. Rather than
shifting bits of information within a word it shifts the data
from a complete word into a file or stack. Unlike the bit
shift register, two separate shift pulses are required: one
to shift data into the file (load) and one to shift data out of
the file (unload). These two shift pulses operate indepen-
dently (asynchronously) of each other. Data loaded in a
FIFO can be immediately available for unload, regardless
of length.

The FFL and FFU instruction are used in pairs. The
FFL loads logic words into a user-created file called
a FIFO stack. The FFU instruction is used to unload
the words from the FIFO stack, in the same order as the
words were entered. The first word entered is the first
word out.

The SLC 500 FIFO load (FFL) instruction is shown
in Figure 12-34. The parameters that are required to be
entered in the instruction block are summarized as follows:

Source—Word address from which the data are en-
tered into the FIFO file.
FIFO—Address of the file in which the data are en-
tered. The address must start with a # sign.
Control—R data-table type and is the file address of
the control structure. The status bits, stack length, and
position are stored in this element.
Length—File length in words. Specifies the maxi-
mum number of words in the stack.
Position—Is the next available location where the
instruction loads data into the stack. The first address
in the stack is position 0. As each word is entered into
the stack, the position counter, on both the FFL and
FFU, will increment up by one. The stack is consid-
ered full when the position value equals the length.
The status bits of the control word are the enable
(EN), the done (DN), and the empty (EM) bits. Their
functions can be summarized as follows:
 - Enable Bit (EN)—The enable bit follows the instruc-

tions status and is set to 1 when the instruction is true.
 - Done Bit (DN)—The done bit is set to 1when the in-

struction’s position equals the length. When the done
bit is set, the FIFO is full and does not accept any
more data. Also the data in the FIFO file are not over-
written when the instruction goes from false to true.

 - Empty Bit (EM)—The empty bit is set to 1 when
all the data have been unloaded from the FIFO file.

Figure 12-35 shows the SLC 500 FIFO unload (FFU)
instruction. The following parameters need to be entered
in the SLC 500 FFU instruction:

FIFO—Address of the file in which the data are
entered. The address must start with a # sign. When
paired with an FFL instruction, this address is the
same as the address for the FFL.

Figure 12-33 Barcode reader.
Source: Courtesy Keyence Canada Inc.

FFL
FIFO LOAD
Source
FIFO
Control
Length
Position

BSL BSR SQC SQL SQO FFL

File Shift / SequencerFile/Misc Program Control

FFU LFL LFU

EN

DN

EM

Figure 12-34 SLC 500 FIFO load (FFL) instruction.

FFU
FIFO UNLOAD
FIFO
Destination
Control
Length
Position

BSL BSR SQC SQL SQO FFL

File Shift / SequencerFile/Misc Program Control

FFU LFL LFU

EU

DN

EM

Figure 12-35 SLC 500 FIFO unload (FFU) instruction.

pet73842_ch12_252-280.indd 273 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

274 Chapter 12 Sequencer and Shift Register Instructions

Destination—Address to which the FFU unloads data.
Control—R data-table type. It is a three-word ele-
ment that consists of the status word, the length, and
the position. When it is paired with the FFL, the con-
trol addresses are the same.
Length—File length in words. Specifies the maxi-
mum number of words in the stack.
Position—Next location from which data are
unloaded when the instruction goes from false
to true.

The status bits of the control word are the enable (EN),
the done (DN), and the empty (EM) bits. The enable bit
follows the instruction’s status, the done bit is set when
the instruction’s position equals the length, and the empty
bit is set when all the data have been unloaded from the
FIFO file.

The program of Figure 12-36 is an example of how
data are indexed in and out of a FIFO file using the FFL
and FFU instruction pair. The operation of the program
can be summarized as follows:

• The FIFO load and FIFO unload instructions share
the same control element, R6:0, which may not be
used to control any other instructions.

• FIFO, #N7:12, is the address of the stack. The
same address is programmed for the FFL and FFU
instructions.

• Data enter the FIFO file from the source address,
N7:10, on a false-to-true transition of input A.

• Data are placed at the position indicated in the
instruction on a false-to-true transition of the
FFL instruction, after which the position indicates the
current number of data entries in the FIFO file.

FFL
FIFO LOAD
Source
FIFO
Control
Length
Position

Ladder logic program

FFU
FIFO UNLOAD
FIFO
Dest
Control
Length
Position

N7:10
#N7:12

R6:0
10
8

#N7:12
N7:11
R6:0

10
8

Input A

Input B

L1

Inputs

Integer Tabl e

Value
N7:10
N7:11 16
N7:12 31
N7:13 53
N7:14 146
N7:15 9875
N7:16 125
N7:17 867
N7:18 5
N7:19 11
N7:20 0
N7:21 0

Radix: Decimal

23
Input A

Input B

EN

DN

EM

EU

DN

EM

31
53
146

9875
125
867

5
11
0
0

Position

FIFO file
#N7:12

N7:12 Data index
toward the
starting
address of
the file, one
word with
each false-to-true
transition of the
FFU.

N7:21

0
1
2
3
4
5
6
7
8
9

Data exit from position 0 of the
FIFO file on a false-to-true
transition of the FFU and write
over current data in the
destination.

16N7:11

Destination

Data enter the FIFO file on a
false-to-true transition of the FFL
at the position indicated in the
instruction.

23N7:10

Source

Figure 12-36 How data are indexed in and out of a FIFO file.

pet73842_ch12_252-280.indd 274 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Sequencer and Shift Register Instructions Chapter 12 275

• The FIFO file fills from the beginning address of the
FIFO file and indexes to one higher address for each
false-to-true transition of input A.

• A false-to-true transition of input B causes all data
in the FIFO file to shift one position toward the
starting address of the file, with the data from the
starting address of the file shifting to the destination
address, N7:11.

The FIFO instruction is often used for inventory con-
trol. One example is where different parts need to be
removed from inventory to be used in production. Each
part is assigned a unique code, which is loaded into a
FIFO stack, and parts are removed in the order prescribed
by the stack. This type of control ensures that the oldest
part in the inventory is used first as the first part entered is
the first part removed.

The opposite principle—where the last data to be
stored are the first to be retrieved—is known as LIFO
(Last In, First Out). The LIFO instruction inverts the order
of the data it receives by outputting the last data received
first and the first data received last. A useful analogy is
a pile of work on your desk. As new work arrives you
drop it on the top of the stack. If your stack is LIFO, you
pick your next job from the top of the pile. If your stack
is FIFO, you pick your work from the bottom of the pile.
Figure 12-37 shows how the FIFO and LIFO operations
work for container stacking operations.

The difference between FIFO and LIFO stack operation
is that the LIFO instruction removes data in the reverse of
the order they are loaded (last in, first out). An example of

the LIFO instruction pair is shown in Figure 12-38 and the
operation of this function can be summarized as follows:

• The load and unload of the LIFO stack operates
similarly to that of the FIFO stack, except that the
last word in the LIFO stack is the first word that is
unloaded from the stack.

• Words can be added to the LIFO stack without dis-
turbing the words already loaded on the stack.

• Otherwise, LIFO instructions operate the same as
FIFO instructions.

Allen Bradley ControlLogix programming with FIFO
and LIFO functions operates similarly to the SLC 500
instructions except that tags and arrays are used in the
parameter definitions. The program of Figure 12-39 is an
example of the use of a ControlLogix FIFO instruction
pair as part of a data stack operation. The operation of the
program can be summarized as follows.

• The thumbwheel switch input is used to set the
decimal number.

LFL
LIFO LOAD
Source
LIFO
Control
Length
Position

N70:1
#N70:3

R6:61
64

0

LFU
LIFO UNLOAD
LIFO
Dest
Control
Length
Position

#N70:3
N70:2
R6:61

64
0

3
4
5
6
7
8
9
10
11

63

Word

64 words allocated for
LIFO stack at #N70:3

LIFO unload
removes data
from stack in
reverse order.

Destination N70:2

Transfer of data

N70:1 Source

LIFO load enters
data into stack at
next position.

File #N70:3

BSL BSR SQC SQL SQO FFL

File Shift / SequencerFile/Misc Program Control

FFU LFL LFU

EN

DN

EM

EU

DN

EM

Figure 12-38 LIFO instruction pair.

Vertical storage area

Out

33

In

LIFO stackHorizontal storage area

3

2

1

OutIn

14

FIFO stack

2 13

Figure 12-37 FIFO and LIFO container stacking
operations.

pet73842_ch12_252-280.indd 275 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

276 Chapter 12 Sequencer and Shift Register Instructions

• The data stack is capable of containing 5 words.
• It takes values from the input thumbwheel switch

and stores them in the data stack array.
• The values can be pulled from the stack in

a FIFO order and sent to the stack output
location.

0 0 2 3

0 0 0 0

InputsL1

Thumbwheel switch

Data_Stack_Load
<Local:1:I.Data.0>

Data_Stack_Unload
<Local:1:I.Data.1>

Ladder logic program

EN

DN

EM

EN

EM

DN

FFL

FFU

FIFO Load
Source Data_Stack_Input
FIFO Data_Stack_Array[0]
Control Data_Stack_Status
Length 5
Position 0

FIFO Unload
FIFO Data_Stack_Array[0]
Dest Data_Stack_Output
Control Data_Stack_Status
Length 5
Position 0

Data_Stack_Load
Data_Stack_Output[0]

<Local:6:O.Data>

Outputs

LED display
L2

Data_Stack_Input
<Local:5:I.Data>

Data_Stack_Unload

Figure 12-39 ControlLogix FIFO instruction pair.

• The Data_Stack_Load input pushbutton is used to
load the decimal numbers into the array.

• The output module is used to display the decimal
numbers and represents the destination address.

• The Data_Stack_Unload input pushbutton is used to
trigger the FIFO unload operation.

pet73842_ch12_252-280.indd 276 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Sequencer and Shift Register Instructions Chapter 12 277

2. Answer the following with reference to the
sequencer file #B3:0 shown in Figure 12-41:
a. Assume that output bit addresses O:2/0 through

O:2/15 are controlling associated output pilot

1. Construct an equivalent sequencer data table for
the four steps of the mechanical drum-operated
sequencer drawn in Figure 12-40.

12. What is the primary application in which an SQL
instruction is used?

13. Explain the function of a sequencer load
instruction.

14. How does a bit shift register manipulate individual
bits?

15. List four common applications for bit shift
registers.

16. When using a sensor as the input to the bit address
of a BSL instruction, what is its function?

17. Compare the operation of the BSL and BSR bit
shift instructions.

18. A bit shift register is said to operate in a synchro-
nous manner. Explain what this means.

19. What is the function of the unload bit in a BSL
instruction?

20. What is the function of the unload bit in a BSR
instruction?

21. A first in, first out word shift register operates in an
asynchronous manner. Explain what this means.

22. Why are both FFL and FFU instructions needed to
perform a FIFO function?

23. Compare the operation of a FIFO register and a
LIFO register.

1. Describe the operation of a drum switch.

2. What type of operations are sequencers most
suitable for?

3. Why are PLC sequencers easier to program than
PLC discrete outputs?

4. Answer the following with regard to an SLC 500
PLC sequencer output instruction:
a. Where is the information for each sequencer

step entered?
b. What is the function of the output word?
c. Explain the transfer of data that occurs as the

sequencer is advanced through its various steps.

5. What is the function of the file of a sequencer?

6. What is the function of the mask in the sequencer
instruction?

7. What is the relationship between the length and the
position in a sequencer instruction?

8. What output and step programming limits may be
placed on sequencer instructions?

9. Sequencer instructions are usually retentive.
Explain what this means.

10. Compare the operation of an event-driven and a
time-driven sequencer.

11. Explain the function of a sequencer compare
instruction.

3

1

4

2

Steps
NO

switch

Motor

Peg

Figure 12-40 Drum-operated sequencer for Problem 1.

CHAPTER 12 REVIEW QUESTIONS

CHAPTER 12 PROBLEMS

1. Describe the operation of a drum switch.

2. What type of operations are sequencers most
suitable for?

3. Why are PLC sequencers easier to program than
PLC discrete outputs?

4. Answer the following with regard to an SLC 500
PLC sequencer output instruction:
a. Where is the information for each sequencer

step entered?
b. What is the function of the output word?
c. Explain the transfer of data that occurs as the

sequencer is advanced through its various steps.

5. What is the function of the file of a sequencer?

6. What is the function of the mask in the sequencer
instruction?

7. What is the relationship between the length and the
position in a sequencer instruction?

8. What output and step programming limits may be
placed on sequencer instructions?

9. Sequencer instructions are usually retentive.
Explain what this means.

10. Compare the operation of an event-driven and a
time-driven sequencer.

11. Explain the function of a sequencer compare
instruction.

pet73842_ch12_252-280.indd 277 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

278 Chapter 12 Sequencer and Shift Register Instructions

0

1

0

0

0

0

1

0

1

1

0

1

0

0

1

0

0

1

1

1

0

1

0

0

1

0

1

0

1

0

0

0

1

0

0

0

1

0

1

0

0

1

0

0

0

0

0

1

1

1

0

1

0

0

1

0

1

0

1

1

0

0

1

0

1

0

0

1

1

0

0

0

1

0

0

0

1

0

1

0

1 015 14 13 12 11 10 9 8 7 6 5 4 3 2

Start

Positions

Step 1

Step 2

Step 3

Output
O:2

B3:0

B3:1

B3:2

B3:3

Step 4 B3:4

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-41 Sequencer file for Problem 2.

Ladder logic program Outputs
L2

O:2/0

O:2/1

O:2/2

T4:1/DN

T4:1/DN

North/South

East/West

SQO
SEQUENCER OUTPUT
File
Mask
Dest
Control
Length
Position

#N7:0
0077h

O:2
R6:0

4
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

T4:1
1.0
25

0

SQO
SEQUENCER OUTPUT
File
Mask
Dest
Control
Length
Position

#N7:10
00FFh

T4:1.PRE
R6:0

4
0

Integer Table

Radix Decimal

 Value

N7:10 0

N7:11 25

N7:12 5

N7:13 25

N7:14 5

Integer Table

Radix Binary Table: N7:Integer

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N7:0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N7:1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

N7:2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

N7:3 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

N7:4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

EN

DN

EN

DN

EN

DN

O:2/4

O:2/5

O:2/6

Figure 12-42 Timer-driven sequencer program for Problem 3.

lights PL1 through PL16. State the status of each
light for steps 1 through 4.

b. Which output bit addresses could be masked and
which could not? Why or why not?

c. State the status of each bit of output word O:2 for
step 3 of the sequencer cycle.

3. Answer each of the following with reference to the
timer-driven sequencer program shown in Figure 12-42:
a. How many bit outputs are controlled by this

sequencer?
b. What is the address of the word that controls the

outputs?

pet73842_ch12_252-280.indd 278 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Sequencer and Shift Register Instructions Chapter 12 279

c. What is the address of the sequencer file that sets
the states for the outputs?

d. What is the address of the sequencer file that con-
tains the preset timer values?

e. For what length of time is the red light
programmed to be on?

f. For what length of time is the green light
programmed to be on?

g. For what length of time is the yellow light
programmed to be on?

h. What is the time required for one complete cycle
of the sequencer?

i. Assume that the decimal value stored in N7:13 is
changed to 35. Outline the changes that this new
value will have on the timing of the traffic lights.

4. Answer each of the following with reference to
the event-driven sequencer program shown in
Figure 12-43:
a. When does the sequencer advance to the next step?
b. Assume that the sequencer is at position 2, as

shown; what bit outputs will be on?
c. Assume that the sequencer is stepped to position

8; what bit outputs will be on?
d. Assume that the sequencer is at position 8 and a

true-to-false transition of one of the inputs occurs.
What happens as a result?

5. Using whatever PLC sequencer output instruction
you are most familiar with, develop a program that
will operate the cylinders in the desired sequence.
The time between each step is to be 3 seconds.
The desired sequence of operation will be as
follows:
• All cylinders to retract.
• Cylinder 1 advance.
• Cylinder 1 retract and cylinder 3 advance.
• Cylinder 2 advance and cylinder 5 advance.
• Cylinder 4 advance and cylinder 2 retract.
• Cylinder 3 retract and cylinder 5 retract.
• Cylinder 6 advance and cylinder 4 retract.
• Cylinder 6 retract.
• Sequence to repeat.

6. Using whatever PLC sequencer output instruction
you are most familiar with, develop a program to
implement an automatic car-wash process. The pro-
cess is to be event-driven by the vehicle, which acti-
vates various limit switches (LS1 through LS6) as it
is pulled by a conveyor chain through the car-wash
bay. Design the program to operate the car wash in
the following manner:
• The vehicle is connected to the conveyor chain and

pulled inside the car-wash bay.
• LS1 turns on the water input valve.

L1
Inputs Ladder logic program

S1

#B3:0
F0FF

O:2
R6:0

8
2

SQO
SEQUENCER OUTPUT
File
Mask
Dest
Control
Length
Position

EN

DN

S1

S2

S2

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Output
module O:2

Current
step Pos 2

0
1
2
3
4
5
6
7
8

015 11 10 9 8
O:2

Mask

File

Pos

#B3:0

Destination

0
0
0
1
0
0
0
0
0

0
0
0
1
0
0
0
0
1

0
1
0
0
0
0
1
0
0

0
1
0
0
0
0
1
1
1

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
1
1
1
1
0
0

0
0
0
1
1
1
1
0
1

0
1
0
0
1
0
1
0
0

0
1
0
0
1
0
1
1
1

0

0

0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1

Pos
0
0
1
1
1
0
1
1
0

0
0
1
1
1
0
1
1
1

0
1
1
0
1
0
1
1
0

0
1
1
0
1
0
1
1
1

L2

Figure 12-43 Event-driven sequencer program for Problem 4.

pet73842_ch12_252-280.indd 279 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

280 Chapter 12 Sequencer and Shift Register Instructions

• LS2 turns on the soap release valve, which
mixes with the water input valve to provide a
wash spray.

• LS3 shuts off the soap valve, and the water input
valve remains on to rinse the vehicle.

• LS4 shuts off the water input valve and activates
the hot wax valve, if selected.

• LS5 shuts off the hot wax valve and starts the air-
blower motor.

• LS6 shuts off the air blower. The vehicle exits the
car wash.

7. A product moves continuously down an
assembly line that has four stations, as shown
in Figure 12-44.
• The product enters the inspection zone, where

its presence is sensed by the proximity
switch.

• The inspector examines it and activates a reject
button if the product fails inspection.

• If the product is defective, reject status lights come
on at stations 1, 2, and 3 to tell the assembler to
ignore the part.

Station
1

Reject
lamp
status

Product

Proximity
switch

Inspection zone Gate

Station
2

Station
3

Station
4

Reject
lamp
status

Reject
lamp
status

Figure 12-44 Assembly line program for Problem 7.

• When a defective part reaches station 4, a diverter
gate is activated to direct that part to a reject bin.

• Using whatever PLC bit shift register you are most
familiar with, develop a program to implement this
process.

pet73842_ch12_252-280.indd 280 03/11/15 7:20 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

281

This chapter discusses guidelines for the instal-
lation, maintenance, and troubleshooting of a
PLC-controlled system. The chapter gives you
information on proper grounding that ensures
personal safety as well as correct operation of
equipment. Unique troubleshooting procedures
that apply specifically to PLCs are listed and
explained.

Chapter Objectives

After completing this chapter, you will be able to:

• Outline and describe requirements for a PLC enclosure

• Identify and describe noise reduction techniques

• Describe proper grounding practices and preventive
maintenance tasks associated with PLC systems

• List and describe specific PLC troubleshooting
procedures

13
PLC Installation Practices,
Editing, and Troubleshooting

pet73842_ch13_281-304.indd 281 03/11/15 7:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

282 Chapter 13 PLC Installation Practices, Editing, and Troubleshooting

provides adequate room within the enclosure is usually
sufficient for heat dissipation. The temperature inside
the enclosure must not exceed the maximum operating
temperature of the controller (typically 60°C maximum).
Additional cooling provisions, such as a fan or blower,
may be required where high internal or ambient tem-
peratures are encountered. PLCs are always mounted
horizontally with the name of the manufacturer fac-
ing out and right-side up, as illustrated in Figure 13-2.
Vertical mounting is not recommended due to thermal
considerations.

A hardwired electromechanical master control relay
(MCR) is normally included as part of the wiring for a

13.1 PLC Enclosures
A PLC system, if installed properly, should give years of
trouble-free service. The design of PLCs includes a num-
ber of rugged features that allow them to be installed in
almost any industrial environment. However, problems
can occur if the system is not installed properly.

Programmable logic controllers (PLCs) require protec-
tion against temperature extremes, humidity, dust, shock,
and vibration or corrosive environments. For these rea-
sons, PLCs are generally mounted within a machine or in
a separate enclosure as shown in Figure 13-1.

An enclosure is the chief protection from atmospheric
conditions. The National Electrical Manufacturers Asso-
ciation (NEMA) has defined enclosure types, based on
the degree of protection an enclosure will provide. For
most solid-state control devices, a NEMA 12 enclosure
is recommended. This type of enclosure is for general-
purpose areas and is designed to be dust-tight. Typically,
metal enclosures are used because metal enclosures pro-
vide shielding that helps minimize the effects of electro-
magnetic radiation that may be generated by surrounding
equipment.

Every PLC installation will dissipate heat from its
power supplies, local I/O racks, and processor. This heat
accumulates in the enclosure and must be dissipated
from it into the surrounding air. Excessive heat can
cause erratic operation of the PLC or PLC failure. For
many applications, normal convection cooling will keep
the controller components within the specified tempera-
ture operating range. Proper spacing of components that

10.

9.

7.
8.

6.

1.
2. 3. 4.

1 .
2.
3.
4.
5.
6.
7.
8.
9.

10.

Power supply
PLC (programmable logic controller)
Digital input cards
Digital output cards
Analog input cards
Transient surge protectors
Circuit breakers
Relay switches
Operator interface terminal
NEMA 12 enclosure

5.

Figure 13-1 Typical PLC control panel enclosure.
Source: Courtesy Aaron Associates.

Figure 13-2 PLCs are always mounted horizontally.
 Source: Courtesy Rogers Machinery Company, Inc.

pet73842_ch13_281-304.indd 282 03/11/15 7:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

PLC Installation Practices, Editing, and Troubleshooting Chapter 13 283

PLC system. The master control relay provides a means
of de-energizing the entire circuit that is not dependent on
software. The internally programmed MCR of a PLC is
not sufficient to meet safety requirements. The hardwired

MCR is connected to interrupt power to the I/O rack in the
event of an emergency, but still allow power to be main-
tained at the processor. Figure 13-3 shows the typical wir-
ing for an AC power distribution with a master control

Figure 13-3 Typical wiring for an AC power distribution with a master
control relay.
 Source: Courtesy Pilz GmbH & Co. KG.

To V+ of DC
input devices

DC power
supply

To V+ of DC
output modules

To common
of DC input

modules

To common
of DC output

devices

To common (L1)
of 120 v AC

input devices

MCR

Multiple E-stops Start

L1

Fuse
L1

N

Panel
ground bus

Grounding
electrode

120 V

X1

H3 H2 H4H1

X2

Neutral

Disconnect switch

3-phase
supply

Step-down
transformer

Gnd

MCR

MCR

To L1
of 120 v AC

output modules

To neutral conn.
of 120 v AC

input modules

To neutral
of 120 v AC

output devices

L1 N

Gnd

DC commonV+

Processor power supply

pet73842_ch13_281-304.indd 283 03/11/15 7:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

284 Chapter 13 PLC Installation Practices, Editing, and Troubleshooting

relay. The operation of the circuit can be summarized as
follows:

• A power disconnect switch is provided so that,
when required, the PLC can be serviced with the
power off.

• The step-down transformer provides isolation
from the main power distribution system and
decreases the voltage to the 120 V required for
the controller power supplies and DC power
supplies.

• The momentary start button is pressed to energize
the master control relay.

• Pressing any one of the emergency-stop switches
de-energizes the master control relay and thus de-
energizes the I/O devices.

• Power to the processor of the PLC remains on so
status LEDs can continue to provide up-to-date
information.

• Emergency stop buttons use normally closed
contacts wired in series for fail-safe operation.
In the event a wire is broken or comes off a termi-
nal, the MCR relay is de-energized and power is
removed.

13.2 Electrical Noise
Electrical noise, also called electromagnetic interference,
or EMI, is unwanted electrical signals that produce unde-
sirable effects and otherwise disrupt the control system
circuits. EMI may be either radiated or conducted. Radi-
ated noise originates from a source and travels through
the air while conducted noise travels on an actual conduc-
tor, such as a power line.

When the PLC is operated in a noise-polluted indus-
trial environment, special consideration should be given
to possible electrical interference. To increase the operat-
ing noise margin, the controller should be located away
from noise-generating devices such as large AC motors
and high-frequency welders. Malfunctions resulting from
noise are temporary occurrences of operating errors that
can result in hazardous machine operation in certain ap-
plications. Noise usually enters through input, output,
and power supply lines. Noise may be coupled into these
lines by an electrostatic field or through electromagnetic
induction. The following reduce the effect of electrical
interference:

• Manufacturer design features
• Proper mounting of the controller within an

enclosure
• Proper equipment grounding

• Proper routing of wiring
• Proper suppression added to noise-generating devices

Noise suppression is normally needed for inductive
loads such as relays, solenoids, and motor starters when
operated by hard contact devices such as pushbuttons or
selector switches. When inductive loads are switched off,
high transient voltages are generated that if not suppressed
can reach several thousand volts. Figure 13-4 illustrates a
typical noise suppression circuit that is used to suppress
the high voltage spikes generated when a motor starter
coil is de-energized.

Lack of surge suppression on inductive loads may con-
tribute to processor faults and sporadic operation. RAM can
be corrupted (lost), and I/O modules can appear faulty or can
reset themselves. When inductive devices are energized or
de-energized, they can cause an electrical pulse to be back-
fed into the PLC system. The back-fed pulse, when entering
the PLC system, can be mistaken by the PLC for a computer
pulse. It takes only one false pulse to create a malfunction of
the orderly flow of PLC operational sequences.

Proper routing of field power and signal wiring to the
PLC enclosure as well as inside the enclosure helps to cut
down on electrical noise (also known as cross-talk inter-
ference). The following are some general guidelines for
PLC wire routing:

• Use the shortest possible wire runs for I/O signals.
• When possible, conductors that are run from the

PLC enclosure to another location should be in a
metal conduit as the metal can serve as a shield
against EMI.

• Never run signal wiring and power wiring in the
same conduit.

• Segregate I/O wiring by signal type. Route AC and
DC I/O signal wires in separate wireways.

Figure 13-4 Motor starter noise suppression.
 Source: Images Courtesy of Rockwell Automation, Inc.

Noise
suppressor

Stop

L1 L2Starter
coil

Start

M

OL

M

pet73842_ch13_281-304.indd 284 03/11/15 7:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

PLC Installation Practices, Editing, and Troubleshooting Chapter 13 285

• Low-level signal conductors such as thermocou-
ples and serial communications should be run as
shielded twisted pair and routed separately.

• A fiber optic system, which is totally immune to all
kinds of electrical interference, can also be used for
signal wiring.

An important part of a PLC installation is clearly iden-
tifying each wire to be connected and the terminal to
which it is connected. A reliable labeling method, such
as the heat-shrinkable wire identification sleeves shown
in Figure 13-5, should be used to label each wire. Wir-
ing connectors for input/output modules usually include
spaces for labels used for identifying each I/O address and
device connected. Proper wire and terminal identification
will simplify the installation and aid in troubleshooting
and maintenance.

13.3 Leaky Inputs and Outputs
Many electronic devices with transistor or triac outputs
exhibit a small leakage current even when in the off state
that may need to be considered when they are connected
to PLC input modules. This so-called leakage is typi-
cally exhibited by two-wire proximity, photoelectric, and
other such sensors. Often, the leaky input will only cause
the module’s input indicator to flicker. However, a large
enough leakage current can activate the input circuit, cre-
ating a false input signal.

A common solution to the problem of leaky input cur-
rent is to connect a bleeder resistor across or in paral-
lel with the input, as shown in Figure 13-6. The bleeder
resistor acts as an additional lower resistance load, which
allows the leakage current to flow through the lower re-
sistance path. Typically a 10 to 20 kΩ resistor is used to
solve the problem.

Leakage current may also occur with the solid-state
switch used in many output modules. Problems similar to
that encountered with input modules can be created when
a high-impedance load device is used with these modules.
For example, a PLC output might supply a sound alert
device as illustrated in Figure 13-7. In this case the leak-
age current could cause continuous false or intermittent
operation. A resistor can be connected as shown to bleed
off this current. An isolation relay could also be used to
solve this type of problem.

13.4 Grounding
Proper grounding is an important safety measure in
all electrical installations. The authoritative source on
grounding requirements for a PLC installation is the
National Electrical Code. The NEC specifies the types

Figure 13-5 Heat-shrinkable wire identification sleeves.
 Source: Courtesy Tyco Electronics Ltd.

Figure 13-6 Bleeder resistor connection for input sensors.

Bleeder
resistor

Leakage
current

Input module

N

2-wire
proximity

switch

L1

Common

Figure 13-7 Bleeder resistor connection for a high-
impedance output.

Leakage
current

Bleeder
resistor

Output
module

N

High-
impedance

loadL1

L1

pet73842_ch13_281-304.indd 285 03/11/15 7:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

286 Chapter 13 PLC Installation Practices, Editing, and Troubleshooting

of conductors, color codes, and connections necessary
for safe grounding of electrical components. In addition,
most manufacturers provide detailed information on the
proper grounding methods to use in an enclosure.

Figure 13-8 illustrates a PLC grounding system. A
properly installed grounding system will provide a low-
impedance path to earth ground. The complete PLC in-
stallation, including enclosures, CPU and I/O chassis, and
power supplies are all connected to a single low- impedance
ground. These connections should exhibit low DC resis-
tance and low high-frequency impedance. A central ground
bus bar is provided as a single point of reference inside the
enclosure to which all chassis and power supply equipment
grounding conductors are connected. The ground bus is
then connected to the building’s earth ground.

In the event of a high value of ground current, the tem-
perature of the conductor could cause the solder to melt,
resulting in interruption of the ground connection. There-
fore the grounding path must be permanent (no solder),
continuous, and able to conduct safely the ground-fault
current in the system with minimal impedance. Paint or
other nonconductive material should be scraped away
from the area where a chassis makes contact with the
enclosure. The minimum ground wire size should be
No. 12 AWG stranded copper for PLC equipment grounds
and No. 8 AWG stranded copper for enclosure backplane
grounds. Ground connections should be made with a star
washer between the grounding wire and lug and metal
enclosure surface, as illustrated in Figure 13-9.

• Any protective ground wires must have a resistance
value of less than 0.1 Ω.

• The resistance from the system ground to the earth
ground must have a value of less than 0.1 Ω.

Ground loops can cause problems by adding or sub-
tracting current or voltage from input signal devices.
A ground loop circuit can develop when each device’s
ground is tied to a different earth potential thereby allow-
ing current to flow between the grounds, as illustrated in
Figure 13-10. If a varying magnetic field passes through
one of these ground loops, a voltage is produced and cur-
rent flows in the loop. The receiving device is unable to
differentiate between the wanted and unwanted signals
and, thus, can’t accurately reflect actual process condi-
tions. Certain connections require shielded cables to help
reduce the effects of electrical noise coupling. Each shield
should be grounded at one end only, as a shield grounded
at both ends forms a ground loop.

Figure 13-8 PLC grounding system.

CPU
or I/O
rack

CPU
or I/O
rack

Equipment
grounding
conductor

Equipment
grounding
conductor

Ground busGround for slot
power supply

To grounding
electrode

system

Grounding
electrode

system

CPU
or I/O
rack

CPU
or I/O
rack

Enclosure

Figure 13-9 Make ground connections using a star
washer.

Star washer

To ground bus

Chassis
mounting tab

Equipment grounding
conductor (ground lug

with (8 AWG) wire)

Figure 13-10 Formation of ground loops.

Source

No ground loops

Source

Ground bus

Source

Ground
loop
formed

pet73842_ch13_281-304.indd 286 03/11/15 7:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

PLC Installation Practices, Editing, and Troubleshooting Chapter 13 287

13.5 Voltage Variations and Surges
The power supply section of the PLC system is built to
sustain line fluctuations and still allow the system to func-
tion within its operating range. If voltage fluctuations ex-
ceed this range, then a system shutdown will occur. In
areas where excessive line voltage variation or extended
brownouts are anticipated, installing a constant voltage
(CV) transformer may be required to minimize nuisance
shutdowns of the PLC.

Isolation transformers are used in some PLC systems
to isolate the PLC from electrical disturbances generated
by other equipment connected to the distribution sys-
tem. Although the PLC is designed to operate in harsh
environments, other equipment may generate consider-
able amounts of interference that may result in intermit-
tent disturbances in normal operation. A normal practice
is to place the PLC power supply and I/O devices on a
separate transformer that may also serve as a step-down
transformer to reduce the incoming voltage to the desired
level.

When current in an inductive load is interrupted or
turned off, a very high voltage spike is generated. This
high voltage can be reduced or eliminated through sup-
pression techniques which absorb the inductive induced
voltage. Generally, output modules designed to drive
inductive loads include suppression networks built in as
part of the module circuit.

An additional external suppression device is recom-
mended if an output module is used to control devices
such as relays, solenoids, motor starters, or motors. The
suppression device is wired in parallel (directly across)
and as close as possible to the load device. The sup-
pression components must be rated appropriately to
suppress the switching transient characteristic of the
particular inductive device. Figure 13-11 illustrates
how a diode is connected to suppress DC inductive

loads. The operation of the circuit can be summarized
as follows:

• The diode is connected in reverse-bias across the
solenoid load.

• In normal operation, the electric current can’t
flow through the diode, so it flows through the sole-
noid coil.

• When voltage to the solenoid is switched off a
voltage opposite in polarity to the original applied
voltage is generated by the collapsing magnetic
field.

• The induced voltage creates a current flow
through the diode bleeding off the high-voltage
spike.

Figure 13-12 illustrates how an RC (resistor/capacitor)
snubber circuit is connected for suppressing AC load de-
vices. The operation of the circuit can be summarized as
follows:

• The voltage peak, which occurs at the instant the
current path to the coil is opened, is safely short-
circuited by the RC network.

• The resistor and capacitor connected in series slows
the rate of rise of the transient voltage.

• The voltage across the capacitor cannot change
instantaneously, so a decreasing transient current
will flow through it for a small fraction of a second,
allowing the voltage to increase more slowly when
the circuit is opened.

The metal oxide varistor (MOV) surge suppressor,
shown in Figure 13-13, is the most popular surge protec-
tion device. It functions in a manner similar to two zener

Figure 13-11 Diode connected to suppress DC inductive
loads.

(+)

L1(+) L2(–)

Reversed-bias
diode

Solenoid coil

Output module

Figure 13-12 RC snubber circuit connected to suppress
AC loads.

Output
module

C R

L2L1

PB

M

L1

L2

pet73842_ch13_281-304.indd 287 03/11/15 7:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

288 Chapter 13 PLC Installation Practices, Editing, and Troubleshooting

diodes connected back-to-back. The operation of an MOV
can be summarized as follows:

• The device acts as an open circuit until the volt-
age across it in either direction exceeds its rated
value.

• Any greater voltage peak instantly makes the device
act like a short circuit that bypasses this voltage
away from the rest of the circuit.

13.6 Program Editing
and Commissioning
After you have entered the rungs for your program, you
may need to modify them. Editing is simply the ability to
make changes to an existing program through a variety of
editing functions. Using the editing function, instructions
and rungs can be added or deleted; addresses, data, and
bits can be changed. Again, the editing format varies with
different manufacturers and PLC models.

Today, most PLC programming software is Microsoft
Windows based, so if you are familiar with Windows and
know how to point and click with a mouse, you should
have no problem editing a program. In general, both in-
structions and rungs are selected simply by clicking on
them with the left mouse button. Double clicking with the
left mouse button allows you to edit an instruction’s ad-
dress, whereas right clicking displays a pop-up menu of
related editing commands. If you want to include addi-
tional explanation of a symbol or address, you can place
an address description on your ladder rung directly above
the symbol. To add a page or rung comment, right click
on the rung number to which you wish to add the page or
rung comment.

Preparing a control process for start-up, also called
commissioning, involves a series of tests to ensure that

the PLC, the ladder logic program, the I/O devices, and all
associated wiring operate according to specifications. Be-
fore commissioning any control system, you should have
a good understanding of how the control system operates
and how the various components interact. The following
are general steps to be followed when commissioning a
PLC system:

• Before applying power to the PLC or the input
devices, disconnect or otherwise isolate any output
device that could potentially cause damage or injury.
Typically this precaution would pertain to outputs that
cause movement such as starting a motor or operating
a valve.

• Apply power to the PLC and input devices. Measure
the voltage to verify that rated voltage is being
applied.

• Examine the PLC’s status indicator lights. If power
is properly applied, the power indicator should be
on, and there should be no fault indication. If the
PLC does not power up properly, it may be faulty.
PLCs rarely fail, but if they do fail, it usually
happens immediately upon powering up.

• Verify that you have communication with the PLC
via the programming device that is running the PLC
programming software.

• Place the PLC in a mode that prevents it from
energizing its output circuits. Depending on the
make of the PLC, this mode may be called disable,
continuous test, or single-scan mode. This mode
will allow you to monitor input devices, execute
the program, and update the output image file while
keeping the output circuits de-energized.

• Manually activate each input device, one at a
time, to verify that the PLC’s input status lights
turn on and off as expected. Monitor the associ-
ated condition instruction to verify that the input
device corresponds to the correct program address
and that the instruction turns true or false as
expected.

• Manually test each output. One way you can do this
is by applying power to the terminal where the out-
put device is wired. This test will check the output
field device and its associated wiring.

• After verifying all inputs, outputs, and program ad-
dresses, verify all preset values for counters, timers,
and so on.

• Reconnect any output devices that may have been
disconnected and place the PLC in the run mode.
Test the operation of all emergency stop buttons and
the total system operation.

AC or DC
output module

VAC/VDC

OUT 0

OUT 1

OUT 2

OUT 3

OUT 4

OUT 5

OUT 6

OUT 7

COM

Inductive load

DC Com or L2

MOV
+DC or L1

Figure 13-13 Metal oxide varistor (MOV) surge
suppressor.

pet73842_ch13_281-304.indd 288 03/11/15 7:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

PLC Installation Practices, Editing, and Troubleshooting Chapter 13 289

13.7 Programming and Monitoring
When you program a PLC, several instruction entry
modes are available, depending on the manufacturer
and the model of the unit. A personal computer, with
appropriate software, is generally used to program and
monitor the program in the PLC. Additionally, it makes
possible offline programming, which involves writing
and storing the program in the personal computer with-
out its being connected to the PLC and later download-
ing it to the PLC. Figure 13-14 illustrates how programs
are downloaded and uploaded from and to the computer.

With online programming the program can be modi-
fied, the modifications can be tested, and finally they can
be accepted or rejected while the PLC is running. How-
ever, offline programming is the safest manner in which to
edit a program because additions, changes, and deletions
do not affect the operation of the system until downloaded
to the PLC.

Many manufacturers provide a continuous test mode
that causes the processor to operate from the user pro-
gram without energizing any outputs. This mode allows
the control program to be executed and debugged while
the outputs are disabled. A check of each rung can be
done by monitoring the corresponding output rung on the
programming device. A single-scan test mode may also
be available for debugging the control logic. This mode
causes the processor to complete a single scan of the user
program each time the single-scan key is pressed with no
outputs being energized.

An online programming mode permits the user to
change the program during machine operation. As the
PLC controls its equipment or process, the user can add,
change, or delete control instructions and data values as
desired. Any modification made is executed immediately
on entry of the instruction. Therefore, the user should
assess in advance all possible sequences of machine
operation that will result from the change. Online pro-
gramming should be done only by experienced person-
nel who understand fully the operation of the PLC they
are dealing with and the machinery being controlled. If
at all possible, changes should be made offline to pro-
vide a safe transition from existing programming to new
programming.

Two useful monitoring tools provided with PLC pro-
gramming packages are data monitor and cross reference.
Data monitoring functions allow you to monitor and/or
modify specified program variables. The cross reference
function allows you to search each instance of a particular
address.

The data monitor feature allows you to display data
from any place in the data table. Depending on the
PLC, the data monitor function can be used to do the
following:

• View data within an instruction
• Store data or values for an instruction prior to use
• Set or reset values and/or bits during a debug opera-

tion for control purposes
• Change the radix or data format

Figure 13-14 Downloading and uploading PLC program.

(a) Downloading a program (b) Uploading a program

Program from the computer
is loaded into the PLC.

Program that was in the
PLC is lost.

Program from the PLC
is loaded into the computer.

Program that was in the
PLC remains unchanged.

Unsaved program in the
computer is lost.

pet73842_ch13_281-304.indd 289 03/11/15 7:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

290 Chapter 13 PLC Installation Practices, Editing, and Troubleshooting

Figure 13-15 shows the data file folder and window
for the Allen-Bradley SLC 500 PLC and its associated
RSLogix software. The data file folder allows the user
to determine the status of I/O files as well as the sta-
tus file (S2), binary file (B3), timer file (T4), counter
file (C5), control file (R6), integer file (N7), and the
floating-point file (F8). Always be careful when manip-
ulating data using the data monitor function. Changing
data could affect the program and turn output devices
on or off.

When troubleshooting a PLC, it may be necessary to
locate each instance of a particular address in the ladder
program. The cross reference function searches all pro-
gram files to locate each instance of the selected address.
A user can then trace the operation by finding all the
places where a particular output coil or contact with the
same address is used in the program. Figure 13-16 shows
a sample cross reference report for the Allen-Bradley
SLC 500 PLC and its associated RSLogix software. Its
contents can be summarized as follows:

• The report contains all the addresses used in the
program.

• Addresses are displayed in the same order as the
data table files.

• The address that the search was performed for
(O:2/1) is highlighted.

• The description for each address is displayed.
• Listing includes the instruction type, program file,

and rung number for each address.
• Each occurrence of the address is displayed, starting

with program file 2 and rung 0.

The contact histogram function allows you to view the
transition history (the on and off states) of a data table value.

The status of the bit(s) (on or off) and the length of time
the bit(s) remained on or off (in hours, minutes, seconds,
and hundredths of a second) are displayed. In a contact
histogram file, the accumulated time indicates the total time
that the histogram function was running. The delta time
of the contact histogram indicates the elapsed time between
the changes in states. Contact histograms are extremely

Figure 13-15 Data file folder and window.
Source: Courtesy of TheLearningPit.

Data file folders

Data Files
Cross Reference
O:0-OUTPUT
I:1-INPUT
S2-STATUS
B3-BINARY
T4-TIMER
C5-COUNTER
R6-CONTROL
N7-INTEGER
F8-FLOAT

Data file window

Input Tabl e

15

0
0

14

0
0

11

0
0

10

0
0

9

0
0

6

0
0

5

0
0

3

0
0

13

0
0

8

0
0

7

0
0

4

0
1

2

0
0

1

0
0

12

0
0

0
0
0

I :1.0
I :2.0

Radix: Binary Table:

Address
O:0:Output
I:1:Input
S2: Status
B3: Binary
T4: Timer
C5: Counter
R6: Control
N7: Integer
F8: Float

Figure 13-16 Sample cross reference report.
Source: Courtesy of TheLearningPit.

Stop PB
I:1/1

Start PB Motor control relay
I:1/2 O:2/1

O:2/1
Motor control relay

O:2/1
Motor control relay

O:2/3
Run pilot light

Cross Reference Report - Sorted by Address

Sort By Symbol Refresh Help

1

0

pet73842_ch13_281-304.indd 290 03/11/15 7:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

PLC Installation Practices, Editing, and Troubleshooting Chapter 13 291

useful for detecting intermittent problems, either hardware-
or logic-related. By tracking the status and time between
status changes, you can detect different types of problems.

13.8 Preventive Maintenance
The biggest deterrent to PLC system faults is a proper
preventive maintenance program. Although PLCs have
been designed to minimize maintenance and provide
trouble-free operation, there are several preventive mea-
sures that should be looked at regularly.

Many control systems operate processes that must be
shut down for short periods for product changes. The fol-
lowing preventive maintenance tasks should be carried
out during these short shutdown periods:

• Any filters that have been installed in enclosures
should be cleaned or replaced to ensure that clear
air circulation is present inside the enclosure.

• Dust or dirt accumulated on PLC circuit boards
should be cleaned. If dust is allowed to build up on
heat sinks and electronic circuitry, an obstruction of
heat dissipation could occur and cause circuit mal-
function. Furthermore, if conductive dust reaches
the electronic boards, a short circuit could result
and cause permanent damage to the circuit board.
Ensuring that the enclosure door is kept closed will
prevent the rapid buildup of these contaminants.

• Connections to the I/O modules should be checked
for tightness to ensure that all plugs, sockets, termi-
nal strips, and module connections are making con-
nections and that the module is installed securely.
Loose connections may result not only in improper
function of the controller but also in damage to the
components of the system.

• All field I/O devices should be inspected to en-
sure that they are adjusted properly. Circuit boards
dealing with process control analogs should be
calibrated every 6 months. Other devices, such as
sensors, should be serviced on a monthly basis.
Field devices in the environment, which have to
translate mechanical signals into electrical, may
gum up, get dirty, crack, or break—and then they
will no longer trip at the correct setting.

• Care should be taken to ensure that heavy noise- or
heat-generating equipment is not moved too close to
the PLC.

• Check the condition of the battery that backs up the
RAM memory in the CPU (Figure 13-17). Most
CPUs have a status indicator that shows whether the
battery’s voltage is sufficient to back up the memory
stored in the PLC. If a battery module is to be

replaced, it must be replaced with exactly the same
type of battery module.

• Stock commonly needed spare parts. Input and output
modules are the PLC components that fail most often.

• Keep a master copy of operating programs used.

To avoid injury to personnel and to prevent equip-
ment damage, connections should always be checked
with power removed from the system. In addition to dis-
connecting electrical power, all other sources of power
(pneumatic and hydraulic) should be de-energized before
someone works on a machine or process controlled by a
PLC. Most companies use lockout and tagout proce-
dures, shown in Figure 13-18, to make sure that equip-
ment does not operate while maintenance and repairs are
conducted. A personnel protection tag is placed on the
power source for the equipment and the PLC, and it can
be removed only by the person who originally placed the
tag. In addition to the tag, a lock is also attached so that
equipment cannot be energized.

Figure 13-17 CPU backup memory battery.

Bat

+

–

Bat

+

–

Figure 13-18 Lockout/tagout devices.
 Source: Photo courtesy Panduit Corporation, www.panduit.com.

pet73842_ch13_281-304.indd 291 03/11/15 7:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

292 Chapter 13 PLC Installation Practices, Editing, and Troubleshooting

13.9 Troubleshooting
In the event of a PLC fault, you should employ a care-
ful and systematic approach to troubleshoot the system to
resolve the problem. PLCs are relatively easy to trouble-
shoot because the control program can be displayed on
a monitor and watched in real time as it executes. If a
control system has been operating, you can be fairly con-
fident of the accuracy of the program logic. For a system
that has never worked or is just being commissioned, pro-
gramming errors should be considered.

When a problem occurs, the first step in the trouble-
shooting procedure is to identify the problem and its
source. The source of a problem can generally be nar-
rowed down to the processor module, I/O hardware, wir-
ing, machine inputs or outputs, or ladder logic program.
Once a problem is recognized, it is usually quite simple to
deal with. The following sections will deal with trouble-
shooting these potential problem areas.

Processor Module
The processor is responsible for the self-detection of po-
tential problems. It performs error checks during its op-
eration and sends status information to indicators that are
normally located on the front of the processor module.
You can diagnose processor faults or obtain more detailed
information about the processor by accessing the proces-
sor status through programming software. Figure 13-19
shows sample diagnostics LEDs found on a processor
module. What they indicate can be summarized as follows:

RUN (Green)

• On steady indicates that the process is in the RUN
mode.

• Flashing during operation indicates that the process
is transferring a program from RAM to the memory
module.

• Off indicates that processor is in a mode other than
RUN.

FLT (Red)

• Flashing at power-up indicates that the processor
has not been configured.

• Flashing during operation indicates a major error
either in the processor, chassis, or memory.

• On steady indicates that a fatal error is present (no
communications).

• Off indicates there are no errors.

BATT (Red)

• On steady indicates the battery voltage has fallen
below a threshold level, or the battery is missing or
not connected.

• Off indicates that the battery is functional.

The processor then monitors itself continually for any
problems that might cause the controller to execute the
user program improperly. Depending on the controller, a
set of fault relay contacts may be available. The fault relay
is controlled by the processor and is activated when one or
more specific fault conditions occur. The fault relay con-
tacts are used to disable the outputs and signal a failure.

Most PLCs incorporate a watchdog timer to moni-
tor the scan process of the system. The watchdog timer
is usually a separate timing circuit that must be set and
reset by the processor within a predetermined period. The
watchdog timer circuit monitors how long it takes the
CPU to complete a scan. If the CPU scan takes too long, a
watchdog major error will be declared. PLC user manuals
will show how to apply this function.

The PLC processor hardware is not likely to fail because
today’s microprocessors and microcomputer hardware are
very reliable when operated within the stated limits of tem-
perature, moisture, and so on. The PLC processor chassis
is typically designed to withstand harsh environments.

Input Malfunctions
If the controller is operating in the RUN mode but output
devices do not operate as programmed, the faults could be
associated with any of the following:

• Input and output wiring between field devices and
modules

• Field device or module power supplies
• Input sensing devices
• Output actuators
• PLC I/O modules
• PLC processor

Narrowing down the problem source can usually be ac-
complished by comparing the actual status of the suspect
I/O with controller status indicators. Usually each input
or output device has at least two status indicators. One of
these indicators is on the I/O module; the other indicator
is provided by the programming device monitor.Figure 13-19 Processor diagnostics LEDs.

RUN

FLT

BATT

CPU

pet73842_ch13_281-304.indd 292 03/11/15 7:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

PLC Installation Practices, Editing, and Troubleshooting Chapter 13 293

The circuit of Figure 13-20 illustrates how to check for
discrete input malfunctions. The steps taken can be sum-
marized as follows:

• When input hardware is suspected to be the source
of a problem, the first check is to see if the status
indicator on the input module illuminates when it is
receiving power from its corresponding input device
(e.g., pushbutton, limit switch).

• If the status indicator on the input module does not
illuminate when the input device is on, take a volt-
age measurement across the input terminal to check
for the proper voltage level.

• If the voltage level is correct, then the input module
should be replaced.

• If the voltage level is not correct, power supply, wir-
ing, or input device may be faulty.

If the programming device monitor does not show the
correct status indication for a condition instruction, the
input module may not be converting the input signal prop-
erly to the logic level voltage required by the processor
module. In this case, the input module should be replaced.
If a replacement module does not eliminate the problem
and wiring is assumed to be correct, then the I/O rack,
communication cable, or processor should be suspected.
Figure 13-21 shows a typical input device troubleshooting
guide. This guide reviews condition instructions and how
their true/false status relates to external input devices.

Figure 13-20 Checking for input malfunctions.

IN 1

IN 2

IN 3

IN 4

IN 5

IN 6

IN 7

DC COM

Input module

– +

LED indicator
not illuminated

Input pushbutton
contacts closed

+24 V DC

Common

Check input
voltage level

?

IN 0

DC COM

Figure 13-21 Input troubleshooting guide.

Input device troubleshooting guide

None - correct indications

Input module
status indicator

Input
device condition

ON

ON

OFF

ON

OFF

Monitor display
status indicator

Possible
fault(s)

None - correct indications

Input voltage, status indicator, and ladder
instructions agree but not with sensor condition.
Short circuit in the field device or wiring.

Sensor condition, input voltage, status indicator
are correct. Ladder instructions have incorrect
indications. Input module or processor fault.

Status indicator and instructions agree but not
with the sensor condition. Open field device
or wiring.

Sensor condition, input voltage, status indicator
are correct. Ladder instructions have incorrect
indications. Input module or processor fault.

True

True

True

False

False

False

False

False

True

True

True

False
Closed — ON
24 V DC input

Closed — ON
24 V DC input

Closed — ON
0 V DC input

OFF

Open — OFF
0 V DC input

Open — OFF
0 V DC input

Open — OFF
24 V DC input

pet73842_ch13_281-304.indd 293 03/11/15 7:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

294 Chapter 13 PLC Installation Practices, Editing, and Troubleshooting

Output Malfunctions
In addition to the logic indicator, some output modules
incorporate either a blown fuse indicator or a power indi-
cator or both. A blown fuse indicator indicates the status
of the protective fuse in the output circuit, while a power
indicator shows that power is being applied to the load.

Electronic protection, as shown in Figure 13-22, is also
used to provide protection for the modules from short-
circuit and overload current conditions. The protection
is based on a thermal cut-out principle. In the event of
a short-circuit or overload current condition on an out-
put channel, that channel will limit current within mil-
liseconds after its thermal cut-out temperature has been
reached. All other channels continue to operate as di-
rected by the processor.

When an output does not energize as expected, first
check the output module blown fuse indicator. Many out-
put modules have each output fused. This indicator will
normally illuminate only when the output circuit corre-
sponding to the blown fuse is energized. If this indicator
is illuminated, correct the cause of the malfunction and
replace the blown fuse in the module.

Figure 13-23 shows a typical discrete output module
troubleshooting guide. In general, the following items
should be noted when troubleshooting discrete output
modules:

• If the blown fuse indicator is not illuminated (fuse
OK), then check to see if the output device is re-
sponding to the LED status indicator.

• An output module’s logic status indicator func-
tions similarly to an input module’s status indica-
tor. When it is on, the status LED indicates that the
module’s logic circuitry has recognized a command
from the processor to turn on.

• If an output rung is energized, the module status
indicator is on, and the output device is not respond-
ing, then the wiring to the output device or the out-
put device itself should be suspected.

• If, according to the programming device monitor,
an output device is commanded to turn on but the
status indicator is off, then the output module or
processors may be at fault.

• Check voltage at output; if incorrect, power supply,
wiring, or output device may be faulty.

Ladder Logic Program
Many PLC software programs offer various software
checks used to verify program logic. Figure 13-24 shows
a sample of verifying program errors using RSLogix 500
software. Selecting edit then verify project will check
the program for errors. The sample shows what the error
message might look like.

The ladder logic program itself is not likely to fail, as-
suming that the program was at one time working cor-
rectly. A hardware fault in the memory IC that holds the
ladder logic program could alter the program, but this is
a PLC hardware failure. If all other possible sources of
trouble have been eliminated, the ladder logic program
should be reloaded into the PLC from the master copy of
the program. Make sure the master copy of the program is
up to date before you download it to the PLC.

Start program troubleshooting by identifying which
outputs operate properly and which outputs do not. Then
trace back from the output on the nonfunctioning rung and
examine the logic to determine what may be preventing
the output from energizing. Common logic errors include:

• Programming an examine if closed instruction
instead of an examine if open (or vice versa)

• Using an incorrect address in the program

Although the ladder logic program is not likely to fail,
the process may be in a state that was unaccounted for in
the original program and thus is not controlled properly.
In this case, the program needs to be modified to include
this new state. A careful examination of the description of
the control system and the ladder logic program can help
identify this type of fault.

The force on and force off instructions allow you to turn
specific bits on or off for testing purposes. Figure 13-25
illustrates how forces are identified as being enabled or dis-
abled in RSLogix 500 software. Forcing lets you simulate
operation or control an output device. For example, forcing
a solenoid valve on will tell you immediately whether the
solenoid is functional when the program is bypassed. If it
is, the problem must be related to the software and not the
hardware. If the output fails to respond when forced, either
the actual output module is causing the problem or the so-
lenoid itself is malfunctioning. Take all necessary precau-
tions to protect personnel and equipment during forcing.Figure 13-22 Electronic output module protection.

E
F
U
S
E

Status
indicators

Output
Electronic
protection
LED

pet73842_ch13_281-304.indd 294 03/11/15 7:22 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

PLC Installation Practices, Editing, and Troubleshooting Chapter 13 295

Certain diagnostic instructions may be included as part
of a PLC’s instruction set for troubleshooting purposes.
The temporary end (TND) instruction, shown in Fig-
ure 13-26, is used when you want to change the amount of
logic scanned to progressively debug your program. The

Output device troubleshooting guide

None - correct indication

Output module
status indicator

Output device
condition

De-energized — OFF

Energized — ON
ON

OFF

ON

OFF

Monitor display
status indicator

Fault(s)

None - correct indication

Output instruction and status indicator
agree but the field device does not.
Open field device or wiring.
Module circuit or fuse.

Field device status and status indicator
agree but the output condition does not.
Module circuit or fuse.

De-energized — OFF

De-energized — OFF

Output module
status indicator

ON

VAC

OUT 0

OUT 1

OUT 2

OUT 3

OUT 4

OUT 5

OUT 6

OUT 7

AC COM

L1

L2

Open in field device

Open in wiring

Output module

False

True

True

True

Figure 13-23 Output troubleshooting guide.
 Source: Photo courtesy Guardian Electric, www.guardian-electric.com.

Figure 13-24 Sample of verifying program errors.

Errors
 Program Files
 File 2
 Ring 1 Ins 3: ERROR: Unconfigured I/O (I:20/6)

–
–

–

Verify Results

Figure 13-25 Indication of enabled forces.
Source: Courtesy of TheLearningPit.

pet73842_ch13_281-304.indd 295 03/11/15 7:23 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

296 Chapter 13 PLC Installation Practices, Editing, and Troubleshooting

• All ladder logic outputs are de-energized, but other
status files have the data present when the suspend
instruction was executed.

Most PLC system faults occur in the field wiring and
devices. The wiring between the field devices and the ter-
minals of the I/O modules is a likely place for problems
to occur. Faulty wiring and mechanical connection prob-
lems can interrupt or short the signals sent to and from
the I/O modules.

The sensors and actuators connected to the I/O of the
process can also fail. Mechanical switches can wear out
or be damaged during normal operation. Motors, heaters,
lights, and sensors can also fail. Input and output field
devices must be compatible with the I/O module to ensure
proper operation.

When an instruction does not seem to be working cor-
rectly, the problem may be an addressing conflict caused
by the same address being used for two or more coil in-
structions in the same program. As a result, multiple rung
conditions can control the same output coil, making trou-
bleshooting more difficult. In the case of duplicate out-
puts, the monitored rung may be true; but if a rung farther
down in the ladder diagram is false, the PLC will keep the
output off. The program of Figure 13-28 illustrates what

operation of this output instruction can be summarized as
follows:

• The instruction operates only when its rung condi-
tions are true and stops the processor from scanning
any logic beyond the TND instruction.

• When the processor encounters a true TND rung,
it resets the watchdog timer (to 0), performs an I/O
update, and begins running the ladder program at
the first instruction in the main program.

• If the TND rung is false, the processor continues
the scan until the next TND instruction or the END
statement.

• By inserting the TND instruction at different loca-
tions in the program you can test parts of the program
sequentially until the entire program has been tested.

• Once the troubleshooting process has been com-
pleted, any remaining TND instructions are re-
moved from the program.

The suspend (SUS) instruction, shown in Figure 13-27,
is used to trap and identify specific conditions for program
debugging and system troubleshooting. The operation of
this output instruction can be summarized as follows:

• When the rung is true, this instruction places the
controller in the suspend or idle mode.

• The suspend ID, in this case 100, must be selected
by the programmer and entered in the instruction.

• When the SUS instruction executes, the ID number
100 is written in word 7 (S:7) of the status file.

• If multiple suspend instructions are present, then
this will indicate which SUS instruction was active.

• The suspend file (program or subroutine number
identifying where the executed SUS instruction re-
sides) is placed in word 8 (S:8) of the status file.

Figure 13-26 TND (temporary end) diagnostic instruction.

JMP LBL JSR RET SBR TND

Program Control Ascii Control Ascii String

MCR SUS

Micro

Main program

Temporary end

L1
Inputs

SW

SW

TND

Reminder of main program
Figure 13-27 SUS (suspend) diagnostic instruction.

Micro

JMP LBL JSR RET SBR TND

Program Control Ascii Control Ascii String

MCR SUS

A B C
SUS
Suspend
Suspend ID 100

L1

Inputs Trapped input conditions
Main program

A

B

C

Figure 13-28 Program with the same address used for
two coils.

OutputLadder logic program

Same address

Inputs

L2

PL

(OFF)

L1

O:2/1

O:2/1I:1/1

I:1/1

I:1/2

I:1/2

O:2/1

pet73842_ch13_281-304.indd 296 03/11/15 7:23 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

PLC Installation Practices, Editing, and Troubleshooting Chapter 13 297

could be causing the problem rather than arbitrarily check-
ing every connection, switch, motor, sensor, I/O module,
and so on. First, observe the system in operation and try
to describe the problem. Using these observations and the
description of the control system, you should identify the
possible sources of trouble. Compare the logic status of
the hardwired inputs and outputs to their actual state, as
illustrated in Figure 13-29. Any disagreements indicate
malfunctions as well as their approximate location.

Some of your troubleshooting can be accomplished by
interpreting the status indicators on the I/O modules. The
key is to know whether the status indicators are telling
you that there is a fault or that the system is normal. Often
PLC manufacturers supply a troubleshooting guide, map,
or tree that presents a list of observed problems and their
possible sources. Figure 13-30 shows a sample trouble-
shooting tree for a discrete output module. Figures 13-31
and 13-32 are samples of input and output troubleshoot-
ing guides.

happens when the same address is used for two coils. The
resulting problem scenario can be summarized as follows:

• The problem is turning input switch I:1/1 on will
not turn on PL output O:2/1 as it appears to be
programmed.

• The root of the problem lies in the fact that the PLC
scans the program from left to right and top to bottom.

• Whenever input switch I:1/1 is true (closed) and
input switch I:1/2 is false (open) output O:2/1 will
be off.

• This is because when the PLC updates the outputs it
does so based on the status of input I:1/2.

• Regardless of whether input I:1/1 is open or closed
the output reacts only to the status of input switch
I:1/2.

When a problem occurs, the best way to proceed is to
try to logically identify the devices or connections that

Figure 13-29 General methods of troubleshooting.
Source: Courtesy of TheLearningPit.

Logic observation—determine validity of decisions made by processor

User program

True True

Hardware comparison test—compare
state of I/O as stored in memory to
actual state

L1

L2

Input
device

Input
module

Open-o�

Status

o� L1

L2

Output
module

Status

On

Load
energized
on

Memory

Input image table

Output image table

pet73842_ch13_281-304.indd 297 03/11/15 7:23 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

298 Chapter 13 PLC Installation Practices, Editing, and Troubleshooting

OFF

Output
status

indicators

Check I/O
device wiring

• Repair
• Replace

• Modules
• Swing arm
• Power
• Rack

Find out why

Yes

Output module

OFF

Blown fuse
indicator

Display
rung on
screen

No

Yes Is output
instruction

true?

Check I/O

Output device
would not

ON

Output
status

indicators

Display
rung on
screen

Yes

Is output
instruction

true?

ON

ON

OFF

Turn OFF Turn ON

No

Output

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

VAC

Out 1

Out 3

Out 5

Out 7

Out 9

Out 11

Out 13

Out 15

Out 0

Out 2

Out 4

Out 6

Out 8

Out 10

Out 12

Out 14

AC
COM

L1

L2

R

G

O:2/3

O:2/8

Figure 13-30 Troubleshooting tree for a discrete output module.

If Your Input
Circuit LED Is . . .

And Your Input
Device Is . . . And Probable Cause

ON

Input

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

On/Closed/Activated Your input device will not
turn off. Device is shorted or damaged.

Your program operates
as though it is off.

Input circuit wiring or module.

Input is forced off in program.

Off/Open/Deactivated Your program operates
as though it is on and/or
the input circuit will not
turn off.

Input device off-state leakage current exceeds
input circuit specification.

Input device is shorted or damaged.

Input circuit wiring or module.

OFF

Input

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

On/Closed/Activated
Your program operates
as though it is off and/or
the input circuit will not
turn on.

Input circuit is incompatible.

Low voltage across the input.

Input circuit wiring or module.

Input signal turn-on time too fast for input circuit.

Off/Open/Deactivated Your input device will not
turn on. Input device is shorted or damaged.

Your program operates
as though it is on.

Input is forced on in program.

Input circuit wiring or module.

Figure 13-31 Input troubleshooting guide.

pet73842_ch13_281-304.indd 298 03/11/15 7:23 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

PLC Installation Practices, Editing, and Troubleshooting Chapter 13 299

13.10 PLC Programming Software
You must establish a way for your personal computer
(PC) software to communicate with the programmable
logic controller (PLC) processor. Making this connec-
tion is known as configuring the communications. The
method used to configure the communications varies with
each brand of controller. In Allen-Bradley controllers,
RSLogix software, Figure 13-33, is required to develop
and edit ladder programs. A second software package,
RSLinx, is needed to set up the communication path
between the PLC processor and the personal computer

Figure 13-32 Output troubleshooting guide.

If Your Output
Circuit LED Is . . .

And Your Output
Device Is . . . And Probable Cause

ON

Output

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

On/Energized
Your program indicates
that the output circuit is
off or the output circuit
will not turn off.

Programming problem:
- Check for duplicate outputs and addresses.
- If using subroutines, outputs are left in their last

state when not executing subroutines.
- Use the force function to force output off. If

this does not force the output off, output circuit
is damaged. If the output does force off, then
check again for logic/programming problem.

Output is forced on in program.

Output circuit wiring or module.

Off/De-energized
Your output device will
not turn on and the
program indicates that
it is on.

Low or no voltage across the load.

Output device is incompatible: check
specifications and sink/source compatibility
(if dc output).

Output circuit wiring or module.

OFF

Output

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

On/Energized
Your output device will
not turn off and the
 program indicates that
it is off.

Output device is incompatible.

Output circuit off-state leakage current may
 exceed output device specification.

Output circuit wiring or module.

Output device is shorted or damaged.

Off/De-energized
Your program indicates
that the output circuit is
on or the output circuit
will not turn on.

Programming problem:
- Check for duplicate outputs and addresses.
- If using subroutines, outputs are left in their last

state when not executing subroutines.
- Use the force function to force output on. If

this does not force the output on, output circuit
is damaged. If the output does force on, then
check again for logic/programming problem.

Output is forced off in program.

Output circuit wiring or module.

Figure 13-33 RSLogix software.

pet73842_ch13_281-304.indd 299 03/11/15 7:23 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

300 Chapter 13 PLC Installation Practices, Editing, and Troubleshooting

Two important aspects of the communication link must
be considered, namely, the RS-232 standard and the com-
munications protocol. The RS-232 standard specifies a
function for each of the wires inside the standard com-
munications cable and their associated pins. Communica-
tions protocol is a standardized method for transmitting
data and/or establishing communications between differ-
ent devices.

Minimum configuration for two-way communications
requires the use of only three connected wires, as shown
in Figure 13-36. For ease of connection, the RS-232
standard specifies that computer devices have male con-
nectors and that peripheral equipment have female con-
nectors. Direct communication between two computers,
such as a PC and a PLC, does not involve intermediate pe-
ripheral equipment. Therefore, a serial null-modem type
cable must be used for the connection because both the
PC and the PLC processor use pin 2 for data output and
pin 3 for data input.

RSLinx is a Windows based communication software
package developed by Rockwell Software to interface to
all of the Rockwell and A-B industrial control and auto-
mation hardware. To setup RSLinx:

• Open RSLinx.
• Click on Communications and select configure driv-

ers from the dialog box.
• Select RS-232 from the available driver types.
• Click on add new and select your communications

port from the dialog box.
• Click on auto configure to automatically set the

baud rate and parity.
• Minimize the RSLinx window, but leave the pro-

gram running.

Figure 13-34 RSLinx software.

(PC). You cannot download multiple projects to the PLC
and then run them when required. The PLC will accept
only one program at a time, but the program can consist
of multiple subroutine files which can be conditionally
called from the main program.

RSLinx software, Figure 13-34, is available in mul-
tiple packages to meet the demand for a variety of cost
and functionality requirements. This software package is
used as the driver between your PC and PLC processor.
A driver is a computer program that controls a device.
For example, you must have the correct printer driver in-
stalled in your PC in order to be able to print a word-
processing document created on your PC. RSLinx works
much like the printer driver for RSLogix software. The
RSLinx program must be opened and drivers configured
before communications can be established between a PC
and a PLC that is using RSLogix software.

RSLinx allows RSLogix to communicate through an
interface cable to the PLC processor. The simplest con-
nection between a PC and a PLC is a point-to-point direct
connection through the computer serial port, as illustrated
in Figure 13-35. A serial cable is used to connect to your
PC’s COM 1 or COM 2 port and to the PLC processor’s
serial communications port. With RSLinx software you
can auto-configure the serial connection and thus auto-
matically find the proper serial port configuration.

Figure 13-35 Direct PC-to-PLC software connection.

PLC

Personal computer
(PC)

Serial cable

RSLogix
software

RSLinx
software

COM port

Pr
oc

es
so

r

Figure 13-36 Serial wiring connection.

FORCE

SLC 5/04 CPU

RUN

DH+FLT

R3232BATT

PROGRUN REM

Send 2

Receive 33 Receive

Ground (common) 77

Send

2 Send

pet73842_ch13_281-304.indd 300 03/11/15 7:23 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

PLC Installation Practices, Editing, and Troubleshooting Chapter 13 301

which shows all members of a collection. A collection is a
network, or a device that is a bridge. A device that appears
with a red X through it indicates a communication status
error, such as loss of power to a device or a disconnected
communication cable.

RSWho is RSLinx’s network browser interface. The
who active or RSWho function, Figure 13-37, shows
you what stations are connected on your PLC network.
The left pane of RSWho is the tree control, which shows
networks and devices. The right pane is the list control,

Figure 13-37 The who active or RSWho window.
Source: Image Courtesy of Rockwell Automation, Inc.

File

RSLinx

View Communications

RSWho-1

Autobrowse

Workstation, ADMIN-PC–

–
+ Linx Gateways, Ethernet

Computer, DH-485

00, Workstation, DF1-COM3

01, MicroLogix 1000, PLC

00
DF1-COM3
Workstation

01
PLC

RefreshRefresh Browsing-node 1 found

Station DDE/OPC Security Window Help

RS Who

pet73842_ch13_281-304.indd 301 03/11/15 7:23 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

302 Chapter 13 PLC Installation Practices, Editing, and Troubleshooting

CHAPTER 13 REVIEW QUESTIONS

1. Why are PLCs installed within an enclosure?

2. What methods are used to keep enclosure
temperatures within allowable limits?

3. State two ways in which electrical noise may be
coupled into a PLC control system.

4. List three potential noise-generating inductive
devices.

5. Describe four ways in which careful wire routing
can help cut down on electrical noise.

6. a. What type of input field devices and output
modules are most likely to have a small
leakage current flow when they are in the off
state? Why?

b. Explain how an input bleeder resistor reduces
leakage current.

7. Summarize the basic grounding requirements for a
PLC system.

8. Under what condition can a ground loop circuit be
developed?

9. When line voltage variations to the PLC power
supply are excessive, what can be done to solve the
problem?

10. What operating state will cause an inductive load to
generate a very high voltage spike?

11. Explain how a diode is connected to suppress a DC
inductive load.

12. Explain how an MOV suppresses an AC inductive
load.

13. What is the purpose of PLC editing functions?

14. What is involved with commissioning a PLC
system?

15. a. Compare offline and online programming.
b. Which method is safer? Why?

16. List four uses for the data monitor function.

17. What information is provided by the cross refer-
ence function?

18. What information is provided by the contact
histogram function?

19. List five preventive maintenance tasks that should
be carried out on the PLC installation regularly.

20. Outline the general procedure followed to lock out
and tag a PLC installation.

21. Typically, what does each of the following proces-
sor diagnostic light states indicate?
a. RUN light is off.
b. Fault light is off.
c. BATTERY light is on.

22. Explain the function of a watchdog timer circuit.

23. A PLC is operating in the RUN mode but output
devices do not operate as programmed. List five
faults that could be responsible for this condition.

24. What is the verify results function used for?

25. A fast-acting solenoid-operated gate is suspected
of not functioning properly when energized and de-
energized by the PLC program. Explain how you
would use the force function to check its operation.

26. What happens when the processor encounters a
temporary end instruction?

27. Explain the function of the suspend instruction.

28. In what negative ways can faulty wiring and connec-
tions affect signals sent to and from the I/O modules?

29. The same address is used for two coil instructions
within the same PLC program. What will happen as
a consequence of this?

30. Compare the uses for RSLogix and RSLinx
programming software.

CHAPTER 13 PROBLEMS

1. The enclosure door of a PLC installation is not kept
closed. What potential problem could this create?

2. A fuse is blown in an output module. Suggest two
possible reasons why the fuse blew.

3. Whenever a crane located over a PLC installation is
started from a standstill, temporary malfunction of
the PLC system occurs. What is one likely cause of
the problem?

pet73842_ch13_281-304.indd 302 03/11/15 7:23 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

PLC Installation Practices, Editing, and Troubleshooting Chapter 13 303

4. During the static checkout of a PLC system, a
specific output is forced on by the programming
device. If an indicator other than the expected one
turns on, what is the probable problem?

5. The input device to a module is activated, but the
LED status indicator does not come on. A check
of the voltage to the input module indicates that no
voltage is present. Suggest two possible causes of
the problem.

6. An output is forced on. The module logic light
comes on, but the field device does not work.
A check of the voltage on the output module
indicates the proper voltage level. Suggest two
possible causes of the problem.

7. A specific output is forced on, but the LED module
indicator does not come on. A check of the voltage
at the output module indicates a voltage far below
the normal on level. What is the first thing to
check?

8. An electronic-based input sensor is wired to
a high-impedance PLC input and is falsely
activating the input. How can this problem be
corrected?

9. An LED logic indicator is illuminated, and
according to the programming device monitor,
the processor is not recognizing the input.
If a replacement module does not eliminate
the problem, what two other items should be
suspected?

10. a. A normally open field limit switch examined for
an on state normally cycles from on to off five
times during one machine cycle. How could you
tell by observing the LED status light that the
limit switch is functioning properly?

b. How could you tell by observing the program-
ming device monitor that the limit switch is
functioning properly?

c. How could you tell by observing the LED status
light whether the limit switch was stuck open?

d. How could you tell by observing the program-
ming device monitor whether the limit switch
was stuck open?

e. How could you tell by observing the LED status
light if the limit switch was stuck closed?

f. How could you tell by observing the program-
ming device monitor if the limit switch was
stuck closed?

11. Assume that prior to putting a PLC system into op-
eration, you want to verify that each input device is
connected to the correct input terminal and that the
input module or point is functioning properly. Out-
line a method of carrying out this test.

12. Assume that prior to putting a PLC system
into operation, you want to verify that each
output device is connected to the correct output
terminal and that the output module or point
is functioning properly. Outline a method of
carrying out this test.

13. With reference to the ladder logic program of
Figure 13-38, add instructions to modify the
program to ensure that the second pump_2
does not run while pump_1 is running. If this
condition occurs, the program should suspend
operation and enter code identification number
100 into S2:7.

14. The program of Figure 13-39 is supposed to
execute to sequentially turn PL1 off for 5 seconds
and on for 10 seconds whenever input A is
closed.
a. Examine the ladder logic and describe how the

circuit would operate as programmed.
b. Troubleshoot the program and identify what

needs to be changed to have it operate properly.

Figure 13-38 Program for Problem 13.

L1 L2

Pump 2

Pump 1

Pump 1

PB1

PB2

OutputsInputs Ladder logic program

PL1

PB2

PB1 Pump 1

Pump 2

PL1

M1

M2

pet73842_ch13_281-304.indd 303 03/11/15 7:23 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

304 Chapter 13 PLC Installation Practices, Editing, and Troubleshooting

Figure 13-39 Program for Problem 14.

T4:2
0.1
50

0

DN

EN

DN

EN

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

T4:3
0.1

100
0

TON
TIMER ON DELAY
Timer
Time base
Preset
Accumulated

PL1T4:2

T4:2

T4:2

Input A

B3:1

L1
Input

B3:1

0

DN

DN

DN 0

Ladder logic program Output
L2

Input A

PL1

pet73842_ch13_281-304.indd 304 03/11/15 7:23 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

305

14
Process Control, Network
Systems, and SCADA

Chapter Objectives

After completing this chapter, you will be able to:

 • Discuss the operation of continuous process, batch
production, and discrete manufacturing processes

 • Compare individual, centralized, and distributive
control systems

 • Explain the functions of the major components of a
process control system

 • Describe the various functions of electronic HMI screens

 • Recognize and explain the functions of the control
elements of a closed-loop control system

 • Explain how on/off control works

 • Explain how PID control works

 • Identify the levels of an industrial network

 • Discuss the different types of network architecture and
protocols

 • Describe a typical SCADA application

This chapter introduces the kinds of industrial
processes that can be PLC controlled. SCADA
is such a process. Different types of control sys-
tems are used for complex processes. These
control systems may be PLCs, but other control-
lers include robots, data terminals, and comput-
ers. For these controllers to work together, they
must communicate. This chapter will discuss the
different kinds of industrial processes and the
means by which they communicate.

Coaxial

Twisted pair

Fiber optic

Wireless system

pet73842_ch14_305-332.indd 305 05/11/15 4:26 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

306 Chapter 14 Process Control, Network Systems, and SCADA

14.1 Types of Processes
Process control is the automated control of a process.
Such systems typically deal with analog signals from sen-
sors. The ability of a PLC to perform math functions and
utilize analog signals makes it ideally suited for this type
of control. Manufacturing is based on a series of processes
being applied to raw materials. Typical applications of
process control systems include automobile assembly,
petrochemical production, oil refining, power generation,
and food processing.

A continuous process is one in which raw materi-
als enter one end of the system and the finished product
comes out the other end of the system; the process itself
runs continuously. Figure 14-1 shows a continuous pro-
cess used in an automotive engine assembly line. Parts
are mounted sequentially, in an assembly-line fashion,
through a series of stations. Assembly and adjustments
are carried out by both automated machine and manual
operations.

In batch processing, there is no flow of product mate-
rial from one section of the process to another. Instead, a
set amount of each of the inputs to the process is received
in a batch, and then some operation is performed on the
batch to produce a product. Products produced using
the batch process include food, beverages, pharmaceuti-
cal products, paint, and fertilizer. Figure 14-2 shows an
example of a batch process. Three ingredients are mixed
together, heated, and then stored. Recipes are the key
to producing batches as each batch may have different
characteristics by design.

Discrete manufacturing is characterized by individ-
ual or separate unit production. With this manufacturing
process, a series of operations produces a useful output
product. Discrete manufacturing systems typically deal
with digital inputs to PLCs that cause motors and robotic
devices to be activated. The work piece is normally a

discrete part that must be handled on an individual basis.
Making car interiors, as illustrated in Figure 14-3, is one
example of discrete manufacturing.

Possible control configurations include individual,
centralized, and distributed. Individual control is used to
control a single machine. This type of control does not
normally require communication with other controllers.
Figure 14-4 shows an individual control application for
a cut to length operation. The operator enters the feed
length and batch count via the interface control panel and
then presses the start button to initiate the process. Stock
lengths vary, so the operator needs to select the length and
the number of pieces to be cut.Figure 14-1 Continuous process.

Automated
machine
assembly Hand assembly

Adjustments, checks
Completed

engines

Engine
block

Figure 14-2 Batch process.

Material input 2

Material input 1

Mix batch

Heat batch
Heater

Mixer
motor

Flow
meter

Store batch

Material input 3

Figure 14-3 Discrete manufacturing.
 Source: Courtesy Automation IG.

pet73842_ch14_305-332.indd 306 05/11/15 4:26 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Process Control, Network Systems, and SCADA Chapter 14 307

Centralized control is used when several machines
or processes are controlled by one central controller.
The control layout uses a single, large control system
to control many diverse manufacturing processes and
operations, as illustrated in Figure 14-5. The main
features of centralized control can be summarized as
follows:

• All individual steps in the manufacturing process
are handled by a central control system controller.

• No exchange of controller status or data is sent to
other controllers.

• If the main controller fails, the whole process stops.

A distributive control system (DCS) is a network-
based system. Distributive control involves two or more
PLCs communicating with each other to accomplish the
complete control task, as illustrated in Figure 14-6. Each
PLC controls different processes locally and the PLCs are
constantly exchanging information through the commu-
nications link and reporting on the status of the process.

The main features of a distributive control system can be
summarized as follows:

• Distributive control permits the distribution of the
processing tasks among several controllers.

• Each PLC controls its associated machine or
process.

• High-speed communication among the comput-
ers is done through CAT-5 or CAT-6 twisted pair
wires, single coaxial cables, fiber optics, or the
Ethernet.

• Distributive control drastically reduces field wir-
ing and heightens performance because it places
the controller and I/O close to the machine process
being controlled.

• Depending on the process, one PLC failure would
not necessarily halt the complete process.

• DCS is supervised by a host computer that may
perform monitoring/supervising functions such as
report generation and storage of data.

Figure 14-4 Individual control.

Opto
module

Motor

Leadscrew

Operator interface

Cutter

Stock

PLC

Sensor

Figure 14-5 Centralized control.
Source: Courtesy Siemens.

pet73842_ch14_305-332.indd 307 05/11/15 4:27 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

308 Chapter 14 Process Control, Network Systems, and SCADA

14.2 Structure of Control Systems
Process control normally applies to the manufacturing or
processing of products in industry. In the case of a pro-
grammable controller, the process or machine is operated
and supervised under the control of the user program. The
major components of a process control system include the
following:

Sensors

• Provide inputs from the process and from the exter-
nal environment

• Convert physical information such as pressure, tem-
perature, flow rate, and position into electrical signals

Human Machine Interface (HMI)

• Allows human inputs through various types of pro-
grammed switches, controls, and keypads to set up
the starting conditions or alter the control of a process

Signal Conditioning

• Involves converting input and output signals to a
usable form

• May include signal-conditioning techniques such
as amplification, attenuation, filtering, scaling, A/D
and D/A converters

Actuators

• Convert system output electrical signals into
physical action

• Process actuators that include flow control valves,
pumps, positioning drives, variable speed drives,
clutches, brakes, solenoids, stepping motors, and
power relays

Controller

• Makes the system’s decisions based on the input signals
• Generates output signals that operate actuators to

carry out the decisions

Human machine interface (HMI) equipment provides
a control and visualization interface between a human and
a process (Figure 14-7). HMIs allow operators to control,

Figure 14-6 Distributive control system (DCS).

Machine

Host
computer

Machine Machine

Communications network

Human machine
interface (HMI)

PLCPLC PLC

Figure 14-7 Human machine interface (HMI).

pet73842_ch14_305-332.indd 308 05/11/15 4:27 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Process Control, Network Systems, and SCADA Chapter 14 309

monitor, diagnose, and manage the application. Depend-
ing on the requirements and complexity of the process,
the operator may be required to:

• Stop and start the process.
• Operate the controls and make the adjustments

required for the process and monitor its progress.
• Detect abnormal situations and undertake corrective

action.

Graphic HMI terminals offer electronic interfacing in
a wide variety of sizes and configurations. They replace
traditional wired panels with a touch screen with graphi-
cal representations of switches and indicators. Types of
graphical display screens include the following:

Operational Summary—used to monitor the process.
Configuration/Setup—textual in nature, used to
detail process parameters.
Alarm Summary—provides a list of time-stamped
active alarms.
Event History—presents a time-stamped list of all
significant events that have occurred in the process.
Trend Values—displays information on process vari-
ables, such as flow, temperature, and production rate,
over a period of time.
Manual Control—generally available only to main-
tenance personnel and meant to bypass parts of the
automatic control system.
Diagnostics—used by maintenance personnel to diag-
nose equipment failures.

Graphic terminals come fully packaged with hardware,
software, and communications. Figure 14-8 shows the
Allen-Bradley family of PanelView graphic terminals. The
setup varies with the vendor. In general, the tasks required
to develop an HMI application include:

• Establish a communication link with the PLCs.
• Create the tag addresses database.

• Edit and create graphical objects on the screens.
• Animate the objects.

Most control systems are closed loop in that they uti-
lize feedback in which the output of a process affects the
input control signal. A closed-loop system measures the
actual output of the process and compares it to the desired
output. Adjustments are made continuously by the control
system until the difference between the desired and actual
output falls within a predetermined tolerance.

Figure 14-9 illustrates an example of a closed-loop
control system. The actual output is sensed and fed back
to be subtracted from the set-point input that indicates
what output is desired. If a difference occurs, a signal to
the controller causes it to take action to change the actual
output until the difference is 0. The operation of the com-
ponent parts are as follows:

Set-point—The input that determines the desired
operating point for the process.
Process Variable—Refers to the feedback signal that
contains information about the current process status.
Error Amplifier—Determines whether the process
operation matches the set-point. The magnitude and
polarity of the error signal will determine how the
process will be brought back under control.
Controller—Produces the appropriate corrective out-
put signal based on the error signal input.

Figure 14-8 PanelView graphic terminals.
 Source: Image Courtesy of Rockwell Automation, Inc.

Figure 14-9 Closed-loop control system.

Set-point

Error
amplifier

Error
signal

+
–

Process variable signal

Disturbance

Feedback
path

Input
sensors

ProcessOutput
actuatorController

pet73842_ch14_305-332.indd 309 05/11/15 4:27 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

310 Chapter 14 Process Control, Network Systems, and SCADA

Output Actuator—The component that directly
affects a process change. Examples are motors,
heaters, fans, and solenoids.

The process shown in Figure 14-10 is an example of a
closed-loop continuous control process used to automatically
fill box containers to a specified weight of detergent. An
empty box is moved into position and filling begins. The
weight of the box and contents is monitored. When the
actual weight equals the desired weight, filling is halted.

Operation and block diagrams for the container-filling
process are shown in Figure 14-11. The operation of the
process can be summarized as follows:

• A sensor attached to the scale weighing the con-
tainer generates the voltage signal or digital code

that represents the weight of the container and
contents.

• The sensor signal is subtracted from the voltage sig-
nal or digital code that has been input to represent
the desired weight.

• As long as the difference between the input signal
and feedback signal is greater than 0, the controller
keeps the solenoid gate open.

• When the difference becomes 0, the controller
outputs a signal that closes the gate.

Virtually all feedback controllers determine their output
by observing the error between the set-point and a mea-
surement of the process variable. Errors can occur when
an operator changes the set-point or when a disturbance
or a load on the process changes the process variable. The
controller’s role is to eliminate the error automatically.

14.3 On/Off Control
With on/off controllers the final control element is either
on or off—one for the occasion when the value of the
measured variable is above the set-point and the other for
the occasion when the value is below the set-point. The
controller will never keep the final control element in an
intermediate position. Controlling activity is achieved by
the period of on-off cycling action.

Figure 14-12 shows a system using on/off control in
which a liquid is heated by steam. The operation of the
process can be summarized as follows:

• If the liquid temperature goes below the set-point,
the steam valve opens and the steam is turned on.

• When the liquid temperature goes above the set-point,
the steam valve closes and the steam is shut off.

• The on/off cycle will continue as long as the system
is operating.

Figure 14-10 Container-filling process.

Detergent

Box

Scale

Solenoid
gate

Figure 14-11 Operation and block diagrams for the
container-filling process.

Input
desired
weight

Controller

Error
amplifier
+

–

Filled
container

Filling
process

Feedback
Weight
sensor

Set-point

Container filling

Block Diagram

Operation

Solenoid Scale

Controller

Process

Final control
element

Measurement
(sensor)

Figure 14-12 On/off controlled liquid heating system.

1 3 6

Set-point
temperature

Thumbwheel
switch

On/o

controller

Temperature
sensor

Steam
Valve

pet73842_ch14_305-332.indd 310 05/11/15 4:27 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Process Control, Network Systems, and SCADA Chapter 14 311

Figure 14-13 illustrates the control response for an
on/off temperature controller. The action of the control
response can be summarized as follows:

• The output turns on when the temperature falls
below the set-point and turns off when the tempera-
ture reaches the set-point.

• Control is simple, but overshoot and cycling about the
set-point can be disadvantageous in some processes.

• The measured variable will oscillate around the
set-point at an amplitude and frequency that depend
on the capacity and time response of the process.

• Oscillations may be reduced in amplitude by
increasing the sensitivity of the controller. This
increase will cause the controller to turn on and
off more often, a possibly undesirable result.

• On/off control is used when a more precise control
is unnecessary.

A deadband is usually established around the set-point.
The deadband of the controller is usually a selectable

value that determines the error range above and below
the set-point that will not produce an output as long as
the process variable is within the set limits. The inclusion
of deadband eliminates any hunting by the control device
around the set-point. Hunting occurs when minor adjust-
ments of the controlled position are continually made due
to minor fluctuations.

14.4 PID Control
Proportional controllers are designed to eliminate the hunt-
ing or cycling associated with on/off control. They allow
the final control element to take intermediate positions
between on and off. Proportioning action permits analog
control of the final control element to vary the amount of
energy to the process, depending on how much the value of
the measured variable has shifted from the desired value.

A proportional controller allows tighter control of the
process variable because its output can take on any value
between fully on and fully off, depending on the magni-
tude of the error signal. Figure 14-14 shows an example
of a motor-driven analog proportional control valve used
as a final control element. The action of the control valve
actuator can be summarized as follows:

• The actuator receives an input current between
4 and 20 mA from the controller.

• In response, it provides linear control of the valve.
• A value of 4 mA corresponds to a minimum value

opening (often 0) and 20 mA corresponds to a max-
imum value opening (full scale).

• The 4 mA lower limit allows the system to detect
opens. If the circuit is open, 0 mA would result, and
the system can issue an alarm.

• Because the signal is a current, it is unaffected by
reasonable variations in connecting wire resistance
and is less susceptible to noise pickup from other
signals than is a voltage signal.

Figure 14-13 On/off control response.

Set-point

Time

Time

0

ON

OFF

Fi
na

l
co

nt
ro

l e
le

m
en

t
Pr

oc
es

s
va

ria
bl

e

Figure 14-14 Motor-driven analog proportional control valve.
 Source: Photo Courtesy Gea Group.

Valve
actuator

Actuator stem

Actuator current
(mA)

Valve response
(% open)

4
6
8

10
12
14
16
18

20

0
12.5
25
37.5
50
62.5
75
87.5
100

.

.

.

.

.

.

.

.

.

pet73842_ch14_305-332.indd 311 05/11/15 4:27 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

312 Chapter 14 Process Control, Network Systems, and SCADA

Proportioning action can also be accomplished by
turning the final control element on and off for short
intervals. This time proportioning (also known as pulse
width modulation) varies the ratio of on time to off.
Figure 14-15 shows an example of time proportioning
used to produce varying wattage from a 200 watt heater
element as follows:

• To produce 100 W the heater must be on 50% of
the time.

• To produce 50 W the heater must be on 25% of
the time.

• To produce 25 W the heater must be on 12.5% of
the time.

Proportioning action occurs within a proportional band
around the set-point. The table of Figure 14-16 is an example
of the proportional band for a heating application with a set-
point of 500°F and a proportional band of 80°F (±40°F).
Proportioning action can be summarized as follows:

• Proportional controllers have analog input and out-
put values that vary over the range necessary for
control of the process.

• The current temperature is called the Process
Variable (PV), while the desired temperature is
known as the Set-Point (SP).

• The proportional controller changes the controller
output in proportion to the difference between the
SP and PV. The greater the difference, the greater
the corrective action applied.

• At the set-point (the midpoint of the proportional
band), the output on:off ratio is 1:1; that is, the on
time and off time are equal.

• If the temperature is further from the set-point, the
on and off times vary in proportion to the tempera-
ture difference.

• If the temperature is below the set-point, the output
will be on longer; if the temperature is too high, the
output will be off longer.

In theory, a proportional controller should be all that is
needed for process control. Any change in system output
is corrected by an appropriate change in controller output.
Unfortunately, the operation of a proportional controller
leads to a steady-state error known as offset, or droop.
This steady-state error is the difference between the
attained value of the controller and the required value that
results in an offset signal that is slightly lower than the
set-point value, as illustrated in Figure 14-17. Depending
on the PLC application, this offset may or may not be
acceptable.

Proportional control is often used in conjunction with
integral control and/or derivative control.

• The integral action, sometimes termed reset action,
responds to the size and time duration of the error
signal. An error signal exists when there is a dif-
ference between the process variable and the set-
point, so the integral action will cause the output
to change and continue to change until the error no
longer exists. Integral action eliminates steady-state
error. The amount of integral action is measured as
minutes per repeat or repeats per minute, which is
the relationship between changes and time.

Figure 14-15 Time proportioning of a heater element.

100% - 200 W

50% - 100 W

25% - 50 W

200 W
230 V 12.5% - 25 W

Figure 14-16 Proportional band for a heating application.

Percent
on

Percent
output

Output
level

Temp.
(°F)

On time
(seconds)

O	 time
(seconds)

Time proportional
4–20 mA

proportional

0.0
0.0

12.5
25.0
37.5
50.0
62.5
75.0
87.5

100.0
100.0

0.0
0.0

12.5
25.0
37.5
50.0
62.5
75.0
87.5

100.0
100.0

0.0
0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

20.0
20.0

20.0
20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0
0.0

4 mA
4 mA
6 mA
8 mA

10 mA
12 mA
14 mA
16 mA
18 mA

20 mA
20 mA

over 540
540.0
530.0
520.0
510.0
500.0
490.0
480.0
470.0
460.0

under 460

5 0 0

Figure 14-17 Proportional control steady-state error.

Set-point

Time

O�set signal

pet73842_ch14_305-332.indd 312 05/11/15 4:27 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Process Control, Network Systems, and SCADA Chapter 14 313

• The derivative action responds to the speed at which
the error signal is changing—that is, the greater the
error change, the greater the correcting output. The
derivative action is measured in terms of time.

Proportional plus integral (PI) control combines the
characteristics of both types of control. A step change in
the set-point causes the controller to respond proportion-
ally, followed by the integral response, which is added
to the proportional response. Because the integral mode
determines the output change as a function of time, the
more integral action found in the control, the faster
the output changes. This action can be summarized as
follows:

• To eliminate the offset error, the controller needs
to change its output until the process variable error
is zero.

• Reset integral control action changes the controller
output by the amount needed to drive the process
variable back to the set-point value.

• After the reset integral control action a new equilib-
rium point is established.

• Since the proportional controller must always
operate on its proportional band, the proportional
band must be shifted to include the new equi-
librium point.

• A controller with reset integral control does this
automatically.

Rate action (derivative control) acts on the error signal
just like reset does, but rate action is a function of the
rate of change rather than the magnitude of error. Rate
action is applied as a change in output for a selectable
time interval, usually stated in minutes. Rate-induced
change in controller output is calculated from the deriva-
tive of the error. Input change, rather than proportional
control error change, is used to improve response. Rate
action quickly positions the output, whereas proportional
action alone would eventually position the output. In
effect, rate action puts the brakes on any offset or error by
quickly shifting the proportional band. Proportional plus
derivative (PD) control is used in process control systems
with errors that change very rapidly. By adding deriva-
tive control to proportional control, we obtain a controller
output that responds to the error’s rate of change as well
as to its magnitude.

PID control is a feedback control method that com-
bines proportional, integral, and derivative actions. The
proportional action provides smooth control without
hunting. The integral action automatically corrects off-
set. The derivative action responds quickly to large exter-
nal disturbances. The PID controller is the most widely

used type of process controller. When combined into a
single control loop the proportional, integral, and deriva-
tive modes complement each other to reduce the system
error to zero faster than any other controller. Figure 14-18
shows the block diagram of a PID control loop, the opera-
tion of which can be summarized as follows:

• During setup, the set-point, proportional band, reset
(integral), rate (derivative), and output limits are
specified.

• All these can be changed during operation to tune
the process.

• The integral term improves accuracy, and the
derivative reduces overshoot for transient upsets.

• The output can be used to control valve positions,
temperature, flow metering equipment, and so on.

• PID control allows the output power level to be varied.
• As an example, assume that a furnace is set at 50°C.
• The heater power will increase as the temperature

falls below the 50°C set-point.
• The lower the temperature the higher the power.
• PID has the effect of gently turning the power down

as the signal gets close to the set-point.

The long-term operation of any system, large or
small, requires a mass-energy balance between input and
output. If a process were operated at equilibrium at all
times, control would be simple. Because change does
occur, the critical parameter in process control is time, that
is, how long it takes for a change in any input to appear in
the output. System time constants can vary from fractions
of a second to many hours. The PID controller has the
ability to tune its control action to specific process time
constants and therefore to deal with process changes over
time. PID control changes the amount of output signal
in a mathematically specified way that accounts for the
amount of error and the rate of signal change.

Figure 14-18 PID control loop.
Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

Set-point

Integral

Proportional

Error

Derivative

+++

–
Process

PID controller

pet73842_ch14_305-332.indd 313 05/11/15 4:27 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

314 Chapter 14 Process Control, Network Systems, and SCADA

Either programmable controllers can be fitted with
input/output modules that produce PID control, or they
will already have sufficient mathematical functions to
allow PID control to be carried out. PID is essentially
an equation that the controller uses to evaluate the con-
trolled variable. Figure 14-19 illustrates how a program-
mable logic controller can be used in the control of a PID
loop. The operation of the PID loop can be summarized
as follows:

• The process variable (pressure) is measured and
feedback is generated.

• The PLC program compares the feedback to the set-
point and generates an error signal.

• The error is examined by the PID loop calcula-
tion in three ways: with proportional, integral, and
derivative methodology.

• The controller then issues an output to correct for
any measured error by adjustment of the position of
the variable flow outlet valve.

The response of a PID loop is the rate at which it com-
pensates for error by adjusting the output. The PID loop
is adjusted or tuned by changing the proportional gain,
the integral gain, and/or the derivative gain. A PID loop
is normally tested by making an abrupt change to the set-
point and observing the controller’s response rate. Adjust-
ments can then be made as follows:

• As the proportional gain is increased, the controller
responds faster.

• If the proportional gain is too high, the controller
may become unstable and oscillate.

• The integral gain acts as a stabilizer.

• Integral gain also provides power, even if the error
is zero (e.g., even when an oven reaches its set-
point, it still needs power to stay hot).

• Without this base power, the controller will droop
and hunt for the set-point.

• The derivative gain acts as an anticipator.
• Derivative gain is used to slow the controller down

when change is too fast.

Basically, PID controller tuning consists of deter-
mining the appropriate values for the gain (propor-
tional band), rate (derivative), and reset time (integral)
tuning parameters (control constants) that will give the
control required. Depending on the characteristics of
the deviation of the process variable from the set-point,
the tuning parameters interact to alter the controller’s
output and produce changes in the value of the process
variable. In general, three methods of controller tuning
are used:

Manual

• The operator estimates the tuning parameters
required to give the desired controller
response.

• The proportional, integral, and derivative terms
must be adjusted, or tuned, individually to a
particular system using a trial-and-error
method.

Semiautomatic or Autotune

• The controller takes care of calculating and setting
PID parameters.
 – Measures sensor output

Figure 14-19 PLC control of a PID loop.

Process
supply

Pressure sensor
and transmitter

Process variable

Output

Process output
Variable

flow valve

Analog
output module

Analog input
module

Analog
input

moduleCPU

Analog
output
module

Error

Feedback

Feedback

Set-point
PID
loop

calculation

PT

Vessel

PLC CPU

S

pet73842_ch14_305-332.indd 314 05/11/15 4:27 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Process Control, Network Systems, and SCADA Chapter 14 315

 – Calculates error, sum of error, rate of change
of error

 – Calculates desired power with PID equations
 – Updates control output

Fully Automatic or Intelligent

• This method is also known in the industry as fuzzy
logic control.

• The controller uses artificial intelligence to readjust
PID tuning parameters continually as necessary.

• Rather than calculating an output with a formula,
the fuzzy logic controller evaluates rules. The first
step is to “fuzzify” the error and change-in-error
from continuous variables into linguistic variables,
like “negative large” or “positive small.” Simple
if-then rules are evaluated to develop an output.
The resulting output must be de-fuzzified into a
continuous variable such as valve position.

The PID programmable controller output instruction
uses closed-loop control to automatically control physical
properties such as temperature, pressure, liquid level, or
flow rate of process loops. Figure 14-20 shows the PID
output instruction and setup screen associated with the
Allen-Bradley SLC 500 instruction set. The PID instruc-
tion is straightforward: it takes one input and controls one
output. Normally, the PID instruction is placed on a rung
without conditional logic. The output remains at its last
value when the rung goes false. A summary of the basic
information that is entered into the instruction is as follows:

Control Block—File that stores the data required to
operate the instruction.
Process Variable—The element address that stores
the process input value.
Control Variable—The element address that stores
the output of the PID instruction.
Setup Screen—Instruction on which you can double-
click to bring up a display that prompts you for other
parameters you must enter to fully program the PID
instruction.

14.5 Motion Control
A motion control system provides precise positioning,
velocity, and torque control for a wide range of motion
applications. PLCs are ideally suited for both linear
and rotary motion control applications. Pick and Place
machines are used in the consumer products industry
for a wide variety of product transfer applications. The
machine takes a product from one point to another. One
example is the transfer of a product to a moving conveyor
belt as illustrated in Figure 14-21.

A basic PLC motion control system consists of a con-
troller, a motion module, a servo drive, one or more motors
with encoders, and the machinery being controlled. Each
motor controlled in the system is referred to as an axis
of motion. Figure 14-22 illustrates a bottle-filling motion
control process. This application requires two axes of
motion: the motor operating the bottle filler mechanism
and the motor controlling the conveyor speed. The role of
each control component can be summarized as follows:

Programmable Logic Controller

• The controller stores and executes the user program
that controls the process.

• This program includes motion instructions that
control axis movements.

• When the controller encounters a motion
instruction it calculates the motion commands
for the axis.

• A motion command represents the desired position,
velocity, or torque of the servo motor at the particu-
lar time the calculations take place.

Figure 14-20 PID output instruction and setup screen.
Source: Image Courtesy of Rockwell Automation, Inc.

PID
Control block
Process variable
Control variable
Control block length

Setup screen

PID

Figure 14-21 Pick and Place machine.

pet73842_ch14_305-332.indd 315 05/11/15 4:27 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

316 Chapter 14 Process Control, Network Systems, and SCADA

Motion Module

• The motion module receives motion commands
from the controller and transforms them into a
compatible form the servo drive can understand.

• In addition it updates the controller with motor and
drive information used to monitor drive and motor
performance.

Servo Drive

• The servo drive receives the signal provided by the
motion module and translates this signal into motor
drive commands.

• These commands can include motor position,
velocity, and/or torque.

• The servo drive provides power to the servo motors
in response to the motion commands.

• Motor power is supplied and controlled by the
servo drive.

• The servo drive monitors the motor’s position and
velocity by use of an encoder mounted on the motor

shaft. This feedback information is used within the
servo drive to ensure accurate motor motion.

Servo Motor

• The servo motors represent the axis being controlled.
• The servo motors receive electrical power from their

servo drive which determines the motor shaft veloc-
ity and position.

• The filler motor must accelerate the filler mecha-
nism in the direction the bottles are moving, match
their speed, and track the bottles.

• After the bottles have been filled, the filler motor
has to stop and reverse direction to return the filler
mechanism to the starting position to begin the
process again.

A robot is simply a series of mechanical links driven by
servo motors. The basic industrial robot widely used today
is an arm or manipulator that moves to perform industrial
operations. Figure 14-23 illustrates the motion of a six-axis
robot arm. Each axis of the robot arm is fundamentally a
closed-loop servo control system. The wrist is the name
usually given to the last three joints on the robot’s arm.
Going out along the arm, these wrist joints are known as
the pitch joint, yaw joint, and roll joint. There are two types
of controller setups that can be used to control an industrial
robot—PLC- and PC-based systems. Depending on the dif-
ficulty of the task the robotic system will be performing,
you may need a PLC or just a robot controller.

14.6 Data Communications
Data communications refers to the different ways that
PLC microprocessor-based systems talk to each other and
to other devices. The two general types of communica-
tions links that can be established between the PLC and
other devices are point-to-point links and network links.

Figure 14-22 Bottle-filling motion control process.

Motion

Bottle filler
servo motor

Communication

PLC

Conveyor servo drive

Filler servo driveProcessor

Conveyor
servo motor

Figure 14-23 Six-axis robot arm.

2
3

4

1

5

6

Shoulder
swivel

Elbow
extension

Yaw

Pitch

Roll

Arm sweep

pet73842_ch14_305-332.indd 316 05/11/15 4:27 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Process Control, Network Systems, and SCADA Chapter 14 317

Figure 14-24 illustrates a point-to-point serial communi-
cations link. Serial communications is used with devices
such as printers, operator workstations, motor drives, bar
code readers, computers, or another PLC. Serial communi-
cations interfaces are either built into the processor module
or come as separate modules. A serial module installed in
each controller is normally all that is required for two PLCs
of the same manufacturer to establish a point-to-point link.

As control systems become more complex, they require
more effective communications schemes between the
system components. A local area network or LAN is a
system that interconnects data communications compo-
nents within a limited geographical area, typically no more
than one or two miles. Essentially, a LAN is a private,
on-site communications system that allows communica-
tion between computers, PLCs, robots, and the like. The
rate at which characters can be transmitted along a com-
munications line is dependent on the number of bits of
binary information that can be sent at a given time. This
transfer of information is measured in bits per second, or
baud. Figure 14-25 illustrates a LAN communication link.
Network communications supports communication among
multiple PLCs and other devices. PLC networks allow:

• Sharing of information such as the current state
of status bits among PLCs that may determine the
action of one another.

• Monitoring of information from a central location.
• Programs to be uploaded or downloaded from a

central location.
• Several PLCs to operate in unison to accomplish a

common goal.

Transmission media are the cable through which data
and control signals flow on a network. The transmission
media used in data communications systems include
coaxial cable, twisted pair, or fiber optics (Figure 14-26).
Each cable has different electrical capabilities and may be
more or less suitable to a specific environment or network
type. Not all networks transmit information through
cable. Wireless Wi-Fi Ethernet networks, such as the DF1
Radio Modem, communicate through radio waves, which
are transmitted through the air. Fiber optic transmission
medium is becoming increasingly popular in PLC based
applications. Compared with twisted pairs of wire or
coaxial cables, fiber optic cables have advantages such
as their small size, no electromagnetic interference, and
long transmission ranges. Typically, a fiber optic cable
can carry a 1,000-megabaud signal 10 km. These types of
cables have very large bandwidths so they are well-suited
to high-speed transmission in noisy environments.

In industrial applications, LANs have most often
been used as the communication system for distrib-
uted control systems (DCS). Recall that a DCS system

Figure 14-24 Point-to-point serial communications link.

Serial cable

Programmable logic controller

Printer

PLC

Point-to-point
communications

Serial
messages

Serial data
communications

Operator interface

10:31 4801

Figure 14-25 Local area network (LAN) communication link.

Local area network (LAN)

Figure 14-26 Transmission media.

Coaxial

Twisted pair

Fiber optic

Wireless system

pet73842_ch14_305-332.indd 317 05/11/15 4:27 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

318 Chapter 14 Process Control, Network Systems, and SCADA

uses individual controllers to control the subsystems
of a machine or process. This approach contrasts with
centralized control in which a single controller gov-
erns the entire operation. A second major use of local
area networks is that of supervisory control and data
acquisition (SCADA). A LAN allows data collection
and processing for a group of controllers to be accom-
plished using one host computer as the central point for
collecting data.

There are three general levels of functionality of indus-
trial networks. Figure 14-27 shows an illustration of the
three levels, which can be summarized as follows:

Device Level—The device level involves various sen-
sor and actuator devices of machines and processes.
These may include devices such as sensors, switches,
drives, motors, and valves.
Control Level—The control level involves the
network’s industrial controllers. This level may
include controllers such as PLCs and robot
controllers. Communications on the control level
includes sharing I/O and program data between
controllers.
Information Level—The information level is a
plantwide network typically composed of the com-
pany’s business networks and computers. This level
may include scheduling, sales, management, and
corporatewide information.

Each device connected on a network is known as a node
or station. As signals travel along a network cable, they

degrade and become distorted in a process that is called
attenuation. If a cable is long enough, the attenuation
will finally make a signal unrecognizable. A repeater is a
device that amplifies a signal to its original strength in
order to enable its signals to travel further. Different net-
work types will have different specifications for cable
length and type without a repeater.

Network topology is the physical layout of devices on a
network formed by the network cables when nodes are at-
tached. The star topology illustrated in Figure 14-28 and
its operation can be summarized as follows:

• A network switch or hub is connected to several
PLC network nodes.

• Currently, most Ethernet networks use switches
rather than hubs. A switch performs the same
basic function as a hub but effectively increases
the speed, size, and data handling capacity of the
network.

• The configuration allows for bidirectional commu-
nication between switch/hub and each PLC.

• PLCs can be added to or removed from the network
without disrupting the network.

• One problem with the star topology is that
if the switch/hub goes down, the entire LAN
is down.

• This type of system works best when information
is transmitted primarily between the main controller
and remote PLCs. However, if most communica-
tion is to occur between PLCs, the operation speed is
affected.

• Also, the star system can use substantial amounts
of communication conductors to connect all remote
PLCs to one central location.

Bus topology, illustrated in Figure 14-29, is a net-
work configuration in which all stations are connected
in parallel with the communication medium and all sta-
tions receive information from every other station on the Figure 14-27 Levels of functionality of industrial networks.

Information level

Control level

Device level

Figure 14-28 Star topology network.

Pr
oc

es
so

r

C
om

Pr
oc

es
so

r

C
om

Pr
oc

es
so

r

Network
Switch/Hub C

om

Pr
oc

es
so

r

C
om

pet73842_ch14_305-332.indd 318 05/11/15 4:27 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Process Control, Network Systems, and SCADA Chapter 14 319

network. The operation of a bus topology network can be
summarized as follows:

• Uses a single bus trunk cable to which individual
PLC nodes are attached by a cable drop that taps off
the main cable.

• Each PLC is interfaced to the bus using a network
interface module that is attached using a drop cable
or connector.

• Due to the nature of the bus technology, and the
way the data are transmitted on the network, each
end of the bus must be terminated with a terminat-
ing resistor.

• As the data move along the total bus, each PLC
node is listening for its own node identification
address and accepts only information sent to that
address.

• Because of the simple linear layout, bus networks
require less cable than all other topologies.

• No single station controls the network and stations
can communicate freely to one another.

• Bus networks are very useful in distributive control
systems, because each station or node has equal
independent control capability and can exchange
information at any given time.

• Another advantage of the bus network is that you
can add or remove stations from the network with a
minimum amount of system reconfiguration.

• This network’s main disadvantage is that all the
nodes rely on a common bus trunk line, and a break
in that common line can affect many nodes.

I/O bus networks can be divided into two categories:
device bus networks and process bus networks. Device
bus networks interface with low-level information devices
such as pushbuttons and limit switches that primarily
transmit data relating to the on/off state of the device and
its operational status. Device bus networks can be further
classified as bit-wide or byte-wide buses. Device bus
networks that include discrete devices as well as small

analog devices are called byte-wide bus networks. These
networks can transfer 50 or more bytes of data at a time.
Device bus networks that interface only with discrete
devices are called bit-wide bus networks. Bit-wide net-
works transfer less than 8 bits of information to and from
simple discrete devices.

Process bus networks are capable of communicating
several hundred bytes of data per transmission. The ma-
jority of devices used in process bus networks are analog,
whereas most devices used in device bus networks are
discrete. Process bus networks connect with high-level
information devices such as smart process valves and
flowmeters, which are typically used in process control
applications. Process buses are slower because of their
large data packet size. Most analog control devices are
used in controlling such process variables as flow and
temperature, which are typically slow to respond.

A protocol is a set of rules that two or more devices
must follow if they are to communicate with each other.
Protocols are to computers what language is to humans.
This book is in English, and to understand it, you must
be able to read English. Similarly, for two devices on a
network to successfully communicate, they must both
understand the same protocols.

A network protocol defines how data is arranged and
coded for transmission on a network. In the past, communi-
cations networks were often proprietary systems designed
to a specific vendor’s standards; users were forced to buy
all their control components from a single supplier. This is
because of the different communications protocols, com-
mand sequences, error-checking schemes, and communi-
cations media used by each manufacturer. Today, the trend
is toward open network systems based on international
standards developed through industry associations.

Most PLCs adhere to the protocols established by the
International Organization for Standardization, or ISO.
The Open Systems Interconnection (OSI model) is a set
of seven layers that define the different stages that data
must go through to travel from one device to another
over a network. The OSI model takes into account the

Figure 14-29 Bus topology network.

Pr
oc

es
so

r

C
om

Network interface module

Main trunk line

Pr
oc

es
so

r

C
om

Pr
oc

es
so

r

C
om

Pr
oc

es
so

r

C
om

Media attachment Termination
Tee tap

Trunk line

Drop line

Connectors

pet73842_ch14_305-332.indd 319 05/11/15 4:27 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

320 Chapter 14 Process Control, Network Systems, and SCADA

hardware, software, protocols, and network architecture
that are needed for any two machines to communicate.
The actual connections between machines are physical,
while the connections between layers in the model are
logical.

Gateways (Figure 14-30) make communication pos-
sible between different architectures and protocols. They
repackage and convert data going from one network
to another network so that the one can understand the
other’s application data. Gateways can change the format
of a message so that it will conform to the application
program at the receiving end of the transfer. If network-
access translation is their only function, the interfaces
are known as bridges. If the interface also adjusts data
formats or performs data transmission control, then it is
called a gateway.

A bus topology network requires some method of con-
trolling a particular device’s access to the bus. An access
method is the manner in which a PLC accesses the net-
work to transmit information. Network access control
ensures that data are transmitted in an organized man-
ner preventing the occurrence of more than one message
on the network at a time. Although many access meth-
ods exist, the most common are token passing, collision
detection, and polling.

In a token passing network, a node can transmit data
on the network only when it has possession of a token. A
token is simply a small packet that is passed from node to
node as illustrated in Figure 14-31. When a node finishes
transmitting messages, it sends a special message to the
next node in the sequence, granting it the token. The token
passes sequentially from node to node, allowing each an
opportunity to transmit without interference. Tokens usu-
ally have a time limit to prevent a single node from tying
up the token for a long period of time.

Ethernet networks use a collision detection access
control scheme. With this access method, nodes listen
for activity on the network and transmit only if there are
no other messages on the network. On Ethernet networks
there is the possibility that nodes will transmit data at the
same time. When this happens a collision is detected.
Each node that had sent out a message will wait a random
amount of time and will resend its data if it does not detect
any network activity.

The access method most often used in master/slave
protocols is polling. The master/slave network is one
in which a master controller controls all communications
originating from other controllers. This configuration is
illustrated in Figure 14-32 and consists of several slave
controllers and one master controller. Its operation can be
summarized as follows:

• The master controller sends data to the slave
controllers.

• When the master needs data from a slave, it will
poll (address) the slave and wait for a response.

Figure 14-30 Translating from one network-access
scheme to another.

ModbusData highway

Gateway

Siemens Omron

Gateway

Gateway

Gould

Gateway

Bus network

Allen-Bradley

Figure 14-31 Example of token passing.

Node
1

1-to-2

3-to-1

2-to-3

Node
2

Node
3

Figure 14-32 Master/slave network.

Master controller

Read
command

Write
command

Slave #1 Slave #2

pet73842_ch14_305-332.indd 320 05/11/15 4:27 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Process Control, Network Systems, and SCADA Chapter 14 321

• No communication takes place without the master
initiating it.

• Direct communication among slave devices is not
possible.

• Information to be transferred between slaves must
be sent first to the network master unit, which will,
in turn, retransmit the message to the designated
slave device.

• Master/slave networks use two pairs of conductors.
One pair of wires is used for the master to transmit
data and the slave to receive them. On the other pair,
the slaves transmit and the master receives.

A peer-to-peer network has a distributive means of
control, as opposed to a master/slave network in which
one node controls all communications originating from
other nodes. The Allen-Bradley Data Highway, shown in
Figure 14-33, is an example of a peer-to-peer network of
programmable controllers and computers linked together
to form a data communication system. The operation of
the network can be summarized as follows:

• Peer-to-peer networks can use token passing or
Ethernet collision detection.

• Each device has the ability to request use of, and
then take control of, the network for the purpose of
transmitting information to or requesting informa-
tion from other network devices.

• Each device is identified by an address.
• When the network is operating, the token passes

from one device to the next sequentially.
• The device that is transmitting the token also knows

the address of the next station that will receive
the token.

• Each device receives the packet information and
uses it, if needed.

• Any additional information that the node has will be
sent in a new packet.

There are two methods of transmitting PLC digital
data: parallel and serial transmission. In parallel data
transmission, all bits of the binary data are transmitted
simultaneously, as illustrated in Figure 14-34. Parallel
transmission of data can be summarized as follows:

• Eight transmission lines are required to transmit
the 8-bit binary number.

• Each bit requires its own separate data path
and all bits of a word are transmitted at the
same time.

• Parallel data transmission is less common but faster
than serial transmission.

In serial transmission one bit of the binary data is
transferred at a time, as illustrated in Figure 14-35. Serial
transmission of data can be summarized as follows:

• In serial transmission, bits are sent sequentially
on the same channel (wire) which reduces costs
for wire but also slows the speed of transmission.

Figure 14-33 Peer-to-peer network.

Data highway (DH) network

Figure 14-34 Parallel data transmission.

Receiving
side

1
0
1
0
1
1
0
1

Transmitting
side

pet73842_ch14_305-332.indd 321 05/11/15 4:27 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

322 Chapter 14 Process Control, Network Systems, and SCADA

• Serial data can be transmitted effectively over much
greater distances than can parallel data.

• Each data word in the serial transmission must be
denoted with a known start bit sequence followed
by the data bits that contain the intelligence of the
data transmission and a stop bit.

• An extra bit, termed a parity bit, may be used to
provide some error-detecting ability.

A duplex communication system is a system com-
posed of two connected devices that can communicate
with one another in both directions at the same time. A
half-duplex system provides for communication in both
directions, but only one direction at a time (not simul-
taneously). Half-duplex transmission is used for master/
slave communications. Full-duplex transmission allows
the transmission of data in both directions simultaneously
and can be used for peer-to-peer communications.

The different networking schemes replace traditional
point-to-point hardwiring. Network control of systems
minimizes the amount of wiring that needs to be done.
With traditional wiring multiple wires from each device,
fed through control cabinets, often result in large wire
bundles running through the system. Due to the sheer vol-
ume of wires, installation time is considerable and trouble-
shooting is complex. If a network is used all devices can
be directly connected to a single transmission media cable.

High-speed industrial networking technologies offer a
variety of methods for connecting devices. PLC network
configurations may be either open or proprietary (vendor-
unique). Following is an overview of some of the indus-
trial communication technologies that play a critical role
in today’s control systems.

Data Highway
The Allen-Bradley Data Highway networks, Data Highway
Plus (DH+) and DH-485, are proprietary communica-
tions networks. They use peer-to-peer communication
implementing token passing. The medium is shielded
twisted pair cable. Figure 14-36 shows the DH+ network
connection for an SLC 5/04 controller. The three-pin
Phoenix connector is used to form the network transmis-
sion media.

Serial Communication
Serial data communication is implemented using stan-
dards such as RS-232, RS-422, and RS-485. The RS in
the standard’s name means recommended standard that
specifies the electrical, mechanical, and functional char-
acteristics for serial communications. Serial communica-
tion interfaces are either built into the processor module
or come as a separate communications interface module,
as illustrated in Figure 14-37. The simplest type of con-
nection is the RS-232 serial port. The RS interfaces are
used to connect to devices such as vision systems, barcode
readers, and operator terminals that must transfer quanti-
ties of data at a reasonably high rate between the remote
device and the PLC. The RS-232 type of serial transmis-
sion is designed to communicate between one computer
and one controller and is usually limited to lengths up
to 50 feet. RS-422 and RS-485 serial transmission types
are designed to communicate between one computer and
multiple controllers, have a high level of noise immunity,
and are usually limited to lengths of 650 feet (for RS-485)
or 1650 feet (for RS-422).

DeviceNet
DeviceNet is an open device-level network. It is relatively
low speed but efficient at handling the short messages

Figure 14-36 Data Highway network connection.

DH+
network

FORCE

SLC 5/04 CPU

RUN
DH+FLT
RS232BATT

PROGRUN REM

Communication
ports

Figure 14-37 Serial communication interface.
Source: Courtesy Siemens.

Vision
system

Barcode
reader

Operator
terminal

Pr
oc

es
so

r

R
S-

23
2

m
od

ul
e

Figure 14-35 Serial data transmission.

Receiving
side

Transmitting
side

1 0 1 0 1 1 0 1

pet73842_ch14_305-332.indd 322 05/11/15 4:28 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Process Control, Network Systems, and SCADA Chapter 14 323

to and from I/O modules. As PLCs have become more
powerful, they are being required to control an increas-
ing number of I/O field devices. Therefore, at times it
may not be practical to separately wire each sensor and
actuator directly into I/O modules. Figure 14-38 shows
a comparison between conventional and DeviceNet I/O
systems. Conventional systems have racks of inputs and
outputs with each I/O device wired back to the control-
ler. The DeviceNet protocol dramatically reduces costs by
integrating all I/O devices on a 4-wire trunk network with
data and power conductors in the same cable. This direct
connectivity reduces costly and time-consuming wiring.

The basic function of a DeviceNet I/O bus network
is to communicate information with, as well as supply
power to, the field devices that are connected to the bus.
The PLC drives the field devices directly with the use of
a network scanner instead of I/O modules, as illustrated
in Figure 14-39. The scanner module communicates with
DeviceNet devices over the network to:

• Read inputs from a device.
• Write outputs to a device.
• Download configuration data.
• Monitor a device’s operational status.

The scanner module communicates with the controller
to exchange information which includes:

• Device I/O data
• Status information
• Configuration data

DeviceNet also has the unique feature of having power
on the network. This allows devices with limited power
requirements to be powered directly from the network,
further reducing connection points and physical size.

DeviceNet uses the Common Industrial Protocol,
called CIP, which is strictly object oriented. Each object
has attributes (data), services (commands), and behavior

Figure 14-38 Conventional and DeviceNet I/O systems.
 Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

Conventional system

I/O Module DeviceNet
Scanner
Module

DeviceNet system
4-wire cable

and connector

Figure 14-39 DeviceNet network scanner.

DeviceNet
port

Power

Sensor

Data

DeviceNet I/O bus network

DeviceNet
scanner

pet73842_ch14_305-332.indd 323 05/11/15 4:29 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

324 Chapter 14 Process Control, Network Systems, and SCADA

(reaction to events). Two different types of objects are de-
fined in the CIP specification: communication objects and
application-specific objects. A DeviceNet network can
support up to 64 nodes and the network end-to-end dis-
tance is variable, based on network speed. Figure 14-40
shows an example of a typical layout of the trunk wiring
for a DeviceNet network. Communications data is carried
over two wires with a second pair of wires carrying power.

The field devices that are connected to the network
contain intelligence in the form of microprocessors or
other circuits. These devices can communicate not only
the on/off status of field devices but also diagnostic
information about their operating state. For example,
you can detect via the network that a photoelectric
sensor is losing reliability because of a dirty lens, and
you can correct the situation before the sensor fails to

Figure 14-40 Layout of a DeviceNet network.
Source: Images Courtesy of Rockwell Automation, Inc.

T-port tap

TerminatorTerminatorT

DevicePort tap
(8-port)

DC
power
supply

PowerTapPowerTapPowerT
tap

Thick cable

Generic
sealed device

Generic
sealed deviceGeneric

open-style device

Generic
sealed
device

DeviceBox
tap

(4-port)

Open-style
tap

Thick cable

T-port tap

TerminatorTerminatorT

Thin cable

pet73842_ch14_305-332.indd 324 05/11/15 4:29 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Process Control, Network Systems, and SCADA Chapter 14 325

detect an object. A limit switch can report the number of
motions it has performed, which may be an indication
that it has reached the end of its operating life and thus
requires replacement.

ControlNet
ControlNet is positioned one level above DeviceNet. It
uses the Common Industrial Protocol (CIP) to combine
the functionality of an I/O network and a peer-to-peer
network providing high-speed performance for both func-
tions. This open high-speed network is highly determin-
istic and repeatable. Determinism is the ability to reliably
predict when data will be delivered, and repeatability
ensures that transmit times are constant and unaffected by
devices connecting to, or leaving, the network. Electronic
device data sheets (EDS-Files) are required for each
ControlNet device. During the setup phase the ControlNet
scanner must configure each device according to the EDS-
Files. The ControlNet layout shown in Figure 14-41 has a
redundant media option in which two separate cables are
installed to guard against failures such as cut cables, loose
connectors, or noise.

EtherNet/IP
EtherNet/IP (Ethernet Industrial Protocol) is an open
communications protocol based on the Common Industrial
Protocol (CIP) layer used in both DeviceNet and ControlNet.

It allows users to link information seamlessly between
devices running the EtherNet/IP protocol without custom
hardware, as illustrated in Figure 14-42.

The following are some of the important features of
EtherNet/IP:

• Sharing a common application layer between
ControlNet, DeviceNet, and Ethernet/IP will make
plug-and-play interoperability possible among com-
plex devices from multiple vendors. Plug and play
refers to the ability of a computer system to auto-
matically configure devices. This allows you to plug
in a device and play (operate) it without worrying
about setting DIP switches, jumpers, and other con-
figuration elements.

• EtherNet/IP provides standardized full-duplex
operation which gives a single node, in a peer-
to-peer connection, full attention and therefore
maximum possible bandwidth. Bandwidth refers
to the data rate supported by a network, com-
monly expressed in terms of bits per second.
The greater the bandwidth the greater the overall
performance.

• EtherNet/IP allows interoperability of industrial
automation devices and control equipment on the
same network used for business applications and
browsing the Internet.

Figure 14-41 ControlNet network with redundant media installed.

ControlNet
scanner

B
A

Redundant media

pet73842_ch14_305-332.indd 325 05/11/15 4:29 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

326 Chapter 14 Process Control, Network Systems, and SCADA

Modbus
Modbus is a serial communication protocol originally
developed by Modicon for use with its PLCs. Basically, it
is a method used for transmitting information over serial
lines between electronic devices. The device request-
ing the information is called the Modbus Master and
the devices supplying information are Modbus Slaves.
Modbus is an open protocol, meaning that it’s free for
manufacturers to build into their equipment without
having to pay royalties. It has become a standard com-
munications protocol in industry, and is one of the most
commonly available means of connecting industrial elec-
tronic devices. Figure 14-43 shows an Omron PLC with
Modbus-RTU network communication capabilities via
RS-232C and RS-422/485 serial ports.

Fieldbus
Fieldbus is an open, serial, two-way communications sys-
tem that interconnects measurement and control equip-
ment such as sensors, actuators, and controllers. At the
base level in the hierarchy of plant networks, it serves
as a network for field devices used in process control
applications.

There are several possible topologies for fieldbus net-
works. Figure 14-44 illustrates the daisy-chain topol-
ogy. With this topology, the fieldbus cable is routed from
device to device. Installations using this topology require

connectors or wiring practices such that disconnection of
a single device is possible without disrupting the continu-
ity of the whole segment.

PROFIBUS-DP
PROFIBUS-DP (where DP stands for Decentralized
Periphery) is an open, international fieldbus communication

Figure 14-42 EtherNet/IP information links.
 Source: Image Courtesy of Rockwell Automation, Inc.

Robotics

Sensors and other
input/output devices

I/O

Controller

Back-o�ce mainframes and
servers (ERP, MES, etc.)

Camera

Safety
controller

Phone

Safety
I/O

Supervisory
control

Corporate network

Industrial network

Motors, drives
actuators

HMI

O�ce
applications,
internetworking,
data servers,
storage

Figure 14-43 Omron PLC with Modbus-RTU network
communication capabilities.
Source: Photo courtesy Omron Industrial Automation, www.ia.omron.com.

pet73842_ch14_305-332.indd 326 05/11/15 4:29 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Process Control, Network Systems, and SCADA Chapter 14 327

standard that supports both analog and discrete signals.
It is functionally comparable to DeviceNet. The physical
media are defined via the RS-485 or fiber optic trans-
mission technologies. PROFIBUS-DP communicates at
speeds up to 12 Mbps over distances up to 1200 meters.
Figure 14-45 illustrates a Siemens S7-200 Micro PLC
system connection to a PROFIBUS-DP network.

SERCOS

SERCOS (Serial Real-time Communications System)
is an internationally approved communication standard
for motion control. The SERCOS standard makes it pos-
sible to use devices from various manufacturers. This
communication network is designed for high-speed serial
communication of standardized closed-loop data, in real
time, over a noise-immune fiber optic cable. The SERCOS
interface modules use a single, digital fiber optic link,
which eliminates as many as 18 digital wires per axis.

Figure 14-46 shows a smart belt packaging opera-
tion that uses a SERCOS module interface in conjunc-
tion with Allen-Bradley Kinetix 6000 multi-axis servo
drive. The operation of the process can be summarized
as follows:

• This packaging application is used to convert ran-
domly spaced product into evenly spaced product
that’s properly phased to the in-feed of another
machine.

• The SERCOS interface module is linked with fiber
optic cable to the Allen-Bradley Kinetix 6000 servo
drive.

• The randomly spaced product is fed by a conveyor
driven by an induction-type motor.

• The servos that make up the smart belts follow the
in-feed of the next conveyor downstream so that
the smart belt’s speed is matched to that machine’s
speed.

• The input from the sensor on each smart belt senses
the product and makes position corrections based on
error calculations performed in the controller.

• The corrections are performed on a percentage of
the total error, based on whether the belt is perform-
ing a coarse or fine correction.

• The first belts in the process are usually coarse cor-
rection belts and typically make a large correction
for as much as 70 to 100% of the total phasing error
amount.

• The last belts perform fine correcting for 100% of the
measured remaining phasing error even though the
total error is smaller, relative to what it was at
the beginning of the correcting process.

Figure 14-44 Fieldbus implemented using daisy-chain
topology.

Connectors

Field
device

Fieldbus
interface

Figure 14-45 Micro PLC system connection to a PROFIBUS-DP network.
 Source: Courtesy Siemens.

PROFIBUS-DP
module

PROFIBUS-DP

pet73842_ch14_305-332.indd 327 05/11/15 4:29 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

328 Chapter 14 Process Control, Network Systems, and SCADA

HART

HART is an open master-slave communication proto-
col developed to communicate with smart field devices.
Smart field devices contain more information than the
traditional 4 –20 mA signal. In addition, they carry out
some functions that are/were originally programmed
within the PLC. HART Protocol allows the simultaneous
communication of the continuous 4 –20 mA as well as a
second digital communication path resting on top of the
analog signal, but not interfering. This allows access to
the data of the field device and/or exact machine-readable
product description of the field devices including their
data and functions. More instrumentation devices are
available with the HART protocol than with any other
digital communications technology.

The HART digital signal is superimposed onto the
standard 4–20 mA signal, as illustrated in Figure 14-47.

• The digital signal is made up of two frequencies,
1.2 and 2.2 kHz, representing bits 1 and 0
respectively.

• Sine waves of these two frequencies are superim-
posed onto the analog signal cables to give simulta-
neous analog and digital communications.

• The DC and low-frequency current signals are modu-
lated by the 1200 and 2200 Hz frequencies; a tech-
nique known as frequency-shift keying or FSK.

• As the average value of the FSK signal is always zero
there is no effect on the 4 –20 mA analogue signal.

• A minimum loop impedance of 230 ohms is re-
quired for communication.

14.7 Supervisory Control
and Data Acquisition (SCADA)
In some applications, in addition to its normal control
functions, the PLC is responsible for collecting data,
performing the necessary processing, and structuring the
data for generating reports. As an example, you could
have a PLC count parts and automatically send the data to
a spreadsheet on your desktop computer.

SERCOS interface module

Receiver Transmitter

Fiber optic cables

1756-M08SE
ControlLogix
System

Sensors

AC Induction Motor

Kinetix 6000
Multi-Axis

Servo Drives

MP-Series
Brushless

Servo Motors

SERCOS

Figure 14-46 Smart belt packaging operation.
Source: Image Courtesy of Rockwell Automation, Inc.

20 mA

4 mA

Time

Analog
signal

HART
digital signal

1 1
1

100
0

HART digital data

HART-enabled
I/O

1.2 and 2.2 kHz

Smart HART
instrument

Analog 4 to 20 mA

Figure 14-47 HART communication protocol.

pet73842_ch14_305-332.indd 328 05/11/15 4:29 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Process Control, Network Systems, and SCADA Chapter 14 329

Data collection is simplified by using a SCADA
(supervisory control and data acquisition) system,
shown in Figure 14-48. Exchanging data from the plant
floor to a supervisory computer allows data logging,
data display, trending, downloading of recipes, setting of
selected parameters, and availability of general production
data. The additional supervisory control output capabili-
ties allow you to tweak your processes accurately for max-
imum efficiency. In general, unlike distributive control
systems, a SCADA system usually refers to a system that
coordinates but does not control processes in real time.

In a typical SCADA system, independent PLCs per-
form I/O control functions on field devices while being

supervised by a SCADA/HMI software package run-
ning on a host computer, as illustrated in Figure 14-49.
Process control operators monitor PLC operation on the
host computer and send control commands to the PLCs
if required. The great advantage of a SCADA system is
that data are stored automatically in a form that can be
retrieved for later analysis without error or additional
work. Measurements are made under processor control
and then displayed onscreen and stored to a hard drive.
Accurate measurements are easy to obtain, and there are
no mechanical limitations to measurement speed.

An important part of most SCADA implementations is
alarm handling. An alarm is an announcement to the opera-
tor initiated by a process variable passing a defined limit as
it approaches an undesirable or unsafe value. The announce-
ment includes audible sounds, visual indications, and mes-
sages. Properly designed alarms will notify the operator of
abnormal situations with enough time to successfully man-
age them. For this reason, alarms often have a several-second
delay associated with them to ensure the process being mon-
itored has stabilized before activating an alarm. Alarm man-
agement includes being able to distinguish between alarms
and alerts. An alert provides a warning mechanism, but
doesn’t necessarily require immediate action.

Rockwell’s FactoryTalk services platform is a suite of
software services that include:

• LiveData - Provides a data link between clients and
servers. For example, the connection between an
HMI server and PLC.

• Directory - Allows products to share a common
address book that finds and provides access to plant-
floor resources, such as users, tags, and graphics
displays.

• Security - Provides a range of security services that
are integrated into the FactoryTalk directory.

• Audit - Collects messages that document changes
done by users during design, management, and
product operations.

Alarms

PLC relay
controls

Analog
outputs

PID
process
control

Printer

Tables and
graphs

Hardcopy

Spreadsheet

Temperature
thermocouples
and resistance
temperature detectors

Pressure

Position

Force

Strain

Speed

Signal sources

Interface

system

Output loads

Computer

Figure 14-48 Supervisory control and data acquisition
(SCADA).

Host computer

SCADA/HMI
software

Data
transfer

I/O
control Field

devices

I/O
control Field

devices

I/O
control Field

devices

PLC

PLC

PLC

Figure 14-49 Typical SCADA system.

pet73842_ch14_305-332.indd 329 05/11/15 4:29 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

330 Chapter 14 Process Control, Network Systems, and SCADA

• Activation - Provides a secure, software-based sys-
tem for activating Rockwell Software products.

• Alarm and Events - Provides both server-based
and device-based process control alarm server.

FactoryTalk alarms and events support the following
two types of alarm monitoring (Figure 14-50):

Device-based - Pre-built alarm instructions that
are programmed in a Logix 5000 project and then

downloaded into a Logix controller. The controller
detects alarm conditions and publishes event informa-
tion, which is routed through the system for display
and logging.
Tag-based - Software-based tag servers monitor data
tags for alarm conditions and publish event information
for display and logging. Tag-based alarm monitoring
is supported by Logix 5000 controllers and SLC 500
controllers.

FactoryTalk Alarms and
Events services routes alarm

information to logs and to
 Alarm and Event objects

embedded in graphic
displays in FactoryTalk View

Device server notifies
FactoryTalk Alarms and

Events services of alarm
state changes

4

3

2

1

5
Using FactoryTalk
View SE Clients,
operators interact
with alarms (for
example,
acknowledge,
suppress) from
graphic displays

Alarm and Event
History log

Controller detects alarm
conditions and notifies device
server of changes in alarm states

RSLogix 5000 alarm
instructions are programmed

and then downloaded into
the controller

(a) Device-based alarms

FactoryTalk
Alarms and Events

services

FactoryTalk Alarms and
Events services routes alarm

information to logs and to
 Alarm and Event objects

embedded in graphic
displays in FactoryTalk View

43

2

1

Using FactoryTalk
View SE Clients,
operators interact
with alarms (for
example,
acknowledge,
suppress) from
graphic displays

Alarm and Event
History log

Tag Alarm and Event Server
polls controller to monitor

alarms and then notifies
users of alarm conditions

Logic in a controller is
programmed to detect

problems and latch fault
conditions in controller tags

or addresses

(b) Tag-based alarms

FactoryTalk
Alarms and Events

services

Figure 14-50 FactoryTalk alarm monitoring.
Source: Images Courtesy of Rockwell Automation, Inc.

pet73842_ch14_305-332.indd 330 05/11/15 4:29 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Process Control, Network Systems, and SCADA Chapter 14 331

1. Compare continuous and batch processes.

2. Compare centralized and distributive control
systems.

3. State the basic function of each of the following as
part of a process control system:
a. Sensors
b. Human-machine interface
c. Signal conditioning
d. Actuators
e. Controller

4. State the purpose of each of the following types of
screens associated with HMIs:
a. Trend values
b. Operational summary
c. Alarm summary

5. What is the main characteristic of a closed-loop
control system?

6. State the function of each of the following parts of
a closed-loop control system:
a. Set-point
b. Process variable
c. Error amplifier
d. Controller
e. Output actuator

7. Explain how on/off control works.

8. How does the proportional controller eliminate the
cycling associated with on/off control?

9. Explain how a motor-driven control valve action
can provide analog control.

10. How does time proportioning provide analog
control?

11. What process error or deviation is produced by a
proportional controller?

12. What term of a PID control is designed to eliminate
offset?

13. What does the derivative action of a controller
respond to?

14. List the three gain adjustments used in tuning the
response of a PID control loop.

15. Compare manual, autotune, and intelligent tuning
of a PID controller.

16. How many input and output values are normally
referenced in a PLC PID instruction?

17. What information is contained in the process
variable and control variable elements of a PID
instruction?

18. State the function of each of the following elements
of a PLC motion control system:
a. Programmable controller
b. Motion module
c. Servo drive
d. Servo motor

19. What does each axis of a robot arm function as?

20. List four types of communication tasks provided by
local area networks.

21. Name three common types of transmission media.

22. What are the three general levels of functionality of
industrial networks?

23. Define the term node as it applies to a network.

24. Explain the physical layout of devices on a network
for each of the following network topologies:
a. Star
b. Bus

25. Compare device and process bus networks.

26. Define the term protocol as it applies to a network.

27. What is the function of a network gateway?

28. Define the term access method as it applies to a
network.

29. Summarize the token passing network access method.

30. Summarize the collision detection network access
method.

31. Summarize the polling network access method.

32. Compare parallel and serial data transmission.

33. Compare half-duplex and full-duplex data
transmission.

34. Explain how networking schemes minimize the
amount of wiring required.

35. What type of access control is used with DH+?

36. Compare the transmitting distances of RS-232
and RS-422/485 serial types.

37. What is DeviceNet used for?

38. List three pieces of information obtained from
DeviceNet devices by the network scanner.

39. What is ControlNet used for?

CHAPTER 14 REVIEW QUESTIONS

pet73842_ch14_305-332.indd 331 05/11/15 4:29 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

332 Chapter 14 Process Control, Network Systems, and SCADA

40. Explain how redundant media works.

41. Define the term bandwidth as it applies to a
network.

42. What is Ethernet/IP used for?

43. What type of protocol does Modbus use?

44. What is Fieldbus used for?

45. Summarize the two main functions of a SCADA
system.

46. In what way does distributive control differ from
the supervisory control of a SCADA system?

1. Distributive control systems have to be network
based. Why?

2. Assume an alarm is sounded in a control system
with an electronic HMI interface. How would you
proceed to identify and solve the problem?

3. How would an on/off controller respond if the dead-
band were too narrow?

4. In a home heating system with on/off control, what
will be the effect of widening the deadband?

5. a. Calculate the proportional band of a temperature
controller with a 5% bandwidth and a set-point
of 500°F.

CHAPTER 14 PROBLEMS

b. Calculate the upper and lower limits beyond
which the controller functions as an on/off
unit.

6. Explain the advantage of using a 4 –20 mA current
loop as an input signal compared to a 0–5 V input
signal.

7. What does the term deterministic mean, and why is
it important in industrial communications?

8. How might a SCADA system be applied to deter-
mine the production rate of a bottled product over
a two-week period?

pet73842_ch14_305-332.indd 332 05/11/15 4:29 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

333

15
ControlLogix Controllers

Programmable logic controllers continue to
evolve as new technologies are added to their
capabilities. The PLC started out as a replacement
for banks of relays used to turn outputs on and
off as well as for timing and counting functions.
Gradually, various math and logic manipulation
functions were added. In order to serve today’s
expanding industrial control system needs, leading
automation companies have created a new class
of industrial controllers called programmable
automation controllers or PACs (Figure 15-1).
They look like PLCs in their physical appearance
but incorporate advanced control of communica-
tion, data logging, and signal processing, motion,
process control, and machine vision in a single
programming environment.

The Allen-Bradley programmable automa-
tion controller family includes the ControlLogix

system, CompactLogix system, FlexLogix system,
SoftLogix 5800 controller, and DriveLogix sys-
tem. Software is the essential difference between
PACs and PLCs. Basically, the ladder logic con-
figuration does not change but the addressing
of the instructions changes. Application of the
software that pertains to the Logix control plat-
form of controllers will be covered in the various
sections of this chapter. Knowledge of basic lad-
der logic instructions and functions (bit, timer,
counter, etc.) covered in previous chapters of
the text is assumed and is thus not repeated in
this chapter.

Figure 15-1 Programmable automation controllers (PACs).
Source: Image Courtesy of Rockwell Automation, Inc.

pet73842_ch15_333-394.indd 333 03/11/15 7:32 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

334

Part Objectives

After completing this part, you will be able to:

 • Outline project organization

 • Define tasks, programs, and routines

 • Identify data file types

 • Organize and apply the various data file types

Part 1 Memory and
Project Organization

Memory Layout
ControlLogix processors provide a flexible memory
structure. There are no fixed areas of memory allocated
for specific types of data or for I/O. The internal memory
organization of a ControlLogix controller is configured
by the user when creating a project with RSLogix 5000
software (Figure 15-2). This feature allows the program data
to be constructed to meet the needs of your applications
rather than requiring your application to fit a particular mem-
ory structure. A ControlLogix (CLX) system can consist of
anything from a stand-alone controller and I/O modules in
a single chassis, to a highly distributed system consisting of
multiple chassis and networks working together.

Configuration
Configuration of a modular CLX system involves es-
tablishing a communications link between the control-
ler and the process. The programming software needs to
know what CLX hardware is being used in order to be
able to send or receive data. Configuration information
includes information about the type of processor and I/O
modules used.

LogixDesigner programming software is used to set
up or configure the memory organization of an Allen-
Bradley ControlLogix controller. RSLinx communica-
tion software is used to set up a communications link
between RSLogix 5000 programming software and the
ControlLogix hardware as illustrated in Figure 15-3.
To establish communications with a controller, a driver
must be created in RSLinx software. This driver func-
tions as the software interface to a hardware device.
The RSWho is the network browse interface that pro-
vides a single window to view all configured network
drivers.

Figure 15-4 shows an example of the ControlLogix’s
controllers properties and modules properties dialog
boxes used as part of the configuration process. The
parameters shown are typical of what general informa-
tion is required. After first configuring the controller,

Figure 15-2 RSLogix 5000 screen.
Source: Image Courtesy of Rockwell Automation, Inc.

pet73842_ch15_333-394.indd 334 03/11/15 7:32 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Memory and Project Organization Part 1 335

the I/O modules are configured using RSLogix 5000
software. Modules will not work unless they have been
properly configured. The software contains all the hard-
ware information needed to configure any ControlLogix
module.

Project
RSLogix software stores a controller’s programming and
configuration information in a file called a project. The
block diagram of the processor’s project file is shown in
Figure 15-5. A project file contains all information relat-
ing to the project. The main components of the project file
are tasks, programs, and routines. A controller can hold
and execute only one project at a time.

Figure 15-3 RSLinx and LogixDesigner software.

LogixDesigner

Ladder logic program

RSLinx

File View Communications

RSLinx

RSLogix

RSWho

RSWho

Configure Drivers...

ControlLogix
Controller

Figure 15-4 Controllers properties and modules properties dialog boxes.

Controllers propertiesGeneral

Vendor:

Type:

Revision:

Allen-Bradley

1756-L55 ControlLogix5555Controller

10.24

Name:

Description:

Chassis Type:

Slot: 1

Controller 1

Prime Controller

1756-A7 7-Slot Chassis

Modules propertiesGeneral

Type:

Vendor:

Parent:

1756-IB16 16 Point 10V-31.2V DC Input

Allen-Bradley

Local

Name:

Description:

Comm Form:

Revision: Electronic Keying Exact Match1

Digital_Input_16pt

Optional

Input Data

Slot: 0

Figure 15-5 ControlLogix processor program file.

Project

Controller tags
(global data)

Other routines
Program tags

(local data)

I/O data

System-shared data

Task

Main routine

Program

pet73842_ch15_333-394.indd 335 03/11/15 7:32 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

336 Part 1 Memory and Project Organization

The RSLogix 5000 controller organizer (Figure 15-6)
displays the project organization in a tree format showing
tasks, programs, routines, data types, trends, I/O configu-
ration and tags. Each folder groups common functions
together. This structure simplifies the navigation and the
overall view of the whole project.

In front of each folder, there is an icon containing a
1 sign or a 2 sign. The 1 sign indicates that the folder
is closed. Click it to expand the tree display and display

the files in the folder. The 2 sign indicates that the folder
is already open and its contents are visible. Clicking on
the right mouse button brings up many different, context-
sensitive popup menus. Often, you find that this is a short-
cut to access the property window or menu options from
the menu bar.

Tasks
Tasks are the first level of scheduling within a project. A
task is a collection of scheduled programs. When a task
is executed, the associated programs are executed in the
order listed. This list of programs is known as the program
schedule. Tasks provide scheduling based on specific con-
ditions and do not contain any executable code. Only one
task may be executing at any given time. The number of
tasks a controller can support depends on the specific con-
troller. The main types of tasks (Figure 15-7) include:

• Continuous tasks execute nonstop but are always
interrupted by a periodic task. Continuous tasks
have the lowest priority. A ControlLogix continuous
task is similar to the File 2 in the SLC 500 platform.
Here the continuous task is named Main Task.

• Periodic tasks function as timed interrupts. They
interrupt the continuous task and execute for a fixed
length of time at specific time intervals.

• Event tasks also function as interrupts. Rather than
being an interrupt on a timed basis, an event task
is triggered by an event that happened or failed to
happen.

Programs
Programs are the second level of scheduling within a
project. The function of the folders under Main Task is
to determine and specify the order in which the programs

Figure 15-6 Controller organizer tree.

Controller RSLogix

Tasks

Controller Tags

Program Tags
MainRoutine

Continuous
Program_01

Controller Fault Handler
Power-Up Handler

Program Tags
MainRoutine

Periodic

Unscheduled Programs

Data Types

Motion Groups
Trends

User-Defined

Program_02

Program Tags
Main

HMI

Strings
Predefined
Module-Defined

I/O Configuration

 Figure 15-7 Continuous and periodic tasks.

Program 1

Program 2

Program 32

Continuous
task

Continuous task scan

Ta
sk

 a
ut

o-
re

st
ar

t

Periodic task scan
5 ms

10 ms
15 ms

...
Program 1

Program 2

Program 32Periodic
task

pet73842_ch15_333-394.indd 336 03/11/15 7:32 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Memory and Project Organization Part 1 337

execute. There is no executable code within a program.
Routines within programs will execute in the order listed
below their associated task in the controller organizer as
shown in Figure 15-8. In this example, according to the
listed order, the Main Program is scheduled to execute
first, Program_A second, and Progam_B third. Programs
that are not assigned to a task are unscheduled. Unsched-
uled programs are downloaded to the controller but do
not execute. These programs remain unscheduled until
needed. Depending on the RSLogix 5000 software ver-
sion as many as 100 programs could be scheduled within
each task.

Routines
Routines are the third level of scheduling within a proj-
ect and provide the executable code for the project. Each
routine contains a set of logic elements for a specific

programming language. When a routine is created it is
specified as ladder logic, sequential function chart, func-
tion block diagram, or structured text (Figure 15-9). Any
one routine must be completely in the same language.
The number of routines per project is limited only by the
amount of controller memory. Libraries of standard rou-
tines can be created that can be reused on multiple ma-
chines or applications. A routine can be assigned as one
of the following types:

• A main routine is one configured to execute first
when the program runs. Each program will have one
main routine typically followed by several or many
subroutines.

• A subroutine is one that is called by another rou-
tine. Subroutines are used for large or complex pro-
gramming tasks or tasks that require more than one
programming language.

• A fault routine is one that executes if the controller
finds a program fault. Each program can have one
fault routine, if desired.

Tags
Unlike conventional controllers, ControlLogix uses a tag-
based addressing structure. Tags are meaningful names,
descriptive of your application and not merely generic

Figure 15-8 Order of execution of programs.

Main Task
Main Program
Program_A
Program_B

Unscheduled Programs

Figure 15-9 Each routine contains a set of logic elements for a specific programming language.
Source: Image Courtesy of Rockwell Automation, Inc.

pet73842_ch15_333-394.indd 337 03/11/15 7:32 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

338 Part 1 Memory and Project Organization

addresses. A tag is created to represent the data and iden-
tify areas in the controller’s memory where these data are
stored. In applications developed using RSLogix 5000
software, there are no predefined data tables such as in an
SLC 500. When you want to use or monitor data in a pro-
gram you use tag names to refer to the memory locations,
as illustrated in Figure 15-10. This functionality allows you
to name your data specifically for their functions within the
control program while providing self-documented logic.
Whenever you wish to group data, you create an array,
which is a grouping of tags of similar types.

Scope refers to which programs have access to a tag.
The scope of a tag must be specified when you create the
tag. There are two scopes for tags: program scope and con-
troller scope. A program tag consists of data that can be
accessed only by routines within a specific program (local
data). The routines in other programs cannot access pro-
gram scoped tags of another program. A controller tag
consists of data that are accessible by all routines within a
controller (global data). Figure 15-11 shows two programs,
A and B, within a project. Note that each program has pro-
gram scope tags with identical names (Tag_1, Tag_2, and
Tag_3). Because they are program scoped, there is no re-
lationship between them, even though they have the same
name. The program scope data are accessible only to the
routines within a single program. The same tag name may
appear in different programs as local variables because
you can select the scope in which to create the tag.

The scope of a tag must be declared when you create
the tag. Figure 15-12 shows program and controller

scoped tags as listed in the controller organizer under the
program they are assigned to. I/O tags are automatically
created as controller scoped tags.

There are four different tag types: base, alias, produced,
and consumed tags. The tag type defines how the tag op-
erates within the project. A base tag stores various types
of data for use by logic in the project. This tag defines a
memory location where data are stored. Base tag memory
use depends on the type of data the tag represents. An
example of the base tag Local:2:O.Data.4 is shown in
Figure 15-13 and is based on the following format:

Figure 15-10 Tags used to assign memory locations.

Program Tags

Tag 1

Tag 2

Tag 3

Tag 1 Data

Tag 2 Data Memory
locations

Tag 3 Data

Controller memory

Figure 15-11 Program scoped and controller scoped tags.

Other routines
Main routine

Program
scoped tags

Tag_1
Tag_2
Tag_3

Program A Program B
Program

scoped tags
Tag_1
Tag_2
Tag_3

Controller Scope Tags
Sensor_1
Temp_1

Other routines
Main routine

Figure 15-12 Listing of program and controller scoped tags.

Controller
scoped

Controller RSLogix

Tasks

Controller Tags

Program Tags
MainRoutine

Continuous
Program_01

Controller Fault Handler
Power-Up Handler

Program Tags
MainRoutine

Periodic
Program_02

Program
scoped

Program
scoped

Location Network location

LOCAL 5 same chassis as the controller

Slot Slot number of I/O module in its chassis

Type Type of data
I 5 input
O 5 output
C 5 configuration
S 5 status

Member Specifies the type of data that the module
can store. Digital (discrete) I/O modules use
a DATA member. Analog I/O modules use a
Channel Member (CH#)

SubMember Specific data related to a Member.

Bit Specific point on a digital I/O module;
depends on the size of the I/O module
(0-31 for a 32-point module)

An alias tag is used to create an alternate name (alias)
for a tag. The alias tag is simply another name for an
already named memory location. An alias tag can refer to
a base, alias, consumed, or produced tag. The alias tag is
often used to create a tag name to represent a real-word
input or output. Figure 15-14 shows an example of the

pet73842_ch15_333-394.indd 338 03/11/15 7:32 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Memory and Project Organization Part 1 339

use of an alias tag. The alias tag (Fan_Motor) is linked to
the base tag (<local:2:O.Data.5>) so that any action to the
base also happens to the alias and vice versa. The alias
name is easier to understand and easier to relate to the ap-
plication, while the base tag contains the physical location
of the output point in the ControlLogix chassis.

Produced/consumed tags are used to share tag informa-
tion over a network between two or more devices. A pro-
duced tag sends data while a consumed tag receives data.
Produced tags are always controller scoped. Figure 15-15
shows an example of how a controller can produce data
and send them over the network to two controllers that use

or consume the data. The producing controller will have
a tag that is of the produced type, whereas the consuming
controllers will have a tag with the exact same name that
is of the consumed type.

When you design your application, you configure it
to both produce globally to other controllers in the sys-
tem via the backplane and to consume tags from other
controllers. This feature allows you to be selective about
which data are sent and received by any controller. Like-
wise, multiple controllers can connect to any data being
produced, thereby preventing the need to send multiple
messages containing the same data.

Logix controllers are based on 32-bit operations. The
types of data that can be a base tag are BOOL, SINT,
INT, DINT, and REAL, as illustrated in Figure 15-16 and
listed below. The controller stores all data in a minimum
of 4 bytes or 32 bits of data.

• A BOOL or Boolean base tag is 1 bit of data stored
in bit 0 of a 4 byte memory location. The other bits,
1 to 31, are unused. BOOLs have a range of 0 to 1,
off or on respectively.

Figure 15-13 Base tag.

OptionalOptional

Location

Base tag
Controller
memory

Tag dataLocal:2:O.Data.4

:Slot :Type .Member .SubMember .BitFormat

Local :2 :O .Data .4

Optional

Tag Name

Controller Scoped Tags

Data Type
Local:2:O.Data BOOL

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Figure 15-14 Alias tag linked to a base tag.

Fan_Motor Local:2:O.Data.5 Controller memory

Tag dataBase tagAlias tag

Fan_Motor
<Local:2:O.Data.5>

Figure 15-15 Produced/consumed tags used to share information.
 Source: Image Courtesy of Rockwell Automation, Inc.

Consumed tag

Produced tag

Producer/consumer I/O model

Network

Output modulesLogix5500
controllers

Commonly shared data

Input modules

pet73842_ch15_333-394.indd 339 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

340 Part 1 Memory and Project Organization

• A SINT or Single Integer base tag uses 8 bits of
memory and stores the data in bits 0 to 7. These
bits are sometimes called the low byte. The other
3 bytes, bits 8 to 31, are unused. SINTs have a
range of 2128 (negative values) to 127 (positive
values).

• An INT or Integer base tag is 16 bits, bits 0 to 15,
sometimes called the lower bytes. Bits 16 to 31 are
unused. INTs have a range between 232,768 and
32,767.

• A DINT or Double Integer base tag uses 32 bits,
or all 4 bytes, and has the following range: 2231 to
23121 (22,147,483,648 to 2,147,483,647).

• A REAL base tag also uses 32 bits of a memory
location and has a range of values based on the
IEEE Standard for Floating-Point Arithmetic.

Structures
There is another class of data types called structures. A
structure-type tag is a grouping of different data types
that function as a single unit and serve a specific purpose.
An example of an RSLogix structure is shown in Fig-
ure 15-17. Each element of a structure is referred to as a
member and each member of a structure can be a different
data type.

There are three different types of structures in a Control-
Logix controller: predefined, module-defined, and user-
defined. The controller creates predefined structures for
you that include timers, counters, messages and PID types.
An example of a predefined counter instruction structure is
shown in Figure 15-18. It is made up of the preset value, the
accumulated value, and the instruction’s status bits.

Module-defined structures are automatically created
when the I/O modules are configured for the system.
When you add input or output modules a number of
defined tags are automatically added to the controller
tags. Figure 15-19 shows the two tags (Local:1:C and
Local:1:I) created after a digital input module has been

Figure 15-16 Types of base tag data.

BOOL
031

Unused

SINT
031 7

Unused

INT
031 15

Unused

DINT
031

REAL
031

Figure 15-17 Structure-type tag.

Name
PRE
ACC
EN
TT
DN
FS
LS
OV
ER

DINT Decimal
Decimal
Decimal

Decimal
Decimal
Decimal

DINT
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

Data Types Style Description

Data TypesMembers

Figure 15-18 Predefined structure.

Name

Description

Counter

Data type : COUNTER

Data type size : 12 byte(s)Members

PRE
ACC
CU
CD
DN
OV
UN

DINT
DINT
BOOL
BOOL
BOOL
BOOL
BOOL

Decimal
Decimal
Decimal
Decimal
Decimal
Decimal
Decimal

Data Type StyleName Description

Figure 15-19 Module-defined structure for a digital input
module.
Source: Image Courtesy of Rockwell Automation, Inc.

pet73842_ch15_333-394.indd 340 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Memory and Project Organization Part 1 341

added. Tags of these types are created to store input, out-
put, and configuration data for the module. Input tags
labeled Data contain the actual input bits from the mod-
ule. Configuration tags determine the characteristics and
operation of the module. The name Local indicates that
these tags are in the same rack as the processor. The 1
indicates that the module occupies slot 1 in the chassis.
The letters I and C indicate whether the data are input
data or configuration data.

A user-defined structure supplements the predefined
structures by providing the ability to create custom-
defined structures to store and handle data as a group.
Figure 15-20 illustrates a user-defined structure that con-
tains data for a storage tank. All data relative to the tank
are stored together. In the design stage the programmer
creates a generic user-defined memory structure that con-
tains all the different aspects of the storage tank. Each
member has a meaningful name and is created in the ap-
propriate data type and style like REAL (floating point)
for temperature and DINT (decimal) for agitator speed

in rpm. Installation and maintenance personnel can easily
locate all data associated with the operation of the tank
since all the information is stored together.

Creating Tags
There is more than one way to create tags. You may create
tags in the tag editor before your program is entered, enter
tag names as you program, or use question marks [?] in
place of tag names and assign the tags later. Figure 15-21
shows an example of a controller scope base tag created in
the new tag dialog box. When defining tags, the following
information has to be specified:

• A tag name, which must begin with an alphabetic
character or an underscore (_). Names can contain
only alphabetic characters, numeric characters,
or underscores and may be up to 40 characters in
length. They may not have consecutive or trailing
underscore characters, are not case sensitive and
cannot have spaces in the tag name.

• An optional tag description, which may be up to
120 characters in length.

• The tag type: base, alias, or consumed.
• The data type, which is obtained from the list of

predefined or user-defined data types.
• The scope in which to create the tag. Your options

are the controller scope or any one of the existing
program scopes.

• The display style to be used when monitoring the
tag in the programming software. The software will
display the choices of available styles.

• Whether or not you want to make this tag available
to other controllers and the number of other control-
lers that can consume the tag.

Figure 15-20 User-defined storage tank structure.

Tank

Level

Pressure

Temp

Agitator_Speed

INT

DINT

REAL

DINT

Decimal

Decimal

Float

Decimal

Stores the Level in Inches

Stores the Pressure in PSIG

The Temperature in F

Speed in RPM

Name:

Description:

Size: byte(s)16

Data Type StyleName Description

Generic Storage Tank Data Type

Figure 15-21 Controller scope base tag.
Source: Image Courtesy of Rockwell Automation, Inc.

New Tag

OKAll_StopName:

BOOLData Type:

BaseTag Type:

Consumed

Produced

Alias

Controller1(controller)Scope:

Controller controller1

BinaryStyle:

This is the Line Stop pushbutton
input.

Description: Cancel

Help

Configure

consumers1

···

Controller tags
New Tag... Ctrl+W

Print Ctrl+P

Monitor Tags
Edit Tags
Verify
Export Tags...

···

pet73842_ch15_333-394.indd 341 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

342 Part 1 Memory and Project Organization

Monitoring and Editing Tags
After tags have been created they can be monitored using
the Monitor Tags window displayed in Figure 15-22.
When Monitor Tags is selected the actual value(s) for the
tags will be shown. The Force Mask column is used to
force inputs and outputs when troubleshooting. You can
also create new tags or edit existing tags using the Edit
Tags window displayed in Figure 15-23. When Edit Tags

is selected new tags may be created, and existing tag prop-
erties may be modified.

Array
Many control programs require the ability to store blocks
of information in memory in the form of tables that can
be accessed at runtime. An array is a tag type that con-
tains a block of multiple pieces of data. Each element

Figure 15-22 Monitor Tags window.

Scope:

All_Stop Decimal

Binary

-Local:2:C

-Local:2:I

Show: Sort:Controller1(controller) Show All Base Tag

+

+

Tag Name Value

0

{ . . . }

{ . . . }

{ . . . }

{ . . . }

2#0000_0000Section_3_Run

Force Mask Style

Monitor Tags Edit Tags

Figure 15-23 Edit Tags window.

All_stop BOOL

AB:1756_DI:C:0

AB:1756_DI:I:0

BOOL

-Local:2:C

-Local:2:I

Controller1(controller) Show All Base Tag

+

+

Tag Name Alias For

Local:2:I.Data.0 Local:2:I.Data.0Section_3_Run

Base Tag TypeP

Monitor Tags Edit Tags

Scope: Show: Sort:

Figure 15-24 Types of arrays.
Source: Image Courtesy of Rockwell Automation, Inc.

OKOK

Cancel

Help

Find match

Selection

DINT[6,3,2]

Array Dimensions
Dim 0

6

Dim 1

3

Dim 2

2

BOOL
CONTROL
COUNTER
DINT
INT
Load
Load_info
MESSAGE

Data Types

Select Data Type

3-dimensional

Block [6,3,2]

2-dimensional

Grid [6,3]

1-dimensional

Table [6]

pet73842_ch15_333-394.indd 342 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Memory and Project Organization Part 1 343

of an array must be of the same data type (e.g., BOOL,
SINT, or INT). An array occupies a contiguous block of
controller memory. Arrays are similar to tables of val-
ues. The use of arrayed data types offers the fastest data
throughput (output) from a ControlLogix processor. Be-
cause arrays are numerically sequenced tags of the same
data type that occupy a contiguous memory location,
large amounts of data can be retrieved efficiently. Arrays
can be built using 1, 2 or 3 dimensions, as illustrated in
Figure 15-24, to represent the data they are intended to
contain.

A single tag within the array is one element. The ele-
ment may be a basic data type or a structure. The ele-
ments start with 0 and extend to the number of elements
minus 1. Figure 15-25 is an example of the memory

layout for a 1-dimensional (one column of values)
array created to hold five temperatures. The tag name
is Temp and the array consists of 5 elements numbered
0 through 4.

Figure 15-25 Memory layout for a one-dimensional array.

Array - Temp
Data Type - INT[5]

Temp[0] 297

Temp[1] 200

Temp[2] 180

Temp[3] 120

Temp[4] 100

pet73842_ch15_333-394.indd 343 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

344 Part 1 Memory and Project Organization

1. Compare the memory configuration of a Logix
5000 controller with that of an SLC 500 controller.

2. What does a project contain?

3. List four programming functions that can be car-
ried out using the program organizer.

4. Explain the function of tasks within the project.

5. State the three main types of tasks.

6. What type of tasks function as timed interrupts?

7. Explain the function of programs within the
project.

8. Explain the function of routines within the project.

9. Which routine is configured to execute first?

10. Name the four types of programming languages
that can be used to program Logix 5000 controllers.

11. What are tags used for?

12. Compare the accessibility of program scope and
controller scope tags.

13. Name the tag type used for each of the following:
a. Create an alternate name for a tag.
b. Share information over a network.
c. Store various types of data.

14. What is the difference between a produced tag and
a consumed tag?

15. List the five types of base tag data.

16. State the data type used for each of the following:
a. 32-bit memory storage
b. On/Off toggle switch
c. 16-bit memory storage
d. 8-bit memory storage

17. Describe the make-up of a predefined structure.

18. Describe the make-up of a module-defined
structure.

19. Describe the make-up of a user-defined structure.

20. Explain two ways of creating tags.

21. When defining tags what limitations are placed on
the entering of a tag name?

22. What is meant by the tag display style?

23. Write an example of an array tag used to hold
4 speeds.

PART 1 REVIEW QUESTIONS

pet73842_ch15_333-394.indd 344 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

345

Part Objectives

After completing this part, you will be able to:

 • Know what happens during the program scan

 • Demonstrate an understanding of input, output, and
internal relay addressing format for a tag-based Logix
controller

 • Develop ladder logic programs with input instructions
and output coil combinations

 • Develop ladder logic programs with latched outputs

Part 2 Bit-Level
Programming

Program Scan
When a CLX controller executes a program, it must
know—in real time—when external devices controlling
a process are changing. During each operating cycle,
the processor reads all the inputs, takes these values,
and energizes or de-energizes the outputs according to
the user program. This process is known as the program
scan.

Figure 15-26 illustrates the signal flow into and out of
a Logix controller during a controller’s operating cycle
when ladder logic is executing. During the program scan,
the controller reads rungs and branches from left to right
and top to bottom as follows:

• Only one rung at a time is scanned.
• As the program is scanned, the status of inputs are

checked for True (1 or ON) or False (0 or OFF)
conditions.

• The status signals from the inputs are sent to the
input tags where they are stored.

• As the program is scanned by the processor, inputs
are checked for True or False conditions and the
ladder logic is evaluated based on these values.

• The resulting ON or OFF action, as a result of
evaluating each rung, is then sent to the output tags
for storage.

• During the output update portion of the scan, cor-
responding output values are sent to the process or
machine by way of the output module.

Figure 15-26 Logix controller operating cycle.

PLC
processor

Input tag data base

Ladder logic
program

Field output
devices

Field input
devices

Output tag
data base

PLC
input

module

Field
power
supply

Field power
supply

PLC
output
module

M

pet73842_ch15_333-394.indd 345 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

346 Part 2 Bit-Level Programming

• I/O updates occur asynchronously to the scan
of the logic. With a ControlLogix processor two
separate 32-bit unsynchronized processes go on
simultaneously—that is, asynchronously. This
means that the module can update the input tag
from the field and write the output tag to the
field at any point (or at several points) during the
processor’s execution of the ladder rungs. The
result is more efficiency and control over when the
input field device data are updated in the input tag
and when the output data resulting from the solved
logic are sent to the output modules and their
respective field devices.

Creating Ladder Logic
Although other programming languages are available,
ladder logic is the most common programming language
for PLCs. The instructions in ladder logic programming
can be divided into two broad categories: input and out-
put instructions. The most common input instruction is
equivalent to a relay contact and the most common output
instruction is the equivalent of a relay coil (Figure 15-27).
When creating ladder I/O bit instructions, the following
rules apply:

• All input instructions must be to the left of an out-
put instruction.

• A rung cannot begin with an output instruction if it
also contains an input instruction. This is because
the controller tests all inputs for true or false before
deciding what value the output instruction should be.

• A rung does not need to contain any input
instructions, but it must contain at least one output
instruction.

• When a rung has only one output instruction it will
always be true.

• The last instruction on a rung must always be an
output instruction.

• The XIC, or Examine If Closed contact instruction,
checks to see if the input has a value of one. If the
input is one, the XIC instruction returns a true value.

• The XIO, or Examine If Open contact instruction,
checks to see if the input has a value of zero. If the
input is zero, the XIO instruction returns a true value.

• The OTE or Output Energize coil instruction sets
the tag associated with it to true or one when the
rung has logic continuity. When true it can be used
to energize an output device or simply set a value in
memory to one.

ControlLogix PACs support multiple outputs on one
rung. CLX controllers allow the use of serial logic that
does not conform to traditional electrical hardwired cir-
cuits or ladder logic. For example, both of the rungs shown
in Figure 15-28 are valid in RSLogix 5000. However the
series connection of outputs would not work if wired that
way in an equivalent electrical circuit or programmed that
way in RSLogix 500. In both instances in RSLogix 5000,
instructions tagA and tagB must be true to energize output
tag1 and tag2.

In ControlLogix output instructions can be placed be-
tween input instructions as illustrated in Figure 15-29. In
this example instructions tagA and tagB must be true to
energize output tag1. Instructions tagA and tagB and tagC
must all be true before output tag2 is set to energize.

Figure 15-27 Contacts and coil instructions.

If the Data
Bit is:

Logic 0

Logic 1

False

True

XIC

instruction is:

XIC Inputs

If the Data
Bit is:

Logic 0

Logic 1

True

False

XIO

instruction is:

XIO Output

OTE

If the Data
Bit is:

Logic 0

Logic 1

False

True

OTE

instruction is:

Figure 15-28 Parallel and series outputs.

tag1

tag2

tagBtagA

Parallel outputs

tag1 tag2tagBtagA

Series outputs

Figure 15-29 Output instruction placed between input
instructions.

tag1 tag2tagBtagA tagC

pet73842_ch15_333-394.indd 346 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Bit-Level Programming Part 2 347

Tag-Based Addressing
Logix 5000 controllers use a tag-based addressing struc-
ture. A tag is a text-based name for an area of the control-
ler where data is stored. An example of how a tag-based
address is implemented using a ControlLogix controller
is shown in Figure 15-30. Tag names use a meaningful
description of the variable. In this application when the
normally closed high limit switch is activated the program
will switch the high limit output light on. The addressing
format can be summarized as follows:

• The physical address for the tag Limit_switch is
Local:1:I.Data.2(C). Local indicates that the module
is in the same rack as the processor, 1 indicates that
the module is in slot 1 in the rack, I indicates that
the module is an input type, Data indicates that it

is a digital input, 2 indicates that the limit switch is
connected to terminal 2 on the module, and C indi-
cates that it is a controller tag with global access.

• The physical address for the tag High_limit_light is
Local:2:O.Data.4(C). Local indicates that the module
is in the same rack as the processor, 2 indicates that
the module is in slot 2 in the rack, O indicates that
the module is an output type, Data indicates that it is
a digital input, 4 indicates that the high limit light is
connected to terminal 4 on the module, and C indicates
that it is a controller tag with global access.

One advantage of the use of tag-based addressing is that
the allocation of variable names for program values is not
tied to specific memory locations in the memory structure,
as is the case with rack/slot and rack/group type systems.

Figure 15-30 Tag-based address implementation.

Power
supply

0

TAG EDIT

1 2 3 4 5 6

8-point
discrete
(digital)

input
module

Limit_switch

High_limit_light

Switch - closed

Processor
module

Program

7-slot
ControlLogix
chassis

8-point
discrete
(digital)
onput
module

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

Tag Name

Limit_switch

High_limit_light

Alias For

Local:1:I.data.2(C)

Local:2:O.data.4(C)

Base Tag

Local:1:I.data.2(C)

Local:2:O.data.4(C)

Type

BOOL

BOOL

Style

Decimal

Decimal

Limit_switch
<Local:1:I.data.2(C)>

High_limit_light
<Local:2:O.data.4(C)>

TAG MONITOR

Tag Name

Limit_switch

High_limit_light

Style

Decimal

Decimal

Type

BOOL

BOOL

Value

1

0

Light-OFF

pet73842_ch15_333-394.indd 347 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

348 Part 2 Bit-Level Programming

Initially, all program development can proceed with just
the tag names and data types assigned. Using tag aliases,
programmers can write code independent of electrical
connection assignments. At a later date, input and output
field devices are easily matched to the pin numbers on the
respective module they are connected to.

Adding Ladder Logic to the
Main Routine
Figure 15-31 shows the diagram for a hardwired contac-
tor operated motor start/stop control circuit. The normally
open start button is momentarily closed to energize the
contactor coil and close its main contacts to start the motor.
The seal-in auxiliary contact of the contactor is connected
in parallel with the start button to keep the starter coil
energized when the start button is released. The normally
closed stop button is momentarily opened to de-energize
the contactor coil and stop the motor.

Figure 15-32 shows the ladder logic program for the
motor start/stop control circuit and the RSLogix 5000 tool-
bar used to create it. Free form editing found in RSLogix
5000 helps speed development in that you do not have
to assign addresses to instructions before adding more

instructions. In this example we have chosen to use ques-
tion marks [?] in place of tag names and assign the tags
later. Field device wiring for the two pushbutton inputs
and the single contactor coil output are as illustrated. The
stop button is connected to terminal 4 and the start button
to terminal 3 of the DC input module located in slot 1
of the rack. The contactor coil is connected to terminal 4
of the DC output module located in slot 2 of the rack.
Both the start and stop buttons are examined for a closed
condition (XIC) because both buttons must be closed to
cause the motor starter to operate.

Contactor auxiliary
contact

Contactor coil

Motor
run

Motor
stop

Motor
start

L1 L2

M

Figure 15-31 Hardwired motor start/stop control circuit.

Figure 15-32 Programmed motor start/stop control circuit.

+ +

Common Common

Rung
Branch

Bit element toolbar

4 4

Field
device
power

3

Terminal Terminal

Ladder logic program

ContactorStop

Start

?

?

? ?

Input module
Slot 1

Output module
Slot 2

ONS OSR

Bit

L U

XIC XIO OTE OTL OTU

Field
device
power

ST 0 1 2 3 4 5 6 7 ST 0 1 2 3 4 5 6 7

DC OUTPUTDC INPUT

M

pet73842_ch15_333-394.indd 348 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Bit-Level Programming Part 2 349

With text-based Logix systems you can use the name
of the tag to document your ladder code and organize
your data to mirror your application. For the programmed
motor start/stop control circuit three tags, Motor_Start,
Motor_Stop, and Motor_Run, are created. Figure 15-33
illustrates how the Motor_Start tag is created in the New
Tag window. This window can be accessed by right
clicking the ? mark above the XIC instruction in the lad-
der logic program. Since this tag represents a value from
an input field device, a link through the module to the
field device must be created. When Local:1:I.Data is se-
lected a dialog box for all of the terminal numbers on the
input module appears. The tag name (Motor_Start) used
in the program is then linked to input terminal number 3
where the field device represented by the tag name is
connected.

Figure 15-34 shows what the ladder logic program
would look like after all three tags have been created.
Users have the ability to reference data via multiple names
using Aliases. This allows the flexibility to name data dif-
ferently depending on their use. The tag description pro-
vides for a more meaningful description of the tag name.
Tag names are downloaded and stored in the controller

but the description is not, as it is part of the documenta-
tion of the project.

Figure 15-35 shows the state of the tags created for
the motor start/stop program as seen in the program and

Figure 15-34 Ladder logic program after all tags have been created.

Motor contactor coil
Motor_Run

<Local:2:O.Data.4>

Motor contactor coil
Motor_Run

<Local:2:O.Data.4>

Stop button for
motor

Motor_Stop
<Local:1:I.Data.4>

Start button for
motor

Motor_Start
<Local:1:I.Data.3>

Description

Tag Name
Alias

Figure 15-35 Ladder logic program and Monitor Tags window with motor operating.

Motor contactor coil
Motor_Run

<Local:2:O.Data.4>

Motor contactor coil
Motor_Run

<Local:2:O.Data.4>

Stop button for
motor

Motor_Stop
<Local:1:I.Data.4>

Ladder logic programInputs Output

Contactor

Start button for
motor

Motor_Start
<Local:1:I.Data.3>

Stop

Start Monitor Tags Window

Tag Name Value Style Data Type

Motor_Start 0 Decimal BOOL

Description

Start button for motor

Motor_Stop 1 Decimal BOOL Stop button for motor

Motor_Run 1 Decimal BOOL Motor contactor coil

M

L2L1

Motor_Stop

Motor_Start

Motor_Run

Figure 15-33 Creating the Motor_Start tag.
Source: Image Courtesy of Rockwell Automation, Inc.

New Tag

Alias

Local:1:I.Data

Motor_StartName:

Start button for
motor

Description:

Name

Local:1:C

Local:1:I

Local:1:I.Fault

Local:1:I.Data

DINT

AB:1756_DO:C:0

AB:1756_DO:I:0

Data Type

+

–

0

8

16

24

1

9

17

25

2

10

18

26

3

11

19

27

5

13

21

29

6

14

22

30

7

15

23

31

4

12

20

28

pet73842_ch15_333-394.indd 349 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

350 Part 2 Bit-Level Programming

Monitor Tags window, when the motor is operating. When
the motor is operating:

• The XIC Motor_Start instruction is false because
the NO start button is open; therefore its value is 0.

• The XIC Motor_Stop instruction is true because the
NC stop button is closed; therefore its value is 1.

• The OTE Motor_Run instruction is true because the
rung has logic continuity; therefore its value is 1.

A hardwired reversing conveyor motor control circuit
is shown in Figure 15-36. The operation of the circuit can
be summarized as follows:

• The normally closed contact controlled by the for-
ward contactor coil is connected in series with the
reverse coil.

• The normally closed contact controlled by the
reverse contactor coil is connected in series with the
forward coil.

• When the forward coil is energized, the normally
closed contact in series with the reverse coil is
opened to prevent the reverse coil from being
energized.

• When the reverse coil is energized, the normally
closed contact in series with the forward coil opens
to prevent the forward coil from being energized.

• To reverse the motor with this control circuit, the
operator must press the stop button to de-energize
the respective coil, reclosing the respective normally
closed contact.

• Figure 15-37 shows the reversing starter circuit
implemented using an RSLogix 5000 controller.

Internal Relay Instructions
Internal relay instructions are used when other than real-
world field devices are needed as input or output reference
instructions. For example, an internal relay bit is used as an
output when the logical resultant of a rung is used to control
other internal logic. An internal control relay is programmed
in the ControlLogix system by creating a tag (either program
or controller type) and assigning a Boolean type to the tag.

Figure 15-37 Programmed reversing conveyor motor control circuit.

Stop

Forward

Reverse

Inputs

L1

Stop_button

Forward_button

Reverse_button

Ladder logic program

Stop_button
<Local:1:I.Data.0>

Forward_Coil
<Local:2:O.Data.0>

Forward_button
<Local:1:I.Data.1>

Reverse_coil
<Local:2:O.Data.1>

Forward_Coil
<Local:2:O.Data.0>

Outputs

L2

Forward_Coil

Reverse_Coil

F

R

Reversing contactorsStop_button
<Local:1:I.Data.0>

Reverse_button
<Local:1:I.Data.2>

Reverse_coil
<Local:2:O.Data.1>

Reverse_coil
<Local:2:O.Data.1>

Forward_Coil
<Local:2:O.Data.0>

Figure 15-36 Hardwired reversing conveyor motor
control circuit.

Three-phase
reversing motor

Workpiece

Forward Reverse

Conveyor

A B
H1

X1

Forward
R OL

F

F

F
Reverse

R

R

Stop

X2120 V

H3 H2 H4

Stop

Forward

Reverse

pet73842_ch15_333-394.indd 350 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Bit-Level Programming Part 2 351

Figure 15-38 shows a ControlLogix program that uses
an internal relay to implement on/off control of a room
light from three different entrances or positions. Three
single pole switches are used for inputs in place of the
two 3-way and one 4-way switches normally required for
an equivalent hardwired control circuit. The operation of
the program can be summarized as follows:

• An internal relay is used to execute the logic of the
circuit without having to use a real-world output.

• The status value stored in memory for all tags, when
all input switches are open, is 0 and so the room
light will be off.

• Closing Position_1_Switch changes the status of its
XIC instruction from false to true thereby establish-
ing logic continuity for Rung 1.

• As a result, the status of the internal relay coil and
its XIC contact change from false to true.

• This establishes logic continuity for Rung 2 and
switches the room light on.

• A change in the state of any of input switches will
change the current state of the light.

Internal relay output coils are used in ladder logic pro-
grams, but are not accessible at I/O racks. They are used where

an output instruction is required in a program, but no physical
connection to a real world device is needed. A hardwired pilot
light motor control circuit is shown in Figure 15-39. The
operation of the circuit can be summarized as follows:

• The Stop/Start pushbutton station controls relay coil
CR.

• When CR is de-energized, the green standby pilot
light is ON, the red run pilot is OFF, and the motor
is not operating.

Figure 15-38 Internal relay to implement on/off control of a room light from three different entrances.

Name Value Force Mask

Monitor Tags Window

Style Data Type

Internal_Relay 0 Decimal BOOL

Position_1_Sw... 0 Decimal BOOL

Position_2_Sw... 0 Decimal

Decimal

BOOL

0 BOOLPosition_3_Sw...

Decimal0 BOOLRoom_Light

Ladder logic program

Position_1_Switch
<Local:1:I.Data.1>

L

Position_2_Switch
<Local:1:I.Data.2> Internal_Relay

Position_2_Switch
<Local:1:I.Data.2>

Position_1_Switch
<Local:1:I.Data.1>

Internal_Relay
Position_3_Switch
<Local:1:I.Data.3>

Room_Light
<Local:2:O.Data.5>

Position_3_Switch
<Local:1:I.Data.3> Internal_Relay

OutputInputs

L2
L1

Room_LightPosition_1_Switch

Position_2_Switch

Position_3_Switch

Figure 15-39 Hardwired pilot light motor control circuit

Stop
Start Control

relay

CR

Standby PL
CR-1

CR-2

CR-3

CR-4 Motor

M

R

G

Run PL

L2L1

pet73842_ch15_333-394.indd 351 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

352 Part 2 Bit-Level Programming

• When CR is energized, the red run pilot light turns
ON, the green standby pilot light turns OFF, and
motor M starts operating.

Figure 15-40 shows the pilot light motor control circuit
implemented using an RSLogix controller. The control
relay CR is represented by tag Internal_Relay_CR. Note
that Internal_Relay_CR doesn’t have an address and as
such is not accessible at the I/O rack.

Latch and Unlatch Instructions
The output latch (OTL) instruction is a retentive out-
put instruction that is used to maintain, or latch, an
output. If this output is turned on, it will stay on even
if the status of the input logic that caused the output
to energize becomes false. The OTL instruction will

remain in a latched on condition until an unlatch in-
struction (OTU) with the same referenced tag is ener-
gized. The OTL instruction is often used in programs
where the value of a variable must be maintained in
instances where there is a shutdown due to a power
failure or system fault. Retentive memory permits the
system to be restarted with memory locations holding
the values that were present when the program execu-
tion was halted.

Figure 15-41 shows a ControlLogix program that uses
an output latch and unlatch instruction pair to implement
the control of a vent fan motor. The operation of the pro-
gram can be summarized as follows:

• The OTL instruction will write a 1 to its address
when true.

Figure 15-41 Output latch and unlatch instructions used to control a vent fan motor.

Vent_Fan
<Local:2:O.Data.4>

Fan_OFF_Button
<Local:1:I.Data.3>

Ladder logic programInputs Output

Vent_Fan
<Local:2:O.Data.4>

L

U

Fan_ON_Button
<Local:1:I.Data.2>

ON

OFF

Monitor Tags Window

Tag Name Value Style Data Type

Fan_ON_Button 0 Decimal BOOL

Fan_OFF_Button 0 Decimal BOOL

Vent_Fan 1 Decimal BOOL

M

L2

L1

Fan_ON_Button

Fan_OFF_Button

Vent_Fan

Figure 15-40 Pilot light motor control circuit implemented using an RSLogix controller.

Motor_Stop
<Local:1:I.Data.0>

Motor_Start
<Local:1:I.Data.1>

Standby_PL
<Local:2:O.Data.0>

Run_PL
<Local:2:O.Data.1>

Motor
<Local:2:O.Data.2>

Internal_Relay_CR Standby_PL

Run_PL

Motor

R

G

L2

OutputsLadder logic program

Internal_Relay_CR

Motor_Start

Motor_Stop

Inputs

L1

Internal_Relay_CR

Internal_Relay_CR

Internal_Relay_CR

Stop

Start

pet73842_ch15_333-394.indd 352 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Bit-Level Programming Part 2 353

• When the OTL goes false, the output address will
remain a 1.

• This is true even if the processor powers down and
then back up.

• The output address will remain a 1 until reset to 0
by the unlatch instruction.

• If the output address is off, both the latch and un-
latch instructions are not intensified, but once the bit
is turned on, you will see both the latch and unlatch
intensified even though both inputs are shut off.

Figure 15-42 shows an application of the latch/un-
latch instruction used as part of a car wash program. The
car wash uses a conveyor chain that pulls cars along a
track. The operation of the program can be summarized
as follows:

• The car wash only washes one car at a time.

• The operator controls the ON/OFF operation of
the track motor with the track motor Stop and Start
pushbuttons.

• When the Motor_Start button is closed the Track_
Motor is energized and performs a seal-in function
that keeps the motor operating when the Motor_
Start button is released.

• As the car enters the car wash, the Enter_LS contact
momentarily closes to energize the Wash_In_Use
latch instruction.

• This in turn, energizes the Do_Not_Enter_Sign to
indicate that the car wash is in use.

• When the car exits the car wash, the Exit_LS con-
tact momentarily closes and energizes the Wash_In_
Use unlatch instruction.

• This in turn, de-energizes the Do_Not_Enter_Sign
to indicate the car wash is not in use.

• The track motor remains running ready to restart the
process once another car enters.

• Once running, the track motor can be stopped at
any time by operating the Motor_Stop button to de-
energize the Track_Motor.

One-Shot Instruction
The CLX One-Shot (ONS) instruction is an input instruc-
tion used to turn an output on for one program scan only.
The program of Figure 15-43 uses the ONS instruction with
a math instruction to perform a calculation once per clos-
ing of the switch. This program is used to execute the ADD
math function only once per actuation of the limit switch,
no matter how long the limit switch is held closed. The
operation of the program can be summarized as follows:

• On any scan for which limit_switch_1 is cleared or
storage_1 is set, this rung has no effect.

• On any scan for which limit_switch_1 is set and stor-
age_1 is cleared, the ONS instruction sets storage_1
and the ADD instruction increments sum by 1.

• As long as limit_switch_1 stays set, sum stays
the same value. The limit_switch_1 must go from
cleared to set again for sum to be incremented again.

Figure 15-42 Latch/unlatch instruction used as part of a car wash program.

Motor_Stop
<Local:1:I.Data.0>

Motor_Start
<Local:1:I.Data.1>

Track_Motor
<Local:2:O.Data.0>

Exit_LS
<Local:1:I.Data.3>

Enter_LS
<Local:1:I.Data.2>

Do_Not_Enter_Sign
<Local:2:O.Data.1>Wash_In_Use

Exit_LS

Enter_LS

Motor_Start

Motor_Stop

Inputs

L1

Wash_In_Use

L

U

Wash_In_Use

Track_Motor
<Local:2:O.Data.0>

Ladder logic program Outputs

L2

Do_Not_Enter_Sign

Track_Motor

Stop

Start

pet73842_ch15_333-394.indd 353 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

354 Part 2 Bit-Level Programming

The One-Shot Rising (OSR) instruction shown in
Figure 15-44 is an output instruction which produces an
output for one program scan when the input rises from
zero to one (leading edge of the input pulse). The OSR
instruction sets or clears the output bit, depending on the
status of the Storage Bit (SB). When enabled and the
storage bit is cleared, the OSR instruction sets the output
bit. When enabled and the storage bit is set or when
disabled, the OSR instruction clears the output bit.

The One-Shot Falling (OSF) instruction shown in
Figure 15-45 is an output instruction which produces an
output for one program scan when the input drops from
one to zero (falling edge of the input pulse). The OSF
instruction sets or clears the output bit depending on the

status of the storage bit. When disabled and the storage
bit is set, the OSF instruction sets the output bit. When
disabled and the storage bit is cleared, or when enabled,
the OSF instruction clears the output bit.

One-shot instructions are very useful for math opera-
tions. The program of Figure 15-46 shows an example
of a program that makes use of all three one-shot in-
structions. The function of the program is to add 4, 8,
or 12 to a register each time the associated input sensor
detects a product. The instructions evaluate the preced-
ing conditions, and when either the ONS, OSR, or OSF
input changes state, a shot is triggered. The Clear Sums
input pushbutton is used to clear all three instructions
back to zero.

Figure 15-43 ONS instruction used to perform a calculation once per scan.

Ladder logic programInput

L1

Limit_Switch_1

Limit_Switch_1
<Local:1:I.Data.6> Storage_1

ONS
ADD
Add
Source A

Source B

Sum
0
1

Dest Sum
0

Figure 15-44 One-Shot Rising (OSR) instruction.

One Shot Rising
OSR

OB

SB
Storage Bit ?

Rung-condition-in

Storage Bit

Output Bit

Instruction is
executed Instruction resets during

next scan execution

Output Bit ?

Figure 15-45 One-Shot Falling (OSF) instruction.

One Shot Falling
OSF

OB

SB
Storage Bit ?

Rung-condition-in

Storage Bit

Output Bit

Instruction is
executed Instruction resets during

next scan execution

Output Bit ?

pet73842_ch15_333-394.indd 354 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Bit-Level Programming Part 2 355

Figure 15-46 One-shot instructions used in conjunction with math operations.

OB

SB

4_Sensor
<Local:1:I.Data.0>

8_Sensor
<Local:1:I.Data.1>

12_Sensor
<Local:1:I.Data.2>

Clear_Sums_PB
<Local:1:I.Data.3>

Output_Bit_OSR

Output_Bit_OSF

Ladder logic programInputs

L1

8_Sensor

12_Sensor

Clear_Sums

ADD

OSR
OB

SB

One Shot Rising
Storage Bit
Output Bit

Storage_OSR
Output_Bit_OSR

ADD
Source A

Source B

Dest

Sum_ONS
0
4

Sum_ONS
0

ADD
ADD
Source A

Source B

Dest

Sum_OSR
0
8

Sum_OSR
0

ADD

CLR
Clear
Dest Sum_ONS

0

CLR
Clear
Dest Sum_OSR

0

CLR
Clear
Dest Sum_OSF

0

ADD
Source A

Source B

Dest

Sum_OSF
0

12

Sum_OSF
0

OSF
One Shot Falling
Storage Bit
Output Bit

Storage_OSF
Output_Bit_OSF

4_Sensor

pet73842_ch15_333-394.indd 355 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

356 Part 2 Bit-Level Programming

1. What operations are performed by the processor
during the program scan?

2. With a ControlLogix processor, I/O updates occur
asynchronously. Explain what this means.

3. In ladder logic programming into what two broad
categories can instruction types be classified?

4. A field input switch is examined using an XIC
instruction.
a. What is the value (0 or 1) stored in its memory

bit when the switch is opened and closed?
b. What is the state of the instruction (true or false)

when the switch is opened and closed?

5. A field input switch is examined using an XIO
instruction.
a. What is the value (0 or 1) stored in its memory

bit when the switch is opened and closed?
b. What is the state of the instruction (true or false)

when the switch is opened and closed?

6. The value of an OTE instruction as it appears in
the Monitor Tags window is 1. Explain what this
means as far as the status of a real-world field out-
put and programmed XIC and XIO instructions
associated with this tag are concerned.

7. Define a tag in the ControlLogix system.

8. What advantage do tag-based addressing systems
have over rack/slot types?

9. How is an internal relay programmed in the
ControlLogix system?

10. The output latch instruction is a retentive output
instruction. Explain what retentive means.

11. The ControlLogix ONS instruction is a one-shot
instruction. Explain what this means.

PART 2 REVIEW QUESTIONS

1. Modify the original ControlLogix start/stop motor
control program (Figure 15-34) with a second
start and stop button added to the program. The
additional start button is to be connected to pin
1 and the stop button to pin 2 of the digital input
module.

2. Extend control of the original ControlLogix internal
relay program (Figure 15-38) used to control a room
light from 3 entrances to 4. The additional single-
pole switch is to be connected to pin 4 of the digital
input module.

3. Implement the hardwired latching relay alarm circuit
of Figure 15-47 in Logix format. The alarm will be
latched on anytime:
• The normally open temperature switch closes.
• Both normally open float switches 1 and 2 close.
• Either normally open sensor switch 1 or 2 closes

while the normally closed pressure switch is closed.

4. Implement the hardwired tank filling and emptying
operation shown in Figure 15-48 in Logix format.

PART 2 PROBLEMS

Figure 15-47 Hardwired latching relay alarm circuit
for Problem 3.

Relay
contact

Latch
coil

120 VAC

Reset button

24 VDC

Temp Sw

Float Sw 1

Sensor Sw 1

Sensor Sw 2

Float Sw 2

Pressure
Sw

Alarm
L

Unlatch
coil

U

pet73842_ch15_333-394.indd 356 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Bit-Level Programming Part 2 357

The operation of the control circuit can be summa-
rized as follows:
• Assuming the liquid level of the tank is at or below

the empty level mark, momentarily pressing the
FILL pushbutton will energize control relay 1CR.

• Contacts 1CR
1
 and 1CR

2
 will both close to seal

in the 1CR coil and energize normally closed
solenoid valve A to start filling the tank.

• As the tank fills, the normally open empty-level
sensor switch closes.

• When the liquid reaches the full level, the normally
closed full-level sensor switch opens to open the
circuit to the 1CR relay coil and switch solenoid
valve A to its de-energized closed state.

Solenoid B

Stop
Fill

1CR1

2CR1

2CR2

1CR2

Full tank
sensor

Empty tank
sensor

L1 L2

Empty

1CR

2CR

Solenoid A

Full tank
sensor

Empty tank
sensor

Control panel

Stop
Fill
Empty

Solenoid B

Solenoid A

Figure 15-48 Hardwired tank filling and emptying operation for Problem 4.

• Anytime the liquid level of the tank is above
the empty-level mark, momentarily pressing
the EMPTY pushbutton will energize control
relay 2CR.

• Contacts 2CR
1
 and 2CR

2
 will both close to seal

in the 2CR coil and energize normally closed
solenoid valve B to start emptying the tank.

• When the liquid reaches the empty level, the
normally open empty-level sensor switch opens
to open the circuit to the 2CR relay coil and
switch solenoid valve B to its de-energized
closed state.

• The stop button may be pressed at any time to halt
the process.

pet73842_ch15_333-394.indd 357 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

358

Part 3 Programming
Timers

Timer Predefined Structure
Timers are used to turn outputs on and off after a time
delay, turn outputs on or off for a set amount of time, and
keep track of the time an output is on or off. The timer
address in the SLC 500 controller is a data table address
or symbol, whereas the timer address in the ControlLogix
controller is a predefined structure of the TIMER data
type. The TIMER structure is shown in Figure 15-49.
Timer parameters and status bits include:

• Tag Name—User-friendly tag name for the timer
(e.g., Pump_Timer). If you want to use a timer, you
must create a tag of type timer.

• Preset (PRE)—The number of time increments that
the timer must accumulate to reach the desired time
delay. Specifies the value (in milliseconds) which
the timer must reach before the done bit (DN)
changes state. The preset value is stored as a binary

number (DINT). The time base is always 1 msec.
For example, for a 3 second timer, enter 3000 for
the PRE value.

• Accumulator (ACC)—The accumulator value is
the number of milliseconds the instruction has been
enabled. The accumulator value stops changing
when ACC value 5 PRE value.

• Enable Bit (EN)—The enable bit indicates the
timing instruction is enabled. The EN bit is true
when the rung input logic is true, and false when the
rung input logic is false.

• Timer Timing Bit (TT)—The timing bit indicates
that a timing operation is in process. The TT bit is
true only when the accumulator is incrementing.
TT remains true until the accumulator reaches the
preset value.

• Done Bit (DN)—The done bit indicates that ac-
cumulated value (ACC) is equal to the preset (PRE)

Figure 15-49 TIMER predefined structure.
Source: Image Courtesy of Rockwell Automation, Inc.

Data Type: TIMER

Name

Members: Data Type Size: 12 byte(s)

Data Type Style Description

PRE

ACC

EN

TT

DN

DINT Decimal

DINT

BOOL

BOOL

BOOL

Decimal

Decimal

Decimal

Decimal

Name:

Description:

Pump_Timer

Part Objectives

After completing this part, you will be able to:

 • Understand ControlLogix timer tags and their members

 • Utilize status bits from timers in logic

 • Develop ladder logic programs using ControlLogix
timers

pet73842_ch15_333-394.indd 358 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Part 3 359

value. The DN bit signals the end of the timing
process by changing states from false-to-true or
from true-to-false depending on the type of TIMER
instruction used. The DN bit is the most commonly
used timer status bit.

On-Delay Timer (TON)
The on-delay timer (TON) is a nonretentive output in-
struction used when the application requires an action to
occur at some time after the rung conditions for the timer
become true. The ControlLogix TON on-delay instruction
and timer selection toolbar are shown in Figure 15-50.
When you want to use a timer, you must create a tag of
type TIMER (it is a predefined data type) and enter the
preset and the accumulated value. The tag must be defined
before the preset and accumulated values can be entered.
A value can be entered for the accumulator while pro-
gramming. When the program is downloaded this value
will be in the timer for the first scan. If the TON timer is
not enabled the value will be set back to zero. Normally
zero will be entered for the accumulator value.

The timer tag name is declared using the new tag prop-
erties dialog box shown in Figure 15-51. Tag name, de-
scription (optional), tag type, data type, and scope are
selected or typed to complete the validation. A descriptive
tag name, such as Solenoid_Delay, makes it easier to know
what function the timer serves in the control system.

The program of Figure 15-52 is an example of a 10000 ms
(10 s) TON timer. Timers generate both word level (DINT)
and bit level (BOOL) data and status. The operation of the
program can be summarized with reference to the Moni-
tor Tags window.

• The status of all instruction is shown after the timer
input switch has been switched from off to on (1)
and accumulated 5000 ms (5 s) of time.

• At this halfway point the EN bit is 1 since the rung
is true, the TT bit is 1 since the accumulated value is

changing, and the DN bit is 0 since the accumulated
value does not yet equal the preset value.

• When the ACC equals PRE, the accumulated value
stops incrementing, EN stays on for as long as the
rung remains true, TT equals 0 since the accumu-
lated value is not changing, and DN equals 1 since
ACC 5 PRE.

• This will result in the DN pilot light switching on at
the same time as the TT pilot light switches off.

• The EN pilot light remains on as long as the input
switch is closed.

• Opening the input switch at any time causes the
TON instruction to go false, resetting the counter
ACC value to 0 and EN, TT, and DN bits to 0. This
in turn switches off all output pilot lights.

• The TON instruction is a self-resetting timer. When
the rung goes false, the timer is automatically reset.
A reset instruction can be used, but usually is not.

Figure 15-53 shows a TON timer used to delay the op-
eration of a diverter gate solenoid for 3 seconds after a tar-
get has been sensed by the solenoid energize sensor. The
operation of the program can be summarized as follows:

• Detection of the target causes closure of the SOL_
Energize_Sensor contacts, making the timer rung
true and start timing.

• With passage of the target, the SOL_Energize_
Sensor contacts open but the rung remains true
through the EN bit of the TON timer.

• After 3000 ms (3 s) delay time has elapsed, delay
timer DN bit is set to 1 to energize the SOL_Gate.Figure 15-50 TON on-delay instruction.

TON TOF RTO

Add-OnFavorites Alarms Bit

CTU CTD RES

Timer/Counter

Tag name

Input side of rung
TIMER ON DELAY
Timer
Preset
Accum

Solenoid_Delay
3000

0

TON
EN

DN

Figure 15-51 Timer tag validation.

Diverter gate
solenoid delay timer

TIMER ON DELAY
Timer
Preset
Accum

Solenoid_Delay
3000

0

TON
EN

DN

pet73842_ch15_333-394.indd 359 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

360 Part 3 Programming Timers

Figure 15-52 Ten-second TON timer program.

DN

Tag Name Value Style Data Type

Timer_Sw 1

{…}

10000 Decimal

Decimal

DINT

DINT

BOOL

BOOL

BOOL

Decimal

Decimal

Decimal

Decimal

500

1

1

0

BOOL

EN_PL 1 Decimal BOOL

TT_PL 1 Decimal

Decimal

BOOL

TIMER-Status_Timer

Status_Timer.PRE

Status_Timer.ACC

Status_Timer.EN

Status_Timer.TT

Status_Timer.DN

0 BOOLDN_PL

Ladder logic program
Timer_Sw

<Local:1:I.Data.6>

Status_Timer

TON
TIMER ON DELAY
Timer
Preset
Accum

10000
5000

EN_PL
<Local:2:O.Data.1>Status_Timer.EN

Status_Timer.TT

Status_Timer.DN

EN EN

TT_PL
<Local:2:O.Data.2>

DN_PL
<Local:2:O.Data.3>

OutputsInput
L2

L1

EN_PLTimer_Sw

TTTT_PL

DNDN_PL

Figure 15-53 TON timer used to delay the operation of a diverter gate solenoid.
Source: Photos courtesy Omron Industrial Automation, www.ia.omron.com.

Tag Name Value Style Data Type

SOL_Energize_Sensor 0

{…}

3000 Decimal

Decimal

DINT

DINT

BOOL

BOOL

BOOL

Decimal

Decimal

Decimal

Decimal

0

0

0

0

BOOL

SOL_Deenergize_Sensor 1 Decimal BOOL

SOL_Gate 0 Decimal BOOL

TIMERT_SOL_Delay

T_SOL_Delay.PRE

T_SOL_Delay.ACC

T_SOL_Delay.EN

T_SOL_Delay.TT

T_SOL_Delay.DN

Ladder logic program

L1

Inputs

L2

Output

SOL_Energize_Sensor
<Local:1:I.Data.3>

SOL_De-energize_Sensor
<Local:1:I.Data.6>

T_SOL_Delay.EN
T_SOL_Delay

TON
TIMER ON DELAY
Timer
Preset
Accum

3000
0

EN

DN

T_SOL_Delay.DN
SOL_Gate

<Local:2:O.Data.2>

SOL_Energize_Sensor

SOL_Deenergize_Sensor

SOL_Gate

pet73842_ch15_333-394.indd 360 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Part 3 361

• Momentary detection of the target by the SOL_
Deenergize_Sensor causes the opening of its con-
tacts and resets the program to its original state.

Figure 15-54 shows a program that uses a TON timer to
illuminate a green pilot light for 20 seconds each time a mo-
mentary button is pressed. In addition to the TON timer this
program uses multiple outputs on one rung, output latch and
unlatch instructions, as well as a timer reset instruction. The
operation of the program can be summarized as follows:

• Initially closing the Timer_Button sets (latches) the
Green_PL on and enables the Pilot_Light_Timer.

• When the button is then opened the timer rung
remains true through the logic path created by the
Pilot_Light_Timer.EN bit.

• After 20000 ms (20 s) have elapsed the timer DN
bit is set to reset the timer to its original state and
unlatch the Green_PL and switch it off.

The ControlLogix program of Figure 15-55 shows
three TON timers cascaded (connected together) for traf-
fic light control. The ladder logic used is the same as that
used to program the traffic lights using the SLC 500 con-
troller. The different tags created to fit the program are

Figure 15-54 Pilot light TON timer.

Green_ PL
Timer_Button

L2L1

Ladder logic program OutputInput

Green_PL
<Local:2:O.Data.3>

L

Timer_Button
<Local:1:I.Data.0>

Pilot_Light_Timer.EN

Pilot_Light_Timer.DN Pilot_Light_Timer
Green_PL

<Local:2:O.Data.3>

URES

Pilot_Light_Timer

TON
TIMER ON DELAY
Timer
Preset
Accum

20000
0

EN

DN

Figure 15-55 ControlLogix traffic control program.

Ladder logic program

Amber_Light_Timer.DN

Red_Light_Timer.DN

Red_Light_Timer

Green_Light_Timer.DN

Red_Light_Timer.EN

Green_Light_Timer.EN

Amber_Light_Timer.EN

Red_Light_Timer.DN
Red_Light

<Local:2:O.Data.0>

Green_Light_Timer.DN

Amber_Light_Timer.DN

TON
TIMER ON DELAY
Timer
Preset
Accum

30000
0

Green_Light_Timer

TON
TIMER ON DELAY
Timer
Preset
Accum

25000

Amber_ Light

Green_ Light

Red_ Light

Outputs

L2

0

Amber_Light_Timer

TON
TIMER ON DELAY
Timer
Preset
Accum

5000
0

EN

DN

Green_Light
<Local:2:O.Data.1>

Amber_Light
<Local:2:O.Data.2>

EN

DN

EN

DN

pet73842_ch15_333-394.indd 361 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

362 Part 3 Programming Timers

shown in Figure 15-56. Operation of the program can be
summarized as follows:

• Transition from red light to green light to amber
light is accomplished by the interconnection of the
EN and DN bits of the three TON timer instructions.

• The input to the Red_Light_Timer is controlled by
the Amber_Light_Timer.DN bit.

• The input to the Green_Light_Timer is controlled
by the Red_Light_Timer.DN bit.

• The input to the Amber_Light_Timer is controlled
by the Green_Light_Timer.DN bit.

• The timed sequence of the lights is:
 - Red—30 s on
 - Green—25 s on
 - Amber—5 s on

• The sequence then repeats itself.

Off-Delay Timer (TOF)
The off-delay timer (TOF) operates in a fashion opposite
to the TON on-delay timer. An off-delay timer will turn
on immediately when the rung of ladder logic is true,

but it will delay before turning off after the rung goes
false. The ControlLogix TOF off-delay timer instruction
is shown in Figure 15-57. The description of the function
block fields and tag references are the same as for that of
a TON timer.

Figure 15-58 shows a program that uses a TOF timer
to illuminate a green pilot light for 20 seconds each time a
momentary button is pressed. The program code is simpler
than that used to accomplish the same task using a TON
timer. The operation of the program can be summarized as
follows:

• When the Timer_Button is initially closed the timer
rung and instruction and DN bit all become true.

• The DN bit switches on the Green_PL and the
program remains in this state as long as the button is
held closed.

• When the button is released the Timer_Button
instruction goes false and starts the timing cycle.

• The light remains on and the timer begins accumu-
lating time.

• When the accumulator reaches 20000 ms (20 s)
the timer DN bit becomes false and the light is
switched off.

The program of Figure 15-59 uses both on-delay and
off-delay timers for control of a heating oven process.
The different tags created to fit the program are shown

Figure 15-56 Tags created for traffic light program.

Tag Name Value Style Data Type

-Amber_Light_Timer {…}

{…}

{…}

30000 Decimal DINT

DINT

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

0

1

1

0

1

0

0

TIMER

TIMER

TIMER

-Green_Light_Timer

-Red_Light_Timer

Red_Light

Green_Light

Amber_Light

-Red_Light_Timer.PRE

-Red_Light_Timer.ACC

Red_Light_Timer.EN

Red_Light_Timer.TT

Red_Light_Timer.DN

Figure 15-57 ControlLogix TOF off-delay timer instruction.

Tag name

TOF
TIMER OFF DELAY
Timer Sample_TOF
Preset
Accum

5000
0

Input side
of rung

EN

DN

Figure 15-58 Pilot light TOF timer.

Green_ PL
Timer_Button

L2L1

Ladder logic program OutputInput

Timer_Button
<Local:1:I.Data.0>

Pilot_Light_Timer.DN
Green_PL

<Local:2:O.Data.3>

Pilot_Light_Timer

TOF
TIMER OFF DELAY
Timer
Preset
Accum

20000
0

EN

DN

pet73842_ch15_333-394.indd 362 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Part 3 363

in Figure 15-60. Operation of the program can be sum-
marized as follows:

• Pressing the Oven_On_Button energizes the Oven_
On_PL output which seals itself in and enables the
TON and TOF timer instructions.

• The Timer_Heat.TT bit of the TON timer becomes
true which sounds the Warning_Horn to warn that
the oven is about to come on.

• The Timer_Cooling.DN bit of the TOF timer
becomes true which energizes the Fan_Motor.

• After 10 s (10000 ms) have elapsed the Timer_Heat.
TT bit becomes false to turn off the Warning_Horn
and the Timer_Heat.DN bit becomes true to
energize the Heater_Contactor and turn on the
heating coils.

• When the Oven_Off_Button is momentarily actu-
ated the Oven_On_PL output goes false which turns
the pilot light off and opens the continuity of its
seal-in logic path.

• The Timer_Heat timer instruction and its DN
bit instruction become false which de-energizes
the Heater_Contactor and turns off the heating
coils.

• The Timer_Cooling timer begins accumulating time
and the fan continues to operate for the 5 minute
(300000 ms) delay period after which the Timer_
Cooling.DN bit becomes false to turn the fan off.

Figure 15-59 Timer control of a heating oven process.

L1

Inputs

Oven_On_PL
<Local:2:O.Data.2>

Oven_On_Button

Oven_O�_Button

Ladder logic program

Timer_Heat
10000

0

TON
TIMER ON DELAY
Timer
Preset
Accum

Warning_Horn
<Local:2:O.data.3>

Oven_On_PL

Timer_Heat.TT

Timer_Cooling
300000

0

TOF
TIMER OFF DELAY
Timer
Preset
Accum

EN

Heater_Contactor
<Local:2:O.data.4>

Warning_Horn

Timer_Heat.DN

Fan_Motor
<Local:2:O.data.5>

L2

Outputs

Heater_Contactor

Fan_Motor

Timer_Cooling.DN

Oven_On_PL
<Local:2:O.Data.2>

Oven_On_Button
<Local:1:I.Data.1>

Oven_O�_Button
<Local:1:I.Data.2>

Oven_On_PL
<Local:2:O.Data.2>

DN

DN

EN

ON

OFF

Figure 15-60 Tags created for heating oven process.

Tag Name
Warning_Horn

Heater_Contactor

Fan_Motor

Oven_On_PL

Oven_On_Button

Oven_O�_Button

Local:2:O.Data.3

Local:2:O.Data.4

Local:2:O.Data.5

Local:2:O.Data.2

Local:1:I.Data.1

Local:1:I.Data.2

Local:2:O.Data.3

Local:2:O.Data.4

Local:2:O.Data.5

Local:2:O.Data.2

Local:1:I.Data.1

Local:1:I.Data.2

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

TIMER

TIMER

-Timer_Heat

-Timer_Cooling

Alias For Base Tag Data Type Style

pet73842_ch15_333-394.indd 363 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

364 Part 3 Programming Timers

Retentive Timer On (RTO)
A retentive on-delay timer (RTO) operates the same
as a TON timer, except that the retentive timer retains
(remembers) its ACC value even if:

• The rung goes false.
• The processor is placed in the program mode.
• The processor faults.
• Power to the processor is temporarily interrupted

and the processor battery is functioning properly.

The ControlLogix RTO retentive on-delay timer in-
struction is shown in Figure 15-61. The description of the
function block fields and tag references are the same as
for that of a TON timer; however, a RES reset instruction
must be used to reset the accumulated value of a retentive
timer. The RES instruction must have the same tag name
as the timer you want to reset.

An example application of a limit switch 2 minute
(120000 ms) RTO timer program is shown in Figure 15-62.
The different tags created to fit the program are shown in
Figure 15-63. The operation of the program can be sum-
marized as follows:

• The status and value of all instructions, with the
timer initially reset, are as shown in the monitor
tags window.

• When the Limit_Switch has been closed for 1 min-
ute, the status and value of the instructions would be:
 - PRE – 120000
 - ACC – 60000
 - LS_Timer.EN – 1
 - LS_Timer.TT – 1
 - LS_Timer.DN – 0
 - LS_EN_PL – 1
 - LS_TT_PL – 1
 - LS_Alarm – 0

• When the Limit_Switch is opened after 1.5 minutes,
the status and value of the instructions would be:
 - PRE – 120000
 - ACC – 90000
 - LS_Timer.EN – 0
 - LS_Timer.TT – 0
 - LS_Timer.DN – 0
 - LS_EN_PL – 0
 - LS_TT_PL – 0
 - LS_Alarm – 0Figure 15-61 RTO retentive on-delay timer instruction.

EN

DN

RES

SOL_On_Timer

Input side of rung

SOL_On_Timer
10000

0

RTO
RETENTIVE TIMER ON
Timer
Preset
Accum

Figure 15-62 Limit switch RTO timer program.

Ladder logic program

Limit_Switch
<Local:1:I.Data.7>

LS_Timer

RTO
RETENTIVE TIMER ON
Timer
Preset
Accum

120000
0

LS_EN_PL
<Local:2:O.Data.0>LS_Timer.EN

LS_Timer.TT

LS_Timer.DN

EN

DN

LS_TT_PL
<Local:2:O.Data.1>

LS_Alarm
<Local:2:O.Data.2>

Reset_LS_Timer
<Local:1:I.Data.2> LS_Timer

RES

OutputsInput

L2L1

LS_EN_PLLimit_Switch

Reset_LS_Timer

LS_TT_PL

AlarmLS_Alarm

pet73842_ch15_333-394.indd 364 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Part 3 365

timed event-driven routines. In this program the timers
are cascaded in such a manner that one event leads to an-
other. The operation of the program can be summarized
as follows:

• The process consists of three distinct timed events
or steps.

• Each step must last for a predetermined period of
time and must be performed in a specific order.

• The Start_PB, associated internal relay seal-in circuit,
is activated to start the sequence.

• Event_1 has a 3 second duration, after which
Event_2 begins.

• Event_2 has a 10 second duration, after which
Event _3 begins.

• Event_3 has a 5 second duration, after which the
entire process is completed.

• The output pilot lights turn on to signify the com-
pletion of each step in the sequence.

• Once the final step has been completed, the
Process_Complete_PL is turned on.

• Activating the Stop_PB at any time will reset the
process.

Reciprocating timers are timing functions where the out-
put of one timer is used to reset the input of a second timer,
each resetting the other. These types of timers are used in
situations where a constant cycling of an output is required.
For example, if a flashing light is required in the event of a
control system failure, a program with reciprocating timers
could be used to create the flashing output function, as
illustrated in the PAC program of Figure 15-65. The opera-
tion of the program can be summarized as follows:

• When the contacts of the Limit_Switch close,
Timer_Reciprocationg_Off beings its timing cycle.

• After two seconds, the Timer_Reciprocationg_Off.
DN bit status changes to true and both the Timer_
Reciprocating_On instruction and the flashing
Alarm_PL become energized.

• After two more seconds, the Timer_Reciprocating_
On.DN bit status changes to reset the sequence.

Figure 15-63 Tags created for the RTO retentive on-delay
timer program.

{…}

120000

0

0

0

0

DINT

DINT

BOOL

BOOL

BOOL

BOOL

TIMER

BOOL

Limit_Switch

LS_EN_PL

0

0

0

0

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

BOOL

BOOL

LS_TT_PL

LS_Alarm

-LS_Timer.PRE

-LS_Timer.ACC

LS_Timer.EN

LS_Timer.TT

LS_Timer.DN

-LS_Timer

Tag Name Value Style Data Type

• When the Limit_Switch is closed and stays closed
until the timer times out, the status and value of the
instructions would be:
 - PRE – 120000
 - ACC –120000
 - LS_Timer.EN – 1
 - LS_Timer.TT – 0
 - LS_Timer.DN – 1
 - LS_EN_PL – 1
 - LS_TT_PL – 0
 - LS_Alarm – 1

• When the Limit_Switch is opened after the timer
times out, the status and value of the instructions
would be:
 - PRE – 120000
 - ACC –120000
 - LS_Timer.EN – 0
 - LS_Timer.TT – 0
 - LS_Timer.DN – 1
 - LS_EN_PL – 0
 - LS_TT_PL – 0
 - LS_Alarm – 1

• When the Reset_LS_Timer is closed, the status and
value of the instructions are reset to their original
values.

Cascading of Timers
Timers can be linked together or cascaded to extend
their control capability. The industrial control program of
Figure 15-64 is an example of cascading TON timers for

pet73842_ch15_333-394.indd 365 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

366 Part 3 Programming Timers

Figure 15-65 Flashing pilot light program.

Input

Timer_Reciprocating_On.DN

Ladder logic program
Limit_Switch

<Local:1:I.Data.0>

Timer_Reciprocating_O�
2000

0

Timer_Reciprocating_O�.DN

Timer_Reciprocating_O�.DN

Timer_Reciprocating_On
2000

0

Timer On Delay
Timer
Preset
Accum

Timer On Delay
Timer
Preset
Accum

EN

Alarm_PL
<Local:2:0.Data.0>

Limit_Switch

L1

Alarm_PL

Output

L2TON

TON

R

EN

DN

DN

Figure 15-64 Cascading TON timers for timed event-driven routines.

Timer On Delay
Timer
Preset
Accum

Timer On Delay
Timer
Preset
Accum

Timer On Delay
Timer
Preset
Accum

TON

TON

TON

EN

DN

Stop_PB
<Local:1:I.Data.0>

Start_PB
<Local:1:I.Data.1> Internal_Relay

Internal_Relay

Internal_Relay

Timed_Event_1.DN

Timed_Event_2.DN

Timed_Event_2.DN

Timed_Event_3.DN

Timed_Event_1.DN
Event_1_Complete_PL

<Local:2:0.Data.0>

Event_2_Complete_PL
<Local:2:0.Data.1>

Process_Complete_PL
<Local:2:0.Data.2>

Ladder logic program

Stop_PB

L1

Start_PB

Event_1

Event_2

Complete

Inputs Outputs

L2

Timed_Event_1
3000

0

Timed_Event_2
10000

0

Timed_Event_3
5000

0

DN

EN

EN

DN

G

G

R

pet73842_ch15_333-394.indd 366 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Timers Part 3 367

1. Compare the methods used to address timers in an
SLC 500 and a ControlLogix controller.

2. List the five different members of a TIMER
structure.

3. What type of timing application may require you to
use a TON on-delay timer?

4. What PRE value is used for a timer?

5. To what value is the accumulated value of a timer
normally set?

6. What timer status bit is set to 1 when the TON
timer times out?

7. The TON instruction is self-resetting. Explain what
this means.

8. What number would be entered into the PRE value
of a ControlLogix timer for a timing period of
4.5 minutes?

9. Compare the operation a TOF and a TON timer.

10. When does the rung of a TOF timer begin accumu-
lating time?

11. The RTO timer is a retentive timer. Explain what
this means.

12. How are the retentive timer and reset instruction
related?

PART 3 REVIEW QUESTIONS

PART 3 PROBLEMS

1. Modify the original CLX ten-second TON timer pro-
gram (Figure 15-52) with an additional rung added
to the program that will energize a solenoid when-
ever the timer is enabled and timing. The solenoid is
to be connected to pin 6 of the digital output module.

2. With reference to the ladder logic of the CLX di-
verter gate program (Figure 15-53), assume the
solenoid gate fails to energize as programmed. You
suspect the problem is due to an open in the solenoid
coil or wiring to it. How might observation of the so-
lenoid output status light help confirm this?

3. You are required to extend the Green light-on time
of the CLX traffic control program (Figure 15-55) to
40 seconds. What changes would have to be made to
the program?

4. With reference to the CLX heating oven process pro-
gram (Figure 15-59), assume the oven-on pilot light
burns out. In what way would the operation of the
program be affected?

5. With reference to the CLX limit switch RTO pro-
gram (Figure 15-62), in addition to the alarm, you
are required to install a warning pilot light to indi-
cate that the timer has timed out. How would you
proceed?

6. Implement the hardwired TON alarm circuit of
Figure 15-66 in Logix format.

Figure 15-66 Hardwired TON alarm circuit for Problem 6.

L1 L2

CR

TR

10 s

ON/OFF
switch

Low pressure
switch On-delay timer

TR

CR

Alarm

pet73842_ch15_333-394.indd 367 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

368

Part Objectives

After completing this part, you will be able to:

 • Understand ControlLogix counter tags and their
members

 • Utilize status bits from counters in logic

 • Develop ladder logic programs using ControlLogix
counters

Part 4 Programming
Counters

Counters
Counters are similar to timers, except that a counter ac-
cumulates (counts) the changes in state of an external
trigger signal whereas timers increment using an internal
clock. PLC counters are generally triggered by a change
in an input field device that causes a false-to-true transi-
tion of the counter ladder rung. It does not matter how
long the rung stays true or false—it is only the transition
that counts.

There are two basic counter types: count-up (CTU) and
count-down (CTD). The ControlLogix CTU instruction
and counter selection toolbar are shown in Figure 15-67.
When you want to use a counter, you must create a tag of
type COUNTER (it is a predefined data type) and enter
the preset and the accumulated value. When entering the
instruction, this tag must be defined before the preset and

accumulated values can be entered. A RES reset instruc-
tion that has the same tag name as the counter must be used
to reset the accumulated value of the counter to zero.

All counters are retentive in that the accumulated value
of any counter is retained, even during a power failure,
until reset. The on/off status of the counter done, over-
flow, and underflow bits are retentive as well. Control-
Logix counter parameters and status bits are shown in the
edit tags window of Figure 15-68 and can be summarized
as follows:

• Preset (PRE) Value—Specifies the value the coun-
ter must reach before the done (DN) bit turns on (1).

• Accumulated (ACC) Value—Is the number of
false-to-true transitions of the counter rung. ACC is
reset to zero when a reset (RES) instruction (of the
same counter address) is executed.

• CU (Count-Up Enable Bit)—The count-up enable
bit indicates the CTU instruction is enabled.Figure 15-67 CTU count-up counter instruction.

CU

DN

Package_Counter

Input side of rung

False

True

RES

24
0

Tag name

CTU
Count Up
Counter Package_Counter
Preset
Accum

TON

Favorites

TOF RTO CTU CTD RES

Add-On Alarms Bit Timer/Counter

pet73842_ch15_333-394.indd 368 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Part 4 369

• CD (Count-Down Enable Bit)—The count-down
enable bit indicates the CTD instruction is enabled.

• DN (Count-Up Done Bit)—The DN bit is set (1)
when ACC value is equal to or greater than the PRE
value and is reset by the RES instruction.

• OV (Overflow Bit)—The overflow bit indicates the
counter exceeded the upper limit. The OV bit is set
when the ACC value is greater than +2,147,483,647
and reset when the reset instruction is executed.
Note that the accumulated value keeps incrementing
even after the ACC value equals the PRE value.

• UN (Underflow Bit)—Indicates that the counter
exceeded the lower limit of 22,147,483,648.

The counter tag name is declared using the new tag
properties dialog box shown in Figure 15-69. Tag name,
description (optional), tag type, data type (base type is
used most often), and scope are selected or typed to com-
plete the validation.

Count-Up (CTU) Counter
Count-up (CTU) counters will cause the accumulated count
to increase by 1 every time there is a false-to-true transi-
tion of the counter ladder rung. An example application
of a count-up counter program used to count packets of
bottles is shown in Figure 15-70. The operation of the
program can be summarized as follows:

• Each open-to-close transition of the Bottle_Sensor
proximity switch causes the counter to increment by 1.

Figure 15-68 ControlLogix counter parameters and
status bits.

DINT

DINT

BOOL

BOOL

BOOL

BOOL

COUNTER

BOOL

Part_Counter.OV

Part_Counter.UN

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

-Part_Counter.PRE

-Part_Counter.ACC

Part_Counter.CU

Part_Counter.CD

Part_Counter.DN

-Part_Counter

Tag Name Data Type Style

Figure 15-69 Counter tag validation.

Main programScope

COUNTERData Type

BaseTag Type

24 bottle counterDescription

Package_CounterName

CU

DN
Package_Counter

24
0

CTU
Count Up
Counter
Preset
Accum

New Tag

24 bottle counter

Figure 15-70 Count-up counter program used to count packets of bottles.

Ladder logic program

24 bottle counter
Bottle_Sensor

<Local:1:I.Data.1>

Increment_PL
<Local:2:O.Data.4>

24 bottle counter
Package_Counter.CU

24 bottle counter
Package_Counter.DN

CU

DN

Preset_Reached_PL
<Local:2:O.Data.5>

Reset_Button
<Local:1:I.Data.3>

24 bottle counter
Package_Counter

OutputsInputs

L2L1

Increment_PLBottle_Sensor

Reset_Button

Preset_Reached_PL

CTU
Count Up
Counter
Preset
Accum

Package_Counter
24*

0*

RES

pet73842_ch15_333-394.indd 369 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

370 Part 4 Programming Counters

• The Increment_PL controlled by the Package_
Counter.CU status bit turns on and off as each bot-
tle passes to show that the counter is incrementing.

• When the accumulated value of the counter is 24
the DN bit of the counter is set and switches on the
Preset_Reached_PL.

• The counter is reset by momentarily closing the
Reset_Button.

The program shown in Figure 15-71 uses two CTU in-
structions as part of a program to remove 5 out of every
10 containers from a conveyor line using an electric so-
lenoid. The different tags created to fit the program are
shown in Figure 15-72. The operation of the program can
be summarized as follows:

• The preset for the Container_Counter_Counts is set
for 6 and that for the Container_Counter_Max is
set to 11.

• When the container is detected both counters will
increase their accumulated values by 1.

Figure 15-71 CTU program used to remove containers from a conveyor line.

L1 L2

Input

Container_Sensor
<Local:1:I.Data.2>

Container_Sensor
<Local:1:I.Data.2>

SOL
<Local:2:O.Data.2>

Container_Counter_Max.DN Container_Counter_Counts

Container_Counter_Max

Container_Counter_Counts.DN

Ladder logic program

CTU
Count Up
Counter
Preset
Accum

Container_Counter_Counts

Output

Sensor

Solenoid

SOL

Container_Sensor CU

DN

CTU
Count Up
Counter
Preset
Accum

Container_Counter_Max
CU

DN

RES

RES

Figure 15-72 Tags created for the CTU program used to
remove containers from a conveyor line.

Container_Counter_Counts .CU

Container_Counter_Counts .CD

Container_Counter_Counts .DN

Container_Counter_Counts .OV

Container_Counter_Counts .UN

Container_Counter_Counts

Container_Counter_Counts .PRE

Container_Counter_Counts .ACC

0

0

0

0

0

{...}

6

0

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

BOOL

BOOL

BOOL

BOOL

BOOL

COUNTER

DINT

DINT

Container_Counter_Max .CU

Container_Counter_Max .CD

Container_Counter_Max .DN

Container_Counter_Max .OV

Container_Counter_Max .UN

Container_Counter_Max

Container_Counter_Max .PRE

Container_Counter_Max .ACC

0

0

0

0

0

{...}

11

0

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

BOOL

BOOL

BOOL

BOOL

BOOL

0 Decimal BOOL

0

Container_Sensor

SOL Decimal BOOL

COUNTER

DINT

DINT

Tag Name Value Style Data Type

pet73842_ch15_333-394.indd 370 03/11/15 7:33 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Part 4 371

• When the sixth part arrives the Container_Counter_
Counts counter will then be done, thereby allow-
ing the solenoid to actuate for any container after
the fifth.

• The Container_Counter_Max counter will continue
until the eleventh part is detected and then both of
the counters will be reset.

Count-Down (CTD) Counter
The count-down (CTD) counter operates in a fashion op-
posite to the count-up CTU counter. CTD counters will
cause the accumulated count to decrease instead of in-
crease by one every time there is a false-to-true transition
of the counter ladder rung. The ControlLogix CTD down-
counter instruction is shown in Figure 15-73. The descrip-
tions of the function block fields and the tag references are

Figure 15-73 Count-down CTD counter instruction.

Counter_1.CU

Counter_1.CD

Counter_1.DN

Counter_1.OV

Counter_1.UN

Counter_1

Counter_1.PRE

Counter_1.ACC

Tag Name

Count Down
Counter
Preset
Accum

CTD

Counter_1

Tag name

Input
side of
rung

Counter_1

CD

DN

RES

Figure 15-74 CTU counter and CTD counter used together to form an Up/Down counter.

Restart_Button
<Local:1:I.Data.1> Counter_1

Ladder logic program

CTU

Restart_Button

Count Up
Counter Counter_1
Preset
Accum

CU

DN

Enter_Limit_Sw
<Local:1:I.Data.3>

CTD
Count Down
Counter Counter_1
Preset
Accum

CD

DN

Exit_Limit_Sw
<Local:1:I.Data.4>

Counter_1.DN
Conveyor_Contactor
<Local:2:O.Data.2>

RES

L1

Inputs

L2

Output

C

Enter_Limit_Sw

Exit_Limit_Sw

Conveyor_Contactor

the same as those associated with the CTU function block.
The CTD instruction is typically used with a CTU instruc-
tion that references the same counter structure.

The application program shown in Figure 15-74 is
used to limit the number of parts that can be stored in
the buffer zone to a maximum of 50. A CTU counter and
a CTD counter are used together with the same address
to form an Up/Down counter. This is the most common
type of application of the CTD counter. The different tags
created to fit the program are shown in Figure 15-75. The
operation of the program can be summarized as follows:

• The Restart_Button is momentarily actuated at any
time to reset the accumulated value of the counter
to zero.

• Conveyor brings parts into a buffer zone.
• Each time a part enters the buffer zone, the

Enter_Limit_Sw is actuated and Counter_1
increments by 1.

• Each time a part leaves the buffer zone, the
Exit_Limit_Sw is actuated and Counter_1
decrements by 1.

• When the number of parts in the buffer zone, at
any one time, reaches 50, the Counter_1.DN bit
is set.

• As a result the Conveyor_Contactor rung goes
false to de-energize the conveyor contactor, auto-
matically stopping the conveyor from bringing in
any more parts until the accumulated count drops
below 50.

pet73842_ch15_333-394.indd 371 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

372 Part 4 Programming Counters

Combining Counter
and Timer Functions
Figure 15-76 shows a bottle flow rate program imple-
mented using a Logix controller. This program is de-
signed to indicate how many bottles pass a given process

point per minute. The operation of the program can be
summarized as follows:

• When the Start_Switch is closed, both the timer and
counter are enabled.

• The Total_Bottles counter is pulsed for each bottle
that passes the Bottle_Sensor.

• The counting begins and the 1_Min_Timer starts
timing through its one minute (60000 milliseconds)
time interval.

• At the end of one minute, the timer done bit (DN)
causes the counter rung to go false.

• Sensor pulses continue but do not affect the Total_
Bottles counter.

• The number of bottles for the past minute is repre-
sented by the accumulated value of the Total_Bottles
counter.

• The sequence is reset by momentarily opening and
closing the Start_Switch.

Figure 15-75 Tags created for the Up/Down counter
program.

Counter_1.CU

Counter_1.CD

Counter_1.DN

Counter_1.OV

Counter_1.UN

Counter_1

Counter_1.PRE

Counter_1.ACC

0

0

0

0

0

0

{ . . . }

50

0

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

BOOL

BOOL

BOOL

BOOL

BOOL

COUNTER

DINT

DINT

Conveyor_Contactor

Restart_Button

Enter_Limit_Sw

Exit_Limit_Sw

1

0

0

Decimal

Decimal

Decimal

BOOL

BOOL

BOOL

BOOL

Tag Name Value Style Data Type

Figure 15-76 Bottle flow rate program.

L1 Inputs

O� On

Start_Switch

Start_Switch
<Local:1:I.Data.0>

Start_Switch
<Local:1:I.Data.0>

Start_Switch
<Local:1:I.Data.0>

Bottle_Sensor
1_Min_Timer.DN

Bottle_Sensor
<Local:1:I.Data.1>

Total_Bottles

RES

Count Up
Counter
Preset
Accum

Total_Bottles
0

0

0

60000
1_Min_Timer

CTU

TON
Timer On Delay
Timer
Preset
Accum

CU

DN

EN

DN

Ladder logic program

pet73842_ch15_333-394.indd 372 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Programming Counters Part 4 373

1. In what way are timers and counters similar?

2. Outline the procedure followed to create a tag when
you want to use a counter.

3. All counters are retentive. In what way does this af-
fect their operation?

4. What is specified by the preset value of a counter?

5. When is each of the following counter bits set?
a. CU
b. DN
c. CD

1. With reference to the CTU packets of bottles pro-
gram (Figure 15-70), what changes to the program
would be required to count six bottle packets?

2. With reference to the CTU program used to remove
containers from a conveyor line (Figure 15-71), as-
sume the output solenoid coil failed open. In what
way would the operation of the program be affected?

3. Modify the original Up/Down counter program
(Figure 15-74) to include:
a. A red pilot light to indicate entry of a part into the

buffer zone. Light to be connected to pin 4 of the
digital output module.

b. A green pilot light to indicate exit of a part from
the buffer zone. Light to be connected to pin 3 of
the digital output module.

PART 4 REVIEW QUESTIONS

PART 4 PROBLEMS

4. Write a ControlLogix program, complete with tags,
for an Up/Down counter used to keep track of cars
entering and exiting a parking lot. The program re-
quirements for this application can be summarized
as follows:
• The parking lot holds 30 vehicles.
• There is an entrance vehicle sensor and an exit

vehicle sensor.
• When the parking lot is full a Lot Full sign is

illuminated.
• Whenever a car exits the lot, a Caution Buzzer/

Light is activated to warn pedestrians.

6. Compare the operations of a CTU and a CTD
counter.

7. What is an Up/Down counter?

8. Explain how you go about creating tags for an Up/
Down counter that uses a CTU and CTD instruction.

pet73842_ch15_333-394.indd 373 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

374

Part Objectives

After completing this part, you will be able to:

 • Utilize ControlLogix math instructions in programs

 • Utilize ControlLogix comparison instructions in
programs

 • Utilize ControlLogix move instructions in programs

 • Develop and follow the operation of programs that use
math, comparison, and move instructions

Part 5 Math, Comparison,
and Move Instructions

Math Instructions
ControlLogix basic math instructions include addition,
subtraction, multiplication, division, and square root.
Figure 15-77 shows the Compute/Math toolbar for the
ControlLogix controller.

The ADD instruction is used to add two numbers.
This instruction adds these values from Source A and
Source B. The source can be a constant value or a tag.
The result of the ADD instruction is put in the destination
(Dest) tag.

Figure 15-78 shows an example of an ADD instruction
rung along with its Monitor Tags window. The operation
of the rung can be summarized as follows:

• When the Add_Sw is closed the rung will be true.
• The ADD instruction will execute to add the num-

ber from Source A (Value_A) and the value from
Source B (Value_B).

• The result will be stored in the Dest tag
(Total_Value).

• In this example, the 25 was added to 50 and the
result (75) was stored in Total_Value.

The SUB instruction is used to subtract two numbers.
Figure 15-79 shows an example of a SUB instruction rung

Figure 15-77 Compute/Math toolbar for the ControlLogix
controller.

CPT

Compare

ADD SUB MUL DIV MOD SQR

Move/Logical File/Misc.Compute/Math

Figure 15-78 ADD instruction rung and its Monitor Tags
window.

Ladder logic program Input

L1
ADD
Add
Source A

Source B

Dest

Value_A
25

Value_B
50

Total_Value
75

Add_Sw
<Local:1:I.Data.1>

Add_Sw

Value_B

Add_Sw

Total_Value

Value_A

50

1

75

25

Decimal

Decimal

Decimal

Decimal

DINT

BOOL

DINT

DINT

Tag Name Value Style Data Type

pet73842_ch15_333-394.indd 374 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Math, Comparison, and Move Instructions Part 5 375

along with its Monitor Tags window. The operation of the
rung can be summarized as follows:

• When the SUB_Sw or Calculate tag is true the SUB
instruction is executed.

• Source B (Shipped_Parts) is subtracted from Source
A (Parts_Stock) and the result is stored in the Dest
tag named Current_Inventory.

• In this example, the 200 was subtracted from 900
and the result (700) was stored in Current_Inventory.

• Source A and Source B can be constants (numbers)
or tags.

The MUL instruction is used to multiply two numbers.
Figure 15-80 shows an example of a MUL instruction

rung along with its Monitor Tags window. When multiple
bottles are packed in cases, the number of bottles per case,
the number of cases, and the multiply instruction will give
you the total number of bottles. The operation of the rung
can be summarized as follows:

• When the Sw_1 and Sw_2 are both true the MUL
instruction is executed.

• Source A (the value in tag Cases_Produced) is
multiplied by Source B (the value in tag Bottles_
Per_Case) and the result is stored in the Dest tag
Bottles_Produced.

• Source A and Source B can be constants (numbers)
or tags.

Figure 15-79 SUB instruction rung and its Monitor Tags window.

Ladder logic program Input

L1
SUB
Subtract
Source A

Source B

Dest

Parts_Stock
900

Shipped_Parts
200

Current_Inventory
700

Sub_Sw
<Local:1:I.Data.4>

Calculate

Sub_Sw

Current_Inventory

Sub_Sw

Parts_Stock

Shipped_Parts

700

1

900

200

Decimal

Decimal

Decimal

Decimal

DINT

BOOL

DINT

DINT

Calculate 0 Decimal BOOL

Tag Name Value Style Data Type

Figure 15-80 MUL instruction rung and its Monitor Tags window.

Ladder logic program Input

L1
MUL
Multiply
Source A

Source B

Dest

Cases_Produced
60

Bottles_Per_Case
12

Bottles_Produced
720

Sw_2
<Local:1:I.Data.2>

Sw_1
<Local:1:I.Data.1>

Sw_1

Sw_2

Cases_Produced

Bottles_Per_Case

Sw_1

Sw_2

60

12

1

1

Decimal

Decimal

Decimal

Decimal

DINT

DINT

BOOL

BOOL

Bottles_Produced 720 Decimal DINT

Tag Name Value Style Data Type

pet73842_ch15_333-394.indd 375 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

376 Part 5 Math, Comparison, and Move Instructions

The DIV instruction is used to divide two numbers.
Figure 15-81 shows an example of a DIV instruction rung
along with its Monitor Tags window. The operation of the
rung can be summarized as follows:

• A constant (5) is used for Source A and a con-
stant (3) for Source B. Note that tags could have
been used for Source A or Source B.

• When the Calculate tag is true the DIV instruction
is executed.

• Source A (5) is divided by Source B (3) and the
result (1.6666666) is stored in the Dest tag Answer_
Real. Note that in this example a Real-type tag has
been used for its destination.

The program of Figure 15-82 is used as part of a parts
tracking system with three conveyors. The number of
parts in conveyor 1 and the number of parts in conveyor
2 are added to get the number of parts on conveyor 3.
The operation of the program can be summarized as
follows:

• Each time Conveyor_1_Sensor is actuated
the accumulated value of Counter_1_Parts is
incremented by 1.

• Each time Conveyor_2_Sensor is actuated
the accumulated value of Counter_2_Parts is
incremented by 1.

• The addition in the ADD instruction places the sum
of the accumulated values of the two counters in the
Conveyor_3_Parts tag.

• When the accumulated value for either counter is
equal to 150 the reset (RES) instructions for both
counters are enabled to automatically reset both
counter ACC values to zero.

• Both counters can also be reset manually at any
time by actuation of the Manual_Conveyor_Reset
button.

Comparison Instructions
Compare instructions are used to compare two values.
They can be used to see if two values are equal, if one
value is greater or less than the other, and so on. In
ControlLogix controllers, compare instructions are input
instructions that do comparisons by either using an ex-
pression or doing the comparison indicated by the specific
instruction. Figure 15-83 shows the Compare toolbar for
the ControlLogix controller.

The equal (EQU) instruction is used to test if two
values are equal. Values compared can be actual values
or tags that contain values. Figure 15-84 shows an exam-
ple of an EQU instruction rung along with its Monitor
Tags window. The operation of the rung can be summa-
rized as follows:

• The value stored at Source A is compared to the
value stored at Source B.

• If the values are equal, the instruction is
logically true.

• If the values are unequal, the instruction is
logically false.

• In this example Source A (25) is equal to Source B
(25) so the instruction is true and output Equal_PL
is on.

• Source A and Source B may be SINT, INT, DINT,
or REAL data types.

The not equal (NEQ) instruction is used to test two
values for inequality. Figure 15-85 shows an example of
an NEQ instruction rung. When Source A is not equal to
Source B, the instruction is logically true; otherwise, it
is logically false. In this example the two values are not
equal so the Not_Equal_PL is energized.

The less than (LES) instruction is used to check if a
value from one source is less than the value from a sec-
ond source. Figure 15-86 shows an example of an LES
instruction rung. When Source A is less than Source B,
the instruction is logically true; otherwise, it is logically
false. In this example Value_1 (100) is less than Value_2
(300) so the Less_Than_PL is energized.

The greater than (GRT) instruction is used to check
if a value from one source is greater than the value from
a second source. Figure 15-87 shows an example of a
GRT instruction rung. When Source A is greater than
Source B, the instruction is logically true; otherwise,

Figure 15-81 DIV instruction rung and its Monitor Tags
window.

Ladder logic program

DIV
Divide
Source A

Source B

Dest

5

3

Answer_Real
1.6666666

Calculate

Calculate

Answer_Real

1

1.6666666

Decimal

Float

BOOL

REAL

Tag Name Value Style Data Type

pet73842_ch15_333-394.indd 376 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Math, Comparison, and Move Instructions Part 5 377

it is logically false. In this example Value_1 (1420) is
greater than Value_2 (1200) so the Greater_Than_PL is
energized.

The compare (CMP) instruction performs a comparison
on the arithmetic operations specified by the expression.
The expression may contain arithmetic operators, compari-
son operators, and tags. The execution of a CMP instruction

Figure 15-82 Program used as part of a parts tracking system.

Conveyor_1_Sensor
<Local:1:I.Data.4>

Conveyor_2_Sensor
<Local:1:I.Data.5>

Ladder logic program

Conveyor_1_Parts
250

30

CTU
Count Up
Counter
Preset
Accum

Conveyor_1_Parts.DN

Conveyor_2_Parts
250

70

CTU
Count Up
Counter
Preset
Accum

Conveyor_1_Parts.ACC
30

Conveyor_2_Parts.ACC
70

Conveyor_3_Parts
100

Conveyor_2_Parts

ADD
Add
Source A

Source B

Dest

CU

DN

CU

DN

Conveyor_2_Parts.DN

Manual_Conveyor_Reset
<Local:1:I.Data.2>

Conveyor 1

Conveyor 2

Conveyor 3

RES

Conveyor_1_Parts

RES

L1

Inputs

Manual_Conveyor_Reset

Conveyor_1_Sensor

Conveyor_2_Sensor

Conveyor_1_Parts.CU

Conveyor_1_Parts.DN

Conveyor_1_Parts

Conveyor_1_Parts.PRE

Conveyor_1_Parts.ACC

Conveyor_3_Parts

Manual_Conveyor_Reset

Conveyor_2_Parts.CU

Conveyor_2_Parts.DN

Conveyor_1_Sensor

Conveyor_2_Parts

Conveyor_2_Parts.PRE

Conveyor_2_Parts.ACC

0

0

0

{ . . . }

{ . . . }

250

250

70

30

0

0

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

BOOL

BOOL

BOOL

BOOL

BOOL

0

100

0

Decimal

Decimal

Decimal

BOOL

BOOL

Conveyor_2_Sensor

COUNTER

COUNTER

DINT

DINT

DINT

DINT

DINT

Tag Name Value Style Data Type

Figure 15-83 Compare toolbar for the ControlLogix
controller.

CMP

Bit

LIM MEQ EQU NEQ LES GRT

Input/Output CompareTimer/Counter

pet73842_ch15_333-394.indd 377 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

378 Part 5 Math, Comparison, and Move Instructions

is slightly slower and uses more memory than the execu-
tion of the other comparison instructions. The advantage of
the CMP instruction is that it allows you to enter complex
expressions in one instruction. Figure 15-88 shows an ex-
ample of a CMP instruction rung. In this example the com-
parison operator found in the expression is the equivalent
of an EQU instruction. The comparison instruction is true
because Value_1 (300) is equal to Value_2 (300).

The program of Figure 15-89 is an example of the use
of comparison instructions used to test the accumulated
value of a counter. The operation of the program can be
summarized as follows:

• When the accumulated count is between 5 and 10
the GRT and LES instructions will both be logically
true so the PL_1 pilot light will be on.

• When the accumulated count is equal to 15, the
EQU instruction will be logically true so the PL_2
pilot light will be on.

• The PL_3 pilot light will be on at all times except
when the accumulated count is 20 at which time the
NEQ instruction is logically false.

• The counter is reset automatically when the accu-
mulated count reaches 25 or manually anytime the
Reset_PB is actuated.

Figure 15-84 EQU instruction rung and its Monitor Tags
window.

Value_1
25

Value_2
25

Equal_PL

Equal_PL
<Local:2:O.Data.2>

Ladder logic program
L2

Output

Tag Name Value Style Data Type

Equal_PL 1

25

25

Decimal

Decimal

Decimal

BOOL

DINT

DINT

-Value_1

-Value_2

EQU
Equal
Source A

Source B

Figure 15-85 NEQ instruction rung.

Value_1
10

Value_2
25

Not_Equal_PL
<Local:2:O.Data.3>

Ladder logic program
L2

Output

NEQ
Not Equal
Source A

Source B

Not_Equal_PL

Figure 15-86 LES instruction rung.

Value_1
100

Value_2
300

Less_Than_PL
<Local:2:O.Data.4>

Ladder logic program
L2

Output

LES
Less than (A<B)
Source A

Source B

Less_Than_PL

Figure 15-87 GRT instruction rung.

Value_1
1420

Value_2
1200

Greater_Than_PL
<Local:2:O.Data.5>

Ladder logic program
L2

Output

GRT
Greater than (A>B)
Source A

Source B

Greater_Than_PL

Figure 15-88 CMP instruction rung.

Compare
Expression Value_1 = Value_2

CMP

Equal_PL

Equal_PL
<Local:2:O.Data.2>

Ladder logic program
L2

Output

Tag Name Value Style Data Type

Equal_PL 1

300

300

Decimal

Decimal

Decimal

BOOL

DINT

DINT

-Value_1

-Value_2

pet73842_ch15_333-394.indd 378 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Math, Comparison, and Move Instructions Part 5 379

Move Instructions
The move (MOV) instruction is an output instruction that
can move a constant or the contents of one memory lo-
cation to another location. Figure 15-90 shows the Move
toolbar and instruction for the ControlLogix controller.
The MOV instruction is used to copy data from a source to

a destination. Both the source and the destination data type
of a MOV instruction may be INT, DINT, SINT, or REAL.

The program of Figure 15-91 is an example of how the
MOV instruction can be used to create a variable preset
timer. The operation of the program can be summarized
as follows:

• Actuating the PB_10s button executes its MOV in-
struction to transfer 10000 to the timer preset value
setting the delay period for 10 seconds.

• Actuating the PB_15s button executes its MOV in-
struction to transfer 15000 to the timer preset value
setting the delay period for 15 seconds.

• Closing the Timer_Start switch starts the timer
timing.

• While the timer is timing, the pilot light PL_1 is on
for the duration of the timer preset period.

• When the timer times out, PL_1 turns off and PL_2
turns on.

Figure 15-89 Comparison instructions used to test the accumulated value of a counter.

Ladder Logic program

Outputs L2

PL_3

L1 Inputs

Count_PB

Reset_PB

Count Up
Counter
Preset
Accum

C1
25

0

CTU

Greater Than (A>B)
Source A

Source B

C1.ACC
0
5

GRT
Less Than (A<B)
Source A

Source B

C1.ACC
0

10

LES

CU

Equal
Source A

Source B

C1.ACC
0

15

EQU

Count_PB
<Local:1:I.Data.1>

C1.DN

PL_1
<Local:2:O.Data.1>

RES
C1

PL_2
<Local:2:O.Data.2>

Not Equal
Source A

Source B

C1.ACC
0

20

NEQ

PL_3
<Local:2:O.Data.3>

Reset_PB
<Local:1:I.Data.2>

DN

PL_2

PL_1

Figure 15-90 Move toolbar for the ControlLogix
controller.

MOV MVM AND OR XOR SWPB NOT CLR BTD

Move/Logical

Move
Source

Dest

MOV

pet73842_ch15_333-394.indd 379 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

380 Part 5 Math, Comparison, and Move Instructions

Combining Math, Comparison,
and Move Instructions

Combining math, comparison, and move instructions
provides a PLC with the ability to perform more complex
operations. Figure 15-92 shows a PAC Logix program
designed so that the BCD_Display displays the setting of
the BCD_TWS (thumbwheel switch). Both the MOV and
EQU instructions form part of the program. The operation
of the program can be summarized as follows:

• The BCD_Display board monitors the decimal
setting of the BCD_ TWS.

• The MOV instruction is used to move the data
(in the form of BCD) from the BCD_TWS to the
BCD_Display.

• The setting of BCD_TWS is compared to the deci-
mal reference number 20 (BCD 100000) stored in
Source B of the EQU instruction.

• The EQUAL_ PL output is energized whenever
the PL_Equal_Sw is true (closed) and the

Figure 15-91 MOV instruction used to create a variable preset timer.

Ladder Logic program Outputs
L2

PL_2

L1
Inputs

PB_10s

PB_15s

Timer_Start

Move
Source
Dest

10000
T1.PRE
10000

MOV

PB_10s
<Local:1:I.Data.1>

Move
Source
Dest

15000
T1.PRE
10000

MOV

PB_15s
<Local:1:I.Data.2>

TIMER ON DELAY
Timer
Preset
Accum

T1
10000

0

TON

Timer_Start
<Local:1:I.Data.3>

EN

T1.TT
PL_1

<Local:2:O.Data.1>

T1.DN
PL_2

<Local:2:O.Data.2>

DN

PL_2

PL_1

Figure 15-92 Monitoring the setting of a thumbwheel switch.

Ladder logic programInputs

PL_Equal_Sw

BCD_TWS

(All 16 bits)

Thumbwheel switch

L1

Decimal

MOV

PL_Equal_Sw
<Local:1:I.Data.0>

Equal_PL
<Local:2:O.Data.0>

Move
Source BCD_TWS
 2#0000_0000_0000_0000_0000_0000_0010_0000
Dest BCD_Display
 2#0000_0000_0000_0000_0000_0000_0010_0000

EQU
Equal
Source A BCD_TWS
 2#0000_0000_0000_0000_0000_0000_0010_0000
Source B Source_B
 2#0000_0000_0000_0000_0000_0000_0010_0000

Outputs

Equal_PL

BCD_Display

(All 16 bits)

Decimal

0 0 02

L2

20 Decimal = 100000 BCD

0 0 2 0

pet73842_ch15_333-394.indd 380 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Math, Comparison, and Move Instructions Part 5 381

Figure 15-93 PLC program for three-speed control of a conveyor system.

Conveyor_Start

Conveyor_Stop

Conveyor_Stop
<Local:1:I.Data.0>

Conveyor_Start
<Local:1:I.Data.1>

Weight_Normal
<Local:2:0.Data.0>

Weight_Below_Normal
<Local:2:0.Data.1>

Weight_Above_Normal
<Local:2:0.Data2>

Source A
Greater Than (A>B)

LES

GRT

Less Than (A<B)

Source B

Source A

Source B

Equal
EQU

Source A

Source B

Conveyor_Load_Cell
50.0

50

Internal_Relay

Ladder logic programInputs

L1 L2

Internal_Relay

Conveyor_Load_Cell
50.0

50

Conveyor_Load_Cell
50.0

50

Internal_Relay

Weight_Normal

Weight_Below_Normal

Outputs

Internal_Relay

Internal_Relay

Conveyor_Load_Cell

Stop

Start

Weight_Above_Normal

value of BCD_TWS is equal to 20 decimal
(BCD 100000).

Figure 15-93 shows the PLC program for speed con-
trol of a three-speed motor conveyor system. The system
comes equipped with a weight detector and three-speed
motor controller. It is designed to move the conveyor belt
at a certain speed when a specific value of weight is on
the conveyor. If the weight exceeds the preset value, the
conveyor speed increases to compensate for the increase in
weight. If the weight falls below the preset value, the con-
veyor speed is reduced to compensate for the decrease in
weight. The operation of the program can be summarized
as follows:

• When the Conveyor_Start button is pressed,
Internal_Relay seals in, and the conveyor begins
moving.

• An analog input is used as the Source A location,
which stores the data obtained from the weight
detector.

• The reference, or Source B value is set at 50.
• The Conveyor_Load_Cell tag stores the data from

the weight detector.
• If the data in the Conveyor_Load_Cell is equal to

the Source B value, the motor operates at normal
speed.

• If the data in the Conveyor_Load_Cell is above the
reference value, due to more weight on the con-
veyor, the Weight_Above_Normal output is ener-
gized and a signal is sent to the motor controller to
change to a higher speed.

• If the data in the Conveyor_Load_Cell is below the
reference value, due to less weight on the conveyor, the
Weight_Below_Normal output is energized and a sig-
nal is sent to the motor controller to decrease its speed.

Figure 15-94 shows the parts tracking program for a
conveyor system consisting of a main conveyor and rejec-
tion conveyor. If a part fails inspection, the diverter gate is
energized and the part is routed onto the reject conveyor.

pet73842_ch15_333-394.indd 381 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

382 Part 5 Math, Comparison, and Move Instructions

Figure 15-94 Conveyor parts tracking program.

Main conveyor

Main conveyor LS

Reset PB

Diverter gate

Reject conveyor LS
Reject conveyor

Inputs
Main_Conveyor_LS

<Local:1:I.Data.0>

Main_Conveyor_LS
<Local:1:I.Data.0>

Reject_Conveyor_LS
<Local:1:I.Data.1>

Reject_Conveyor_LS

Reject_Conveyor_LS
<Local:1:I.Data.1>

Reset_PB
<Local:1:I.Data.2> Main_Conveyor_Counter Reject_Conveyor_Counter

Ladder logic program

RES RES
CLR

TOD

SUB

CTU

CTU

CU

DN

CU

DN

Count Up
Counter
Preset
Accum

Count Up
Counter
Preset
Accum

Main_Conveyor_Counter

Main_Conveyor_Counter.ACC

Reject_Conveyor_Counter

Reject_Conveyor_Counter.ACC

5000

5000

0

0

0

0

0

0

0

0

Subtract

Data_Format_Conversion

Data_Format_Conversion

Data_Format_Conversion

Source A

Source B

To BCD

BCD_Output_Display

Source

Dest

Dest

Dest

Clear

Reset_PB

L1

Output

L2

0 0 0 0

BCD_Display

Main_Conveyor_LS

Each conveyor has a limit switch used to count parts as
they pass by. The operation of the parts tracking program
of the process can be summarized as follows:

• The Main_Conveyor_Counter.ACC contains the
total number of parts that have been counted.

• The Reject_Conveyor_Counter.ACC contains the
number of parts that have been rejected.

• The SUB instruction is used to provide a running
count of items that have passed inspection and has
as its Destination the Data_Format_Conversion
tag.

• BCD_Output_Display is used to show the running
count for passed items.

• Reset_PB switch is activated to reset both counters
to zero and clear the BCD_ Output_Display to zero.

pet73842_ch15_333-394.indd 382 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Math, Comparison, and Move Instructions Part 5 383

1. Construct a ControlLogix ladder rung with a math
instruction that executes when a toggle switch is
closed to add the tag named Pressure_A (value 680)
to the constant of 50 and store the answer in the tag
named Result.

2. Construct a ControlLogix ladder rung with a math
instruction that executes when two normally open limit
switches are closed to subtract the tag named Count_1
(value 60) from the tag named Count_2 (value 460)
and store the answer in the tag named Count_Total.

3. Construct a ControlLogix ladder rung with a math
instruction that executes when either one of two
normally open pushbuttons is closed to multiply the

tag named Cases (value 10) by the constant 24 and
store the answer in the tag named Cans.

4. Construct a ControlLogix ladder rung with a com-
pare instruction that will energize a pilot light output
anytime the value stored at Data_3 is 60.

5. Construct a ControlLogix ladder rung with a compare
instruction that will energize a pilot light output
anytime the value stored at Data_2 is not the same as
that stored at Data_6.

6. Construct a ControlLogix ladder rung with compare
instructions that will energize a pilot light output
anytime the pressure of a system goes above 300 psi
or below 100 psi.

PART 5 REVIEW QUESTIONS

PART 5 PROBLEMS

1. While checking the operation of the parts tracking
system (Figure 15-80) with the Monitor Tags win-
dow, you note that the value of Conveyor_Sensor_1
remains at 1 with parts passing by. What can you
surmise from this? Why?

2. Three conveyors are delivering the same parts in dif-
ferent packages. A package can hold 12, 24, or 18
parts. Proximity switches installed on each of the
conveyor lines are used to advance the accumulated

value of the three counters. Write a ControlLogix
program that uses multiply and add instructions to
calculate the sum of the parts.

3. A single pole switch is used in place of the two
pushbuttons for the variable preset timer program
(Figure 15-91). When this switch is closed the
timer is to be set to 10 seconds and when open to
15 seconds. Make the necessary changes to the
program.

pet73842_ch15_333-394.indd 383 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

384

Part Objectives

After completing this part, you will be able to:

 • Describe the difference between ladder logic and
function block diagram programming

 • Recognize the basic elements of a function block
diagram

 • Write and read a function block diagram

Part 6 Function Block
Programming

Function Block Diagram (FBD)
A function block diagram (FBD) is a graphical depic-
tion of process flow using simple and complex intercon-
necting blocks. It is similar to a ladder logic diagram,
except that function blocks replace the interconnec-
tion of contacts and the coils. In addition, there are no
power rails.

A function block circuit is analogous to an electrical
circuit where links and wires depict signal paths between
components. The workplace is known as a sheet and con-
sists of function blocks joined together with lines called
wires. The structure of a function block program, or rou-
tine, is shown in Figure 15-95. A function block diagram
consists of four basic elements: function block, refer-
ences, wire connectors, and wires. Data flows on a wire
from wire connectors or input references, through the
function block, and then is passed on to an output refer-
ence. The line type of the link between function blocks in-
dicates what type of data is present. A dash line indicates

Figure 15-95 Structure of function block or routine.

Input wire connector

Input reference

Function block

Value

Value

Value

Value

Wire

Value

Value

Output referenceBoolean
(0 or 1)

Integer
or real

a Boolean signal path (e.g., 0 or 1) and a solid line indi-
cates an integer or real value.

Function blocks are graphical representations of ex-
ecutable code. A function block can take one or more
inputs and make decisions or calculations and then gener-
ate one or more outputs. There are many different types of
function blocks included in the programming software to
perform various common tasks. In addition, customized
Add-On instructions can be created by the programmer
for sets of commonly used logic. Once an Add-On in-
struction is defined in a project, it appears on the instruc-
tion toolbar and behaves like the standard instructions.

Figure 15-96 shows an example of a BAND (Boolean
AND) function block. The information associated with a
function block can be summarized as follows:

• Inputs are shown entering from the left and outputs
exiting on the right.

• The function block type is shown within the block.
• A tag name for the block is placed above it.

pet73842_ch15_333-394.indd 384 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Function Block Programming Part 6 385

Figure 15-96 Example of a BAND (Boolean AND) function block.
Source: Image Courtesy of Rockwell Automation, Inc.

Properties - Tag_Name

Vis

I

I

I

I

I

I

I

I

I

O

O

Name

Parameters Tag

Type Description

Enable Input. If false, the instru...

Boolean Input to the instruction.

Boolean Input to the instruction.

Boolean Input to the instruction.

Boolean Input to the instruction.

Boolean Input to the instruction.

Boolean Input to the instruction.

Boolean Input to the instruction.

Boolean Input to the instruction.

Enable Output.

The result of ANDing all eight

EnableIn

In1

In2

In3

In4

In5

In6

In7

In8

EnableOut

Out

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

1

1

1

1

1

1

1

1

1

0

0

Value

In 1
1 0

1
1

1

Out

BAND

Tag_Name

Click to open properties box

Boolean And

In 2
In 3
In 4

...

Figure 15-97 Input and output references.

Input references

IREF

IREF

OREF

IREF

OREF

Output references

• The names of the inputs and outputs are shown
within the block.

• The default view of the block has some but not all
of the input and output parameters visible when the
box is placed into the program.

• The properties box, used to set the option of input
and output parameters, is displayed by clicking
the selection button located at the upper right hand
corner of the block.

• The 1 and 0 next to the inputs and outputs identify
the logical state of the input and output pins for the
instruction.

• The dots on the input and output pins indicate
BOOL type data is required.

References represent tags that are linked to values
stored in a controller’s memory. The two types of refer-
ences, input and output, are illustrated in Figure 15-97. An
input reference, or IREF, is used to receive a value from
an input device or tag. An output reference, or OREF, is

used to send a value to an output device or tag. When you
use an IREF or an OREF you must create a tag or assign
an existing tag to the element. You may use any of the data
types for an IREF or OREF.

Function blocks can be connected to other function
blocks by connecting their outputs to the input of an-
other function block using wires and pins (Figure 15-98).
Wires map a signal’s path and show the flow of control-
ler execution. Each element in a function block diagram
contains pins. Elements are connected by moving wires
from input pins to output pins or vice versa. The pins on
the left of a function block are input pins, and those on the
right are output pins. To wire two elements together, click
the output pin of the first element (A) and then click the
input pin of the other element (B). A green dot shows a
valid connection point.

Wire connectors are used to create a path without
using a wire. When there are many function blocks on a
sheet, or the function blocks are far apart, wire connectors
used in place of wires can make the logic easier to read.

pet73842_ch15_333-394.indd 385 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

386 Part 6 Function Block Programming

Wire connectors are also used to connect function blocks
that are on a different sheet of the same function block
routine, as illustrated in Figure 15-99. The use of wire
connectors can be summarized as follows:

• An output wire connector, or OCON, sends a value
or signal to an input wire connector, or ICON.

• Each output wire connector must have at least one
corresponding input wire connector.

• Each output wire connector requires a unique tag
name and the corresponding input connector must
have the same name.

• Multiple input wire connectors can reference
the same output wire connector. This lets you
share data at several points in your function block
diagram.

Figure 15-100 illustrates the signal flow and execution
of an FBD program. The operation can be summarized as
follows:

• Each program scan sets all the FBD blocks starting
on the left side of the signal flow and continues to
evaluate all blocks according to the signal flow until
the final output is determined.

• The location of a block does not affect the order in
which the blocks execute.

Figure 15-99 OCON and ICON wire connectors.

Speed

Speed

OCON

ICON

Sheet 1

Output wire connector

Sheet 2

Input wire connector

Figure 15-100 Signal flow and execution of an FBD program.

Function blockInput reference

Input reference

Output reference

Solenoid

Output wire
connectorInput wire

connector

Input reference

Function block
IREF

OREF

OCON

ICON

IREF

IREF

Function block

Figure 15-98 Function block diagram wire and pins.

Input
pin

Wire

Output
pin Output

pin

Output
pin

Output
pin

Input
pin

Input
pins

Wire

Wire

Wiring elements
...

A B

pet73842_ch15_333-394.indd 386 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Function Block Programming Part 6 387

• The inputs of a block require data to be available
before the controller can execute that block.

• If function blocks are not wired together, it does not
matter which block executes first as there is no data
flow between the blocks.

• The interconnected line between the blocks indi-
cates what type of signal is present.

Data latching refers to how the controller verifies that
the data present at the input to a function block are valid.
If you use an IREF to specify input data for a function
block instruction, as illustrated in Figure 15- 101, the data
in that IREF are latched (won’t change) for the scan of
the function block routine. The IREF latches data from
program-scoped and controller-scoped tags. The control-
ler updates all IREF data at the beginning of each scan.
A function block routine executes in the following order:

• The controller latches all data values in IREFs.
• The controller executes the other function blocks

in order.
• The controller writes outputs in OREFs.

When you add a Function Block instruction, the block
appears with a set of pins for the default parameters, as il-
lustrated in Figure 15-102. The rest of the pins are hidden.
You can hide or show a pin by:

• Clicking on the Parameters tab in the Properties dia-
log box.

• In the Properties dialog box, on the Parameters tab,
clear the Vis check box to hide the pin.

Figure 15-101 IREF is latched for the scan of the function
block routine.

...

Start_PB

IREF

• Select the Vis check box to show the pin.
• Click OK.

To create a feedback loop around a block, wire an out-
put pin of the block to an input pin of the same block.
The input pin will receive the value of the output that was
produced on the last scan of the function block. The loop
contains only a single block, so execution order does not
matter. Figure 15-103 shows an example of a feedback
loop used to reset an on-delay timer. When the timer fin-
ishes timing its DN bit is used to reset the timer.

When a group of function blocks are in a feedback
loop, the controller cannot determine which block to
execute first. This problem is resolved by placing an
Assume Data Available indicator mark at the input pin
of the function block that should be executed first. In the
example shown in Figure 15-104, the input for block 1
uses the data from block 3 that were produced in the
previous scan. To place the indicator, click on the inter-
connecting wire and select the Assume Data Available
choice.

Figure 15-103 Feedback loop used to reset an on-delay timer.

TONR_01

TONR

Timer On Delay with Reset

TimerEnable

PRE

ACC

DN

Reset

Feedback loop

Timer_Enable_Bit

Preset_Value

Accumulated_Time

Figure 15-102 Using the Parameters tab to show
or hide a pin.
Source: Image Courtesy of Rockwell Automation, Inc.

Click this buttom
to view block properties

Parameters* Tag

Vis Name Value Type

BOOL1
0.0 REAL

REAL

Enableln
SourceA
SourceB

I
I
I

pet73842_ch15_333-394.indd 387 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

388 Part 6 Function Block Programming

FBD Programming
Figure 15-105 illustrates the setup procedure for FBD
programming. The steps to be followed can be summa-
rized as follows:

• Right click on the MainProgram file and select New
Routine from the pop-up menu.

• Select the Function Block diagram entry from the
Type window.

• Enter a name for the Routine (e.g., FDB_Sample).
• You will now see the new program (FDB_Sample)

listed under MainProgram.
• Left clicking the FBD_Sample twice opens the

graphic development window.
• FBD instructions selected from the Language Element

toolbar are used in the development of the program.
• Extra sheets can be added when the current sheet is

full by clicking the add sheet icon. Movement be-
tween sheets is provided by left and right arrows.

The MainRoutine is always a ladder logic program in
RSLogix 5000 software, and all other routines are called
from the MainRoutine. Therefore, the MainRoutine will
have one unconditional rung with a jump to subroutine
(JSR) calling FBD_Sample. The FBD program will

execute from the JSR instruction. No subroutine or return
subroutine instruction in the FBD is necessary.

Function block programs are similar to ladder logic
programs, except that the process is visualized in the form
of function blocks instead of ladder rungs. Figure 15-106
shows a comparison between ladder logic and the FBD
equivalent for a three-input AND ladder logic rung. The
operation of the FBD can be summarized as follows:

• When the inputs represented by Sensor_1, Sensor_2,
and Sensor_3 are true (value 1) the BAND (Boolean
AND) function block will be true.

• The BAND block executes to set output Caution_PL
true and switch the pilot light on.

• The 0 to the right of the input reference and out pin
indicates its logic state. A 0 indicates the state of the
tag is false, while a 1 signifies it is true.

• The same field input sensors and output pilot light de-
vices and tags can be used with either program.

• The XIC and OTE contact and coil instructions have
been replaced by the BAND function block.

Figure 15-107 shows a comparison between ladder
logic and the FBD equivalent for a two-input OR lad-
der logic rung. As with ladder OR logic, if any of the
two inputs is true the BOR function block will be true.
In this example, with the BOR function block true, the
output reference tag SOL_1 will be true, energizing the
solenoid.

Figure 15-108 shows a comparison between ladder
logic and the FBD equivalent for a combination of mul-
tiple inputs. The operation of the FBD can be summarized
as follows:

• The alarm will be energized if either input In1 or
In2 to the BOR block is true.

Figure 15-104 Assume Data Available indicator marker.

...

Feedback loop

Assume Data
Available indicator

Block 1 ...Block 2 ...Block 3

Figure 15-105 Setup procedure for FDB programming.
Source: Image Courtesy of Rockwell Automation, Inc.

IREF OREF ICON

Add sheet

MainProgram

Move Sheet

OCON Function blocks

Other function blocks

Program Tags

MainRoutine

FBD_Sample

pet73842_ch15_333-394.indd 388 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Function Block Programming Part 6 389

• Input In2 of the BOR block will be true only when
all three of the sensor switches are closed.

• Input In1 of the BOR block will be true only when
the Temp_Sw is closed at the same time as the
Press_Sw is open.

• The BNOT function block executes similarly to an
XIO ladder logic contact instruction. When In is 0,
Out is 1 and vice versa.

Figure 15-109 shows a comparison between ladder
logic and the FBD equivalent for the motor start/stop

control circuit. The logic sequence for starting and stop-
ping the motor can be summarized as follows:

• When Motor_Start button is closed the BOR output
will become true making the BAND output true.

• Motor_Run output energizes the contactor coil, the
contacts of which close to start the motor operating.

• When the Motor_Start button is then opened
the output of the BOR block remains true due to
the 1 status of the feedback signal from the
Motor_Run tag.

Figure 15-106 Comparison between ladder logic and the FBD equivalent for a three-input AND ladder logic rung.

Caution_PL

...

BAND_01

BAND

Boolean And

In1

In2

Out

In3

Sensor_1

Ladder logic

FBD equivalent

Output
L2

Caution_PL

Sensor_1
<Local:1:I.Data.1>

Sensor_2
<Local:1:I.Data.2>

Sensor_3
<Local:1:I.Data.3>

00

Sensor_2
0

Sensor_3
0

Caution_PL
<Local:2:O.Data.4>

L1

Inputs

Sensor_1

Sensor_2

Sensor_3

Figure 15-107 Comparison between ladder logic and the FBD equivalent for a
two-input OR ladder logic rung.

SOL_1

...

BOR_01

BOR

Boolean Or
In1

In2

OutSw_1

FBD equivalent

00

Sw_2
0

Sw_1
<Local:1:I.Data.3>

Sw_2
<Local:1:I.Data.4>

SOL_1
<Local:2:O.Data.4>

Ladder logic

Inputs

L1

Sw_1

Sw_2

L2

Output

SOL_1

pet73842_ch15_333-394.indd 389 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

390 Part 6 Function Block Programming

Figure 15-108 Comparison between ladder logic and the FBD equivalent for a combination of multiple inputs.

FBD equivalent

Alarm

...

BAND_01

BAND

Boolean And

In1

In2

Out

Temp_Sw

0

0

Press_Sw
0 1

Sensor_1
0

Sensor_2
0

Sensor_3
0

...

BOR_01

BOR

Boolean Or

In1

In2

Out
0

...

BAND_02

BAND

Boolean And

In1

In2

Out
0

In3

...

BNOT_01

BNOT

Boolean Not

In Out

Temp_Sw
<Local:1:I.Data.1>

Sensor_1
<Local:1:I.Data.3>

Sensor_2
<Local:1:I.Data.4>

Press_Sw
<Local:1:I.Data.2>

Sensor_3
<Local:1:I.Data.5>

Alarm
<Local:2:O.Data.4>

Ladder logic

Inputs

Temp_Sw

L1

Sensor_1

Sensor_2

Sensor_3

Press_Sw

L2

Output

Alarm Alarm

Figure 15-109 Comparison between ladder logic and the FBD equivalent for a motor start/
stop control circuit.

...

BAND_01

BAND

Boolean And

In1

In2

Out
0

1

Start button for
motor

Motor_Start

Stop button for
motor

Motor_Stop

Motor
contactor coil

Motor_Run
0

Start button for
motor

Motor_Start
<Local:1:I.Data.3>

Motor contactor coil
Motor_Run

<Local:2:O.Data.4>

Stop button for
motor

Motor_Stop
<Local:1:I.Data.4>

Motor contactor coil
Motor_Run

<Local:2:O.Data.4>

Ladder logic

...

BOR_01

BOR

Boolean Or

In1

In2

Out
0

Inputs
L1

Motor_Start

Motor_Stop

Start

Stop

FBD equivalent

L2Output

CMotor_Run

pet73842_ch15_333-394.indd 390 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Function Block Programming Part 6 391

• When the Motor_Stop button is opened the output
of the BAND block turns false to de-energize the
contactor coil and stop the motor.

Figure 15-110 shows a comparison between ladder
logic and the FBD equivalent for the 10 second TON (on-
delay timer) and TONR (on-delay with reset). The opera-
tion of the FBD can be summarized as follows:

• When the Timer_Sw is closed, the TONR func-
tion block timer turns true and starts accumulating
time.

• The accumulated time is monitored by the output
reference tag named ACC.

• The EN (enable bit) output changes to 1 to turn on
the EN_PL.

• The TT (timer timing bit) output changes to 1 to
turn on the TT_PL.

• The timer times out after 10 seconds to set the DN
(done bit) to 1 and turn on the DN_PL and reset the
TT bit to zero and turn off the TT_PL.

• The EN bit and EN_PL remain on as long as the
Timer_Sw stays toggled closed.

• Opening the Timer_Sw resets all outputs as well as
the accumulated value to zero.

• The timer can also be reset by way of the Reset
input.

Figure 15-111 shows a comparison between ladder logic
and the FBD equivalent for the Up/Down counter used to
limit the number of parts stored in a buffer zone to 50. The
operation of the FBD can be summarized as follows:

• The CTUD up/down counter function block accu-
mulated value is initially reset by momentary actua-
tion of the Restart_Button.

• The accumulated count is monitored by the output
reference tag named ACC.

• Each time a part enters the buffer zone, the Enter_
Limit_Sw is actuated and the CUEnable input turns
true to increment the count by 1.

• Each time a part exits the buffer zone, the Exit_
Limit_Sw is actuated and the CDEnable input turns
true to decrement the count by 1.

• Whenever the number of parts in the buffer zone
reaches 50 the DN bit is set to 1 and the output of

10000

0
DN_PL

0
TT_PL

0
EN_PL

Status_Timer.DN
DN_PL

<Local:2:O.Data.3>

Status_Timer.TT

Input
L1

TT_PL
<Local:2:O.Data.2>

Status_Timer.EN

ENTimer On Delay
Timer
Preset
Accum

Status_Timer
10000

0

EN_PL
<Local:2:O.Data.1>

DN

Timer_Sw
<Local:1:I.Data.6>

TON

Ladder logic

FBD equivalent

TONR_01

...TONR

Timer On Delay with Reset

TimerEnable ACC

PRE

Reset

EN

TT

DN

Timer_Sw

Outputs L2

TT_PL

EN_PL

0
ACC_Value

0

10000
Timer_Sw

DN_PL

Figure 15-110 Comparison between ladder logic and the FBD equivalent for a
10 second TON and TONR timer.

pet73842_ch15_333-394.indd 391 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

392 Part 6 Function Block Programming

• When a function block routine executes, all sheets
execute.

• Using one sheet for each device that is to be pro-
grammed helps organize your program and make it
easier to understand.

• The use of the OCON and ICON named ACC
enables the function blocks to be on different sheets
of the same function block routine.

• The numbers and letters under the ACC output
indicate the sheet number and location on the sheet
where the output is used.

the BNOT block is reset to zero. This de-energizes
the Conveyor_Contactor to stop the conveyor motor
from delivering more parts to the buffer zone.

Figure 15-112 shows a comparison between ladder
logic and the FBD equivalent for the program used to test
the accumulated value of a counter. The operation of the
FBD can be summarized as follows:

• The function block routine is broken into four sheets.
• The order of the sheets does not affect the order in

which the function blocks execute.

50
50

0
Exit_Limit_Sw

0
Restart_Button

1
Conveyor_Contactor

L1 Inputs Count Up
Counter
Preset
Accum

Counter_1
50

0

CTU

RES
Counter_1

Restart_Button
<Local:1:I.Data.1>

Enter_Limit_Sw
<Local:1:I.Data.3>

Ladder logic

CTUD_01

...CTUD

Count Up/Down

CUEnable ACC

CDEnable

PRE

Reset

DN

L2Output

Conveyor_Contactor C

...BNOT

Boolean Not

In Out

0
ACC

0

0
Enter_Limit_Sw

Count Down
Counter
Preset
Accum

Counter_1
50

0

CTD

Counter_1.DN

Exit_Limit_Sw
<Local:1:I.Data.4>

Conveyor_Contactor
<Local:2:O.Data.2>

Restart_Button

Enter_Limit_Sw

Exit_Limit_Sw

FBD equivalent

BNOT_01

CU

DN

CD

DN

Figure 15-111 Comparison between ladder logic and the FBD equivalent for an Up/Down counter
application.

pet73842_ch15_333-394.indd 392 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Function Block Programming Part 6 393

25
25

0

L1 Inputs

Count_PB
<Local:1:I.Data.1>

Ladder logic

CTUD_01

...CTUD

Count Up/Down

CUEnable ACC

CDEnable

PRE

Reset

DN

L2Outputs

PL_1

PL_2

PL_3

0
ACC

2-B2 3-B2

4-B2

0

0
Count_PB

0
Reset_PB

Sheet 1 of 4 Sheet 2 of 4

Sheet 3 of 4 Sheet 4 of 4

C1_DN

PL_1
<Local:2:O.Data.1>

Count_PB

Reset_PB

FBD equivalent

...BOR

Boolean Or

In2

In1
Out

BOR_01

5
5

10
10

PL_1

0

0

PL_2

GRT_02

...GRT

Greater Than (A>B)

Source A

Source B Dest
0

0

...LES

Less Than (A<B)

Source B

Source A
Dest

LES_02

...BAND

Boolean And

In2

In1
Out

BAND_01

Count Up
Counter
Preset
Accum

C1
25

0

CTU

DN

C1
RES

Less than (A<B)
Source A

Source B

C1.ACC
0

10

LES
Greater than (A>B)
Source A

Source B

C1.ACC
0
5

GRT

PL_2
<Local:2:O.Data.2>

Equal
Source A

Source B

C1.ACC
0

15

EQU

PL_3
<Local:2:O.Data.3>

Reset_PB
<Local:1:I.Data.2>

Not Equal
Source A

Source B

C1.ACC
0

20

NEQ

ACC

0
ACC

0

...EQU

Equal

SourceB

SourceA Dest

EQU_01

PL_3
0

ACC

20
20

15
15

1-C2 1-C2

0

...NEQ

Not Equal

SourceB

SourceA Dest

NEQ_01

1-C2

CU

Figure 15-112 Comparison between ladder logic and the FBD equivalent for a program used to test the accumulated
value of a counter.

pet73842_ch15_333-394.indd 393 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

394 Part 6 Function Block Programming

PART 6 REVIEW QUESTIONS

PART 6 PROBLEMS

1. Compare the graphical representation of a function
block diagram to that of a logic ladder diagram.

2. Name the four basic elements of an FBD.

3. What do the solid and dashed interconnecting lines
between FBD function blocks indicate?

4. What is an Add-On instruction?

5. How are the input and output parameter options for
a function block set?

6. What does the dot on an input or output pin of a
function block indicate?

7. Compare the functions of input and output refer-
ence tags.

8. Which pins of a function block are inputs and
which are outputs?

9. Explain the role of input and output wire
connectors.

10. How does the program scan function for an FBD
program?

11. Explain data latching as it applies to function block
inputs.

12. How is a function block feedback loop created?

13. What is the Assume Data Available indicator
used for?

14. Outline how an FBD program is initiated.

1. Write an FBD program that will cause the output,
solenoid SOL_1, to be energized when pushbutton
PB_1 is open and PB_2 is closed, and either limit
switch LS_1 is open or limit switch LS_2 is closed.
Assume all pushbuttons and limit switches are of the
normally open type.

2. Modify the motor start/stop FBD program
(Figure 15-109) to include a second start/stop
pushbutton station.

3. You are required to change the on-delay time of the
10 second timer program (Figure 15-110) to 1 minute.
What changes would have to be made to the FBD
program?

4. Modify the Up/Down counter FBD program
(Figure 15-111) to include the following pilot
lights:
• PL_1 to come on when a part enters
• PL_2 to come on when a part exits
• PL_3 to come on when the buffer zone is full

5. Modify the test accumulated value of a counter FBD
program (Figure 15-112) as follows:
• PL_1 to be on for an accumulated count between

0 and 5
• PL_2 to be on for an accumulated count of 12
• PL_3 to be on at all times except for when the

accumulated count is 15.

pet73842_ch15_333-394.indd 394 03/11/15 7:34 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

395

Glossary

1’s complement The system used to represent negative numbers in a
personal computer and a programmable logic controller.

2’s complement A numbering system used to express positive and
negative binary numbers.

A

Access To locate data stored in a programmable logic controller
system or in computer-related equipment.

Accumulated value The number of elapsed timed intervals or
counted events.

Actuator An output device normally connected to an output module.
Examples are an air valve and cylinder.

Address A code that indicates the location of data to be used by a
program, or the location of additional program instructions.

Algorithm Mathematical procedure for problem solving.

Alias tag References a memory location that has been defined by
another tag.

Alphanumeric Term describing character strings consisting of any
combination of letters, numerals, and/or special characters (e.g., A15$)
used for representing text, commands, numbers, and/or code groups.

Alternating current (AC) input module An input module that
converts various alternating current signals originating at user devices
to the appropriate logic-level signal for use within the processor.

Alternating current (AC) output module An output module that
converts the logic-level signal of the processor to a usable output signal
to control a user alternating current device.

Ambient temperature The temperature of the air surrounding a
module or system.

American National Standard Code for Information Interchange
(ASCII) An 8-bit (7 bits plus parity) code that represents all characters
of a standard typewriter keyboard, both uppercase and lowercase, as
well as a group of special characters used for control purposes.

American National Standards Institute (ANSI) A clearinghouse
and coordinating agency for voluntary standards in the United States.

American wire gauge (AWG) A standard system used for designating
the size of electrical conductors. Gauge numbers have an inverse
relationship to size; larger numbers have a smaller diameter.

Analog device Apparatus that measures continuous information
(e.g., voltage or current). The measured analog signal has an infinite
number of possible values. The only limitation on resolution is the
accuracy of the measuring device.

Analog input module An input circuit that employs an analog-to-
digital converter to convert an analog value, measured by an analog
measuring device, to a digital value that can be used by the processor.

Analog output module An output circuit that employs a digital-to-
analog converter to convert a digital value, sent from the processor, to
an analog value that will control a connected analog device.

Analog signal Signal having the characteristic of being continuous
and changing smoothly over a given range rather than switching
suddenly between certain levels, as with discrete signals.

Analog-to-digital (A/D) converter A circuit for converting a varying
analog signal to a corresponding representative binary number.

AND (logic) A Boolean operation that yields a logic 1 output if all
inputs are 1, and a logic 0 if any input is 0.

Arithmetic capability The ability to do addition, subtraction,
multiplication, division, and other advanced math functions with the
processor.

Array A group of data, of the same type, under a common name.

ASCII-input module Converts ASCII-code input information from an
external peripheral into alphanumeric information a PLC can understand.

ASCII-output module Converts alphanumeric information from the
PLC into ASCII code to be sent to an external peripheral.

Asynchronous Recurrent or repeated operations that occur in
unrelated patterns over time.

Automatic control A process in which the output is kept at a desired
level by using feedback from the output to control the input.

Auxiliary power supply A power supply not associated with the
processor. Auxiliary power supplies are usually required to supply
logic power to input/output racks and to other processor support
hardware and are often referred to as remote power supplies.

B

Backplane A printed circuit board, located in the back of a chassis,
that contains a data bus, power bus, and mating connectors for modules
to be inserted in the chassis.

Base tag A definition of the memory location at which a data element
is stored.

BASIC A computer language that uses brief English-language
statements to instruct a computer or microprocessor.

Battery indicator A diagnostic aid that provides a visual indication
to the user and/or an internal processor software indication that the
memory power-fail support battery is in need of replacement.

Baud A unit of signaling speed equal to the number of discrete
conditions or signal events per second; often defined as the number of
binary digits transmitted per second.

BCD-input module Allows the processor to accept 4-bit BCD
digital codes.

BCD-output module Enables a PLC to operate devices that require
BCD-coded signals to operate.

Binary A number system using 2 as a base. The binary number
system requires only two digits, zero (0) and one (1), to express any
alphanumeric quantity desired by the user.

Binary-coded decimal (BCD) A system of numbering that expresses
each individual decimal digit (0–9) of a number as a series of 4-bit

pet73842_gls_395-406.indd 395 03/11/15 4:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

396 Glossary

decisions with its operation controlled by a sequence of instructions.
The central processing unit is also referred to as the processor or
the CPU.

Channel A designated path for a signal.

Character A symbol that is one of a larger group of similar symbols
and that is used to represent information on a display device. The
letters of the alphabet and the decimal numbers are examples of
characters used to convey information.

Chassis A rack that serves as an electrical backplane for a PLC
processor and I/O modules.

Chip A tiny piece of semiconductor material on which electronic
components are formed. Chips are normally made of silicon and are
typically less than 1/4 in. square and 1/100 in. thick.

Clear An instruction or a sequence of instructions that removes
all current information from a programmable logic controller’s
memory.

Clock A circuit that generates timed pulses to synchronize the timing
of computer operations.

Clock rate The speed at which the microprocessor system
operates.

Closed loop A control system that uses feedback from the process to
maintain outputs at a desired level.

Coaxial cable A transmission line constructed such that an outer
conductor forms a cylinder around a central conductor. An insulating
dielectric separates the inner and outer conductors, and the complete
assembly is enclosed in a protective outer sheath. Coaxial cables are
not susceptible to external electric and magnetic fields and generate no
electric or magnetic fields of their own.

Code A system of communications that uses arbitrary groups of
symbols to represent information or instructions. A set of programmed
instructions.

Coil Represents the output of a programmable logic controller.
In the output devices, it is the electrical coil that, when energized,
changes the status of its corresponding contacts.

Coil format Format that uses coils to display instructions.

Comment Text that is included with each PLC ladder rung and is
used to help individuals understand how the program operates or how
the rung interacts with the rest of the program.

Communication module Allows the user to connect the PLC to high-
speed local networks that may differ from the network communication
provided with the PLC.

Compare An instruction that compares the contents of two designated
data memory locations of a programmable logic controller for equality
or inequality.

Compatibility The ability of various specified units to replace one
another with little or no reduction in capability; the ability of units to
be interconnected and used without modification.

Complement A logical operation that inverts a signal or bit.

Complementary metal-oxide semiconductor (CMOS) A logic
base that offers lower power consumption and high-speed operation.

Computer Any electronic device that can accept information,
manipulate it according to a set of preprogrammed instructions, and
supply the results of the manipulation.

Computer integrated manufacturing (CIM) A manufacturing
system controlled by an easily reprogrammable computer for flexibility
and speed of changeover.

binary notations. The binary-coded decimal system is often referred
to as 8421 code.

Binary word A related group of 1s and 0s that has meaning assigned
by position or by numerical value in the binary system of numbers.

Bit An abbreviated term for the words binary digit. The bit is
the smallest unit of information in the binary numbering system.
It represents a decision between one of two possible and equally likely
values or states. It is often used to represent an off or on state as well
as a true or false condition.

Bit manipulation instructions A family of programmable logic
controller instructions that exchange, alter, move, or otherwise modify
the individual bits or groups of processor data memory words.

Bit storage A user-defined data table area in which bits can be
set or reset without directly affecting or controlling output devices.
However, any storage bit can be monitored as necessary in the
user program.

Block diagram A method of representing the major functional
subdivisions, conditions, or operations of an overall system, function,
or operation.

Block format Format that uses a box shape to display instructions.

Block transfer An instruction that copies the contents of one or
more contiguous data memory words to a second contiguous data
memory location; an instruction that transfers data between an
intelligent input/output module or card and specified processor data
memory locations.

BOOL A data type that stores the state of a single bit, where 0
equals off and 1 equals on.

Boolean algebra A mathematical shorthand notation that expresses
logic functions, such as AND, OR, EXCLUSIVE OR, NAND, NOR,
and NOT.

Branch A parallel logic path within a rung.

Buffer In software terms, a register or group of registers used
for temporary storage of data; a buffer is used to compensate for
transmission rate differences between the transmitter and receiving
device. In hardware terms, a buffer is an isolating circuit used to
avoid the reaction of one circuit with another.

Bug A system defect or error that causes a malfunction; can be
caused by either software or hardware.

Burn The process by which information is entered into programmable
read-only memory.

Bus A group of lines used for data transmission or control; power
distribution conductors.

Bus topology A network configuration in which all stations are
connected in parallel with the communication medium and all stations
can receive information from any other station on the network.

Byte A group of adjacent bits usually operated on as a unit, such as
when moving data to and from memory. There are 8 bits per byte.

C

Cascading In the programming of timers and counters, a technique
used to extend the timing or counting range beyond what would
normally be available. This technique involves the driving of one timer
or counter instruction from the output of another, similar instruction.

Cell controller A specialized computer used to control a work cell
through multiple paths to the various cell devices.

Central processing unit (CPU) The electronic circuitry that controls
all the data activity of the PLC, performs calculations, and makes

pet73842_gls_395-406.indd 396 03/11/15 4:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Glossary 397

D

Data Information encoded in a digital form, which is stored in an
assigned address of data memory for later use by the processor.

Data address A location in memory where data can be stored.

Data file A group of data memory words acted on as a group rather
than singly.

Data highway A communications network that allows devices such
as PLCs to communicate. They are normally proprietary, which means
that only like devices of the same brand can communicate over the
highway.

Data latching A technique used to read the value of the input data
that will be operated on by the instructions with a function block.

Data link The equipment that makes up a data communications
network.

Data manipulation The process of exchanging, altering, or moving
data within a programmable logic controller or between programmable
logic controllers.

Data manipulation instructions A classification of processor
instructions that alter, exchange, move, or otherwise modify data
memory words.

Data table The part of processor memory that contains input and
output values as well as files where data are monitored, manipulated,
and changed for control purposes.

Data transfer The process of moving information from one location
to another, in other words, from register to register, from device to
device, and so forth.

Data transmission line A medium for transferring signals over a
distance.

Debouncing The act of removing intermediate noise states from a
mechanical switch.

Debug The process of locating and removing mistakes from a software
program or from hardware interconnections.

Decimal number system A number system that uses ten numeral
digits (decimal digits): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Each digit position
has a place value of 1, 10, 100, 1000, and so on, beginning with the
least significant (rightmost) digit; base 10.

Decrement The act of reducing the contents of a storage location or
value in varying increments.

Determinism The ability to reliably predict when data will be
delivered.

DeviceNet An open communication network designed to connect
factory-floor devices together without interfacing through an I/O system.
Up to 64 intelligent nodes can be connected to one DeviceNet network.

Diagnostic program A user program designed to help isolate
hardware malfunctions in the programmable logic controller and the
application equipment.

Diagnostics The detection and isolation of an error or malfunction.

Digital device One that processes discrete electric signals.

Digital gate A device that analyzes the digital states of its inputs and
outputs and an appropriate output state.

Digital signals A system of discrete states: high or low, on or off,
1 or 0.

Digital-to-analog converter An electrical circuit that converts
binary bits to a representative, continuous, analog signal.

DINT A data type that stores a 32-bit (4-byte) signed integer value.

Computer interface A device designed for data communication
between a programmable logic controller and a computer.

Consumed tag References data that come from another controller.

Contact The current-carrying part of an electric relay or switch.
The contact engages to permit power flow and disengages to interrupt
power flow to a load device.

Contact bounce The uncontrollable making and breaking of a contact
during the initial engaging or disengaging of the contact.

Contact histogram An instruction sequence that monitors a designated
memory bit or a designated input or output point for a change of state. A
listing is generated by the instruction sequence that displays how quickly
the monitored point is changing state.

Contactor A special-purpose relay designed to establish and interrupt
the power flow of high-current electric circuits.

Contact symbology A set of symbols used to express the control
program with conventional relay symbols.

Continuous current per module The maximum current for each
module. The sum of the output current for each point should not exceed
this value.

Continuous current per point The maximum current each output is
designed to supply continuously to a load.

Controlled variable The output variable that the automatic control
adjusts to keep the process value at a set-point.

Control logic The control plan for a given system; the program.

Control loop The method of adjusting the control variable in a
process control system by analyzing the process variable data and
then comparing it to the set-point to determine the amount of error
in the system.

ControlNet An open, high-speed, deterministic network that
transfers on the same network time-critical I/O updates, controller-to-
controller interlocking data, and non-time-critical data such as data
monitoring and program uploads and downloads.

Control relay A relay used to control the operation of an event or a
sequence of events.

Counter An electromechanical device in relay-based control
systems that counts numbers of events for the purpose of controlling
other devices based on the current number of counts recorded; a
programmable logic controller instruction that performs the functions
of its electromechanical counterpart.

Cross reference In ladder diagrams, letters or numbers to the right
of coils or functions. The letters or numbers indicate where on other
ladder lines contacts of the coil or function are located.

Crosstalk Undesired energy appearing in one signal path as a result
of coupling from other signal paths or use of a common return line.

Current The rate of electrical electron movement, measured in
amperes.

Current-carrying capacity The maximum amount of current a
conductor can carry without heating beyond a predetermined safe limit.

Current sinking Refers to an output device (typically an NPN
transistor) that allows current flow from the load through the output
to ground.

Current sourcing Output device (typically a PNP transistor) that
allows current flow from the output through the load and then to ground.

Cycle A sequence of operations repeated regularly; the time it takes
for one such sequence to occur.

pet73842_gls_395-406.indd 397 03/11/15 4:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

398 Glossary

Energize The physical application of power to a circuit or device to
activate it; the act of setting the on, true, or 1 state of a programmable
logic controller’s relay ladder diagram output device or instruction.

Erasable programmable read-only memory (EPROM) A
programmable read-only memory that can be erased with ultraviolet
light, then reprogrammed with electrical pulses.

Error signal A signal proportional to the difference between the
actual output and the desired output.

Ethernet A network type or protocol that uses the Carrier Sense
Multiple Access Collision Detection (CSMA/CD) network access
method.

Ethernet/IP An open industrial networking standard that takes
advantage of commercial off-the-shelf Ethernet communication
devices and physical media; IP refers to industrial protocol.

Even parity When the sum of the number of 1s in a binary word is
always even.

Examine if closed (XIC) Refers to a normally open contact instruction
in a logic ladder program. An examine if closed instruction is true if its
addressed bit is on (1). It is false if the bit is off (0).

Examine if open (XIO) Refers to a normally closed contact instruction
in a logic ladder program. An examine if open instruction is true if its
addressed bit is off (0). It is false if the bit is on (1).

Exclusive-OR gate A logic device requiring one or the other, but
not both, of its inputs to be satisfied before activating its output.

Execution The performance of a specific operation accomplished
through processing one instruction, a series of instructions, or a
complete program.

Execution time The total time required for the execution of one
specific operation.

F

False As related to programmable logic controller instructions, a
disabling logic state.

Fault Any malfunction that interferes with normal operation.

Fault indicator A diagnostic aid that provides a visual indication
and/or an internal processor software indication that a fault is present
in the system.

Fault-routine file A special subroutine that, if assigned, executes
when the processor has a major fault.

Feedback In analog systems, a correcting signal received from the
output or an output monitor. The correcting signal is fed to the controller
for process correction.

Fiber optic cable Transmits information via light pulses down
optical fibers.

Fieldbus An open, all-digital, serial, two-way communications
system that interconnects measurement and control equipment such as
sensors, actuators, and controllers.

File A formatted block of data treated as a unit.

Fixed I/O Input/output terminals on a programmable logic controller
that are built into the unit and are not changeable. A fixed I/O PLC has
no removable modules.

Floating-point data file Used to store integers and other numerical
values that cannot be stored in an integer file.

Flowchart A graphical representation for the definition, analysis,
or solution of a problem. Symbols are used to represent a process or
sequence of decisions and events.

DIP switch A group of small, in-line on-off switches. From dual
in-line package.

Direct addressing An addressing mode in which the memory
address of the data is supplied with the instruction.

Discrete I/O A group of input and/or output modules that operate
with on/off signals, as contrasted to analog modules that operate with
continuously variable signals.

Disk drive The device that writes or reads data from a magnetic
disk.

Diskette The flat, flexible disk on which a disk drive writes and reads.

Display The image that appears on a cathode-ray tube screen or on
other image projection systems.

Display menu The list of displays from which the user selects specific
information for viewing.

Distributed control A method of dividing process control into several
subsystems. A PLC oversees the entire operation.

Divide A programmable logic controller instruction that performs a
numerical division of one number by another.

Documentation An orderly collection of recorded hardware and
software data such as tables, listings, and diagrams to provide reference
information for programmable logic controller application operation
and maintenance.

Done bit (DN) Bit that is set to 1 when the instruction has completed
its task, such as reaching its preset value.

Double precision The system of using two addresses or registers
to display a number too large for one address or register; allows the
display of more significant figures because twice as many bits are used.

Down-counter A counter that starts from a specified number and
increments down to zero.

Download Loading data from a master listing to a readout or another
position in a computer system.

Dry-contact-output module Enables a PLC’s processor to control
output devices by providing a contact isolated electrically from any
power source.

E

Edit The act of modifying a programmable logic controller program
to eliminate mistakes and/or simplify or change system operation.

Electrically erasable programmable read-only memory
(EEPROM) A type of programmable read-only memory that is
programmed and erased by electrical pulses.

Electrical optical isolator A device that couples input to output
using a semiconductor light source and detector in the same package.

Electromagnetic interference (EMI) A phenomenon responsible
for noise in electric circuits.

Element A single instruction of a relay ladder diagram program.

Emergency stop relay A relay used to inhibit all electric power to a
control system in an emergency or other event requiring that the controlled
hardware be brought to an immediate halt.

Enable To permit a particular function or operation to occur under
natural or preprogrammed conditions.

Enclosure A steel box with a removable cover or hinged door used
to house electric equipment.

Encoder A rotary device that transmits position information; a device
that transmits a fixed number of pulses for each revolution.

pet73842_gls_395-406.indd 398 03/11/15 4:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Glossary 399

High-speed counter encoder module A module that enables you to
count and encode faster than you could with a regular control program
written on a PLC in which the control program’s execution is too slow.

Histogram A graphic representation of the frequency at which an
event occurs.

Host computer A main computer that controls other computers,
PLCs, or computer peripherals.

Human machine interface (HMI) Graphical display hardware in
which machine status, alarms, messages, diagnostics, and data entry
are available to the operator in graphical display format.

I

IEC 1131 programming standard The international standard for
programmable controller programming languages.

Image table An area in programmable logic controller memory
dedicated to input/output data. Ones and zeros (1s and 0s) represent
on and off conditions, respectively. During every input/output scan,
each input controls a bit in the input image table file; each output is
controlled by a bit in the output image table file.

Immediate input instruction A programmable logic controller
instruction that temporarily halts the user program scan so that the
processor can update the input image table file with the current status
of one or more user-specified input points.

Immediate output instruction A programmable logic controller
instruction that temporarily halts the user program scan so that the
current status of one or more user-specified output points can be updated
to current output image table file status by the processor.

Impedance The total resistive and inductive opposition that an
electric circuit or device offers to a varying current at a specified
frequency. Impedance is measured in ohms (V) and is denoted by the
symbol Z.

Increment The act of increasing the contents of a storage location
or value in varying amounts.

Index A reference used to specify an element within an array.

Indirect addressing An addressing mode in which the address of
the instruction serves as a reference point-instead of the actual address.

Inductance A circuit property that opposes any current change.
Inductance is measured in henries and is represented by the letter H.

Industrial terminal The device used to enter and monitor the
program in a PLC.

Input Information transmitted from a peripheral device to the input
module and then to the data table.

Input devices Devices such as limit switches, pressure switches,
pushbuttons, and analog and/or digital devices that supply data to a
programmable logic controller.

Input/output (I/O) address A unique number assigned to each
input and output. The address number is used when programming,
monitoring, or modifying a specific input or output.

Input/output (I/O) module A plug-in assembly that contains
more than one input or output circuit. A module usually contains two
or more identical circuits. Normally, it contains 2, 4, 8, 16, 32, or
64 circuits.

Input/output (I/O) scan time The time required for the processor to
monitor inputs and control outputs.

Input/output (I/O) update The continuous process of revising each
and every bit in the input and output tables, based on the latest results

Force function A mode of operation or instruction that allows an
operator to override the processor to control the state of a device.

Force off function A feature that allows the user to reset an input
image table file bit or de-energize an output independently of the
programmable logic controller program.

Force on function A feature that allows the user to set an image
table file bit or energize an output independently of the programmable
logic controller program.

Full duplex A mode of data communications in which data may be
transmitted and received simultaneously.

Function block Rectangular block with inputs entering from the left
and outputs exiting on the right.

Function block diagram (FBD) Graphical language where the
basic programming elements appear as blocks.

Function keys Keys on a personal computer, electronic operator
device, or hand-held programmer keyboard that are labeled F1, F2,
and so on. The operation of each of these keys is defined on many
electronic operator interface devices.

G

Gate A circuit having two or more input terminals and one output
terminal, where an output is present when and only when the prescribed
inputs are present.

Gateway A device or pair of devices that connects two or more
communication networks. This device may act as a host to each network
and may transfer messages between the networks by translating
their protocols.

Glitch A voltage or current spike of short duration that adversely
affects the operation of a PLC.

Gray code A binary coding scheme that allows only 1 bit in the data
word to change state at each increment of the code sequence.

Gray-encoder module Converts the Gray-code signal from an input
device into straight binary.

Ground A conducting connection between an electric circuit or
equipment chassis and the earth ground.

Ground loop A condition in which two or more electrical paths
exist within a ground line.

Ground potential Zero voltage potential with respect to the ground.

H

Half-duplex A mode of data transmission that communicates in two
directions but in only one direction at a time.

Handshaking The method by which two digital machines establish
communication.

Hard contacts Any type of physical switch contacts.

Hard copy Any form of a printed document such as a ladder diagram
program listing, paper tape, or punched cards.

Hard drive An inflexible recording disk used as a computer disk drive.

Hardware The mechanical, electric, and electronic devices that
make up a programmable logic controller and its application.

Hardwired The physical interconnection of electric and electronic
components with wire.

Hexadecimal A number system having a base of 16. This numbering
system requires 16 elements for representation, and thus uses the
decimal digits zero (0) through nine (9) and the first six letters of the
alphabet, A through F.

pet73842_gls_395-406.indd 399 03/11/15 4:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

400 Glossary

K

K 210 5 1K 5 1024; used to denote size of memory and can be
expressed in bits, bytes, or words; example: 2K 5 2048.

k Kilo; a prefix used with units of measurement to designate quantities
1000 times as great.

Keyboard The alphanumeric keypad on which the user types
instructions to the PLC.

Keying Bands installed on backplane connectors to ensure that only
one type of module can be inserted into a keyed connector.

L

Label instruction A programmable logic controller instruction
that assigns an alphanumeric designation to a particular location in a
program. This location is used as the target of a jump, skip, or jump to
subroutine instruction.

Ladder diagram An industry standard for representing relay logic
control systems. The diagram resembles a ladder because the vertical
supports of the ladder appear as power feed and return buses and the
horizontal rungs of the ladder appear as series and/or parallel circuits
connected across the power lines.

Ladder diagram programming A method of writing a user program
in a format similar to a relay ladder diagram.

Ladder matrix A rectangular array of programmed contacts that
defines the number of contacts that can be programmed across a row
and the number of parallel branches allowed in a single ladder rung.

Language A set of symbols and rules for representing and com-
municating information among people or between people and
machines; the method used to instruct a programmable device to
perform various operations.

Language module Enables the user to write programs in a high-level
language. BASIC is the most popular language module. Other language
modules available include C, Forth, and PASCAL.

Latching relay A relay that maintains a given position by mechanical
or electrical means until released mechanically or electrically.

Latch instruction One-half of an instruction pair (the second
instruction of the pair being the unlatch instruction) that emulates
the latching action of a latching relay. The latch instruction for a
programmable logic controller energizes a specified output point
or internal coil until it is de-energized by a corresponding unlatch
instruction.

Leakage The small amount of current that flows in a semiconductor
device when it is in the off state.

Least significant bit (LSB) The bit that represents the smallest
value in a byte or word.

Least significant digit (LSD) The digit that represents the smallest
value in a byte or word.

Light-emitting diode (LED) A semiconductor junction that emits
light when biased in the forward direction.

Light-emitting diode (LED) display A display device incorporating
light-emitting diodes to form the segments of the displayed characters
and numbers.

Limit switch An electric switch actuated by some part and/or
 motion of a machine or equipment.

Limit test A test that determines if a value is inside or outside a
specified range.

from reading the inputs and processing the outputs according to the
control program.

Input scan One of three parts of the PLC scan. During the input scan,
input terminals are read and the input table is updated accordingly.

Instruction A command that causes a programmable logic controller
to perform one specific operation. The user enters a combination of
instructions into the programmable logic controller’s memory to form
a unique application program.

Instruction set The set of general-purpose instructions available
with a given controller. In general, different machines have different
instruction sets.

INT Two-byte integer.

Integer A positive or negative whole number.

Integrated circuit (IC) A circuit in which all components are
integrated on a single tiny silicon chip.

Intelligent field devices Microprocessor-based devices used to
provide process-variable, performance, and diagnostic information to
the PLC processor. These devices are able to execute their assigned
control functions with little interaction, except communications, with
their host processor.

Intelligent input/output module A microprocessor-based module that
performs processing or sophisticated closed-loop application functions.

Interface A circuit that permits communication between the central
processing unit and a field input or output device. Different devices
require different interfaces.

Interlock A system for preventing one element or device from
turning on while another device is on.

Internal coil instruction A relay coil instruction used for internal
storage or buffering of an on/off logic state. An internal coil instruction
differs from an output coil instruction because the on/off status of the
internal coil is not passed to the input/output hardware for control of a
field device.

Inversion Conversion of a high level to a low level, or vice versa.

Inverter The digital circuit that performs inversion.

I/O module A plug-in assembly, containing two or more identical
input or output circuits, that contain the connections between a processor
and connected devices.

Interrupt The act of redirecting a program’s execution to perform a
more urgent task.

IP address A specified Internet protocol address, unique and assigned
by the manufacturer, for every Ethernet device.

Isolated input module A module that receives dry contacts as
inputs, which the processor can recognize and change into two-state
digital signals.

Isolated input/output (I/O) circuits Input and output circuits that
are electrically isolated from any and all other circuits of a module.
Isolated input/output circuits are designed to allow field devices that
are powered from different sources to be connected to one module.

J

Jumper A short length of conduit used to make a connection between
terminals around a break in a circuit.

Jump instruction An instruction that permits the bypassing of selected
portions of the user program. Jump instructions are conditional whenever
their operation is determined by a set of preconditions and unconditional
whenever they are executed to occur every time they are programmed.

pet73842_gls_395-406.indd 400 03/11/15 4:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Glossary 401

control relay zone must be delimited and controlled by master control
relay fence codes (master control relay instructions).

Matrix A logic network that is an intersection of input and output
connection points.

Memory That part of the programmable logic controller in which
data and instructions are stored either temporarily or semi-permanently.
The control program is stored in memory.

Memory map A diagram showing a system’s memory addresses
and what programs and data are assigned to each section of memory.

Menu A list of programming selections displayed on a programming
terminal.

Metal-oxide semiconductor (MOS) A semiconductor device in
which an electric field controls the conductance of a channel under a
metal electrode called a gate.

Metal-oxide varistor (MOV) Used for suppressing electrical
power surges.

Microprocessor A central processing unit manufactured on a
single integrated-circuit chip (or several chips) by utilizing large-scale
integration technology.

Microsecond One millionth of a second 5 1 3 1026 second 5
0.000001 second.

Millisecond One thousandth of a second 5 1 3 1023 second 5
0.001 second.

Mnemonic A term, usually an abbreviation, that is easy to remember
and pronounce.

Mnemonic code A code in which information is represented by
symbols or characters.

Modbus A network that uses a master/slave communication technique.

Mode A term used to refer to the selected operating method, such as
automatic, manual, TEST, PROGRAM, or diagnostic.

Module An interchangeable, plug-in item containing electronic
components.

Module addressing A method of identifying the input/output modules
installed in a chassis.

Most significant bit (MSB) The bit representing the greatest value
of a byte or word.

Most significant digit (MSD) The digit representing the greatest
value of a byte or word.

Motor controller or starter A device or group of devices that serve
to govern, in a predetermined manner, the electric power delivered to
a motor.

Motor starter A special relay designed to provide power to motors;
it has both a contactor relay and an overload relay connected in
series and prewired so that, if the overload operates, the contactor is
de-energized.

Move instruction A programmable logic controller instruction that
moves data from one location to another. Although a move instruction
typically places the data in a new location, the original data still reside
in their original location.

Multiplexing The time-shared scanning of a number of data lines
into a single channel, and only one data line is enabled at any time; the
incorporation of two or more signals into a single wave from which
the individual signals can be recovered.

Multiply instruction A programmable logic controller instruction
that provides for the mathematical multiplication of two numbers.

Line A component part of a system used to link various subsystems
located remotely from the processor; the source of power for operation;
example: 120 V alternating current line.

Line-powered sensor Normally, three-wire sensors, although
four-wire sensors also exist. The line-powered sensor is powered
from the power supply. A separate wire (the third) is used for the
output line.

Liquid-crystal display (LCD) A display device using reflected light
from liquid crystals to form the segments of the displayed characters
and numbers.

Load The power used by a machine or apparatus; to place data
into an internal register under program control; to place a program
from an external storage device into central memory under operator
control.

Load-powered sensor A two-wire sensor. A small leakage current
flows through the sensor even when the output is off. The current is
required to operate the sensor electronics.

Local area network (LAN) A system of hardware and software
designed to allow a group of intelligent devices to communicate
within a fairly close proximity.

Local input/output (I/O) A programmable logic controller whose
input/output distance is physically limited. The PLC must be located
near the process; however, the PLC may still be mounted in a separate
enclosure.

Local power supply The power supply used to provide power to the
processor and a limited number of local input/output modules.

Location In reference to memory, a storage position or register
identified by a unique address.

Logic A process of solving complex problems through the repeated
use of simple functions that can be either true or false. The three basic
logic functions are AND, OR, and NOT.

Logic diagram A diagram that represents the logic elements and
their interconnections.

Logic level The voltage magnitude associated with signal pulses
representing 1s and 0s in binary computation.

Loop control A control of a process or machine that uses feedback.
An output status indicator modifies the input signal effect on the
process control.

M

Machine language A programmable language using the binary
form.

Major fault A fault condition that is severe enough for the controller
to shut down, unless the condition is cleared.

Manufacturing automation protocol (MAP) Standard developed
to make industrial devices communicate more easily.

Masking A means of selectively screening out data. Masking allows
unused bits in a specific instruction to be used independently.

Mass storage A means of storing large amounts of data on magnetic
tape, floppy disks, and so on.

Master control relay (MCR) A mandatory hardwired relay that
can be de-energized by any series-connected emergency stop switch.
Whenever the master control relay is de-energized, its contacts open to
de-energize all application input and output devices.

Master control relay (MCR) zones User program areas in which
all nonretentive outputs can be turned off simultaneously. Each master

pet73842_gls_395-406.indd 401 03/11/15 4:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

402 Glossary

Odd parity Condition when the sum of the number of 1s in a binary
word is always odd.

Off-delay timer An electromechanical relay with contacts that
change state a predetermined time period after power is removed from
its coil; on re-energization of the coil, the contacts return to their shelf
state immediately; also, a programmable logic controller instruction
that emulates the operation of the electromechanical off-delay relay.

Offline programming and/or offline editing A method of
programmable logic controller programming and/or editing in which
the operation of the processor is stopped and all output devices are
switched off. Offline programming is the safest way to develop or edit
a programmable logic controller program since the entry of instructions
does not affect operating hardware until the program can be verified
for accuracy of entry.

On-delay timer An electromechanical relay with contacts
that change state a predetermined time period after the coil is
energized; the contacts return to their shelf state immediately on
de-energization of the coil; also, a programmable logic controller
instruction that emulates the operation of the electromechanical
on-delay timer.

One-shot A programmed technique that sets a storage bit or output
for only one program scan.

Online data change Allows the user to change various data table values
using a peripheral device while the application is operating normally.

Online programming and/or online editing The ability of a
processor and programming terminal to make joint user-directed
additions, deletions, or changes to a user program while the processor
is actively solving and executing the commands of the existing user
program. Extreme care should be exercised when performing online
programming to ensure that erroneous system operation does not result.

Open loop A system that has no feedback or auto correction.

Operand A number used in an arithmetic operation as an input.

Operational amplifier (op-amp) A high-gain DC amplifier used to
increase signal strength for devices such as analog input modules.

Optical coupler A device that couples signals from one circuit to
another by means of electromagnetic radiation, usually infrared or
visible. A typical optical coupler uses a light-emitting diode to convert
the electric signal of the primary circuit into light and uses a photo-
transistor in the secondary circuit to reconvert the light back into an
electric signal; sometimes referred to as optical isolation.

Optical isolation Electrical separation of two circuits with the use
of an optical coupler.

OR A logical operation that yields a logic 1 output if one of any
number of inputs is 1, and a logic 0 if all inputs are 0.

Output Information sent from the processor to a connected device
via some interface. The information could be in the form of control
data that will signal some device such as a motor to switch on or off or
to vary the speed of a drive.

Output device Any connected equipment that will receive infor-
mation or instructions from the central processing unit, such as control
devices (e.g., motors, solenoids, alarms) or peripheral devices
(e.g., line printers, disk drives, displays). Each type of output device
has a unique interface to the processor.

Output image table file A portion of a processor’s data memory
reserved for the storage of output device statuses. A 1, on, or true state
in an output image table file storage location is used to switch on the
corresponding output point.

Multiprocessing A method of applying more than one microprocessor
to a specific function to speed up operation time and reduce the
possibility of system failure.

N

National Electrical Code (NEC) A set of regulations developed by
the National Fire Protection Association that governs the construction
and installation of electric wiring and electric devices. The National
Electrical Code is recognized by many governmental bodies, and
compliance is mandatory in much of the United States.

National Electrical Manufacturers Association (NEMA) An
organization of electric device and product manufacturers. The National
Electrical Manufacturers Association issues standards relating to the
design and construction of electric devices and products.

NEMA Type 12 enclosure A category of industrial enclosures intended
for indoor use and designed to provide a degree of protection against
dust, falling dirt, and dripping noncorrosive liquids. They do not
provide protection against conditions such as internal condensation.

Nested branches A branch that begins or ends within another branch.

Network A series of stations or devices connected by some type of
communications medium.

Network access control The method of accessing the network media
(cable) to ensure that data are transmitted in an organized manner in
order to reduce the possibilities of data corruption.

Node In hardware, a connection point on the network; in programming,
the smallest possible increment in a ladder diagram.

Noise Random, unwanted electric signals, normally caused by radio
waves or electric or magnetic fields generated by one conductor and
picked up by another.

Noise filter or noise suppressor An electronic filter network used to
reduce and/or eliminate any noise that may be present on the leads to
an electric or electronic device.

Noise immunity A measure of insensitivity of an electronic system
to noise.

Noise spike A short burst of electric noise with more magnitude
than the background noise level.

Nonretentive output An output controlled continuously by a program
rung. Whenever the rung changes state (true or false), the output turns
on or off; contrasted with a retentive output, which remains in its last
state (on or off) depending on which of its two rungs, latch or unlatch,
was last true.

Nonvolatile memory A memory designed to retain its data while its
power supply is turned off.

NOR The logic gate that results in zero unless both inputs are zero.

Normally closed contact (NC) A contact that is conductive when
its operating coil is not energized.

Normally open contact (NO) A contact that is nonconductive when
its operating coil is not energized.

NOT A logical operation that yields a logic 1 at the output if a logic 0
is entered at the input, and a logic 0 at the output if a logic 1 is entered
at the input. The NOT, also called the inverter, is normally used in con-
junction with the AND and OR functions.

O

Octal number system A base eight numbering system that uses
numbers 0–7, 10–17, 20–27, and so on. There are no 8s or 9s in the
octal number system.

pet73842_gls_395-406.indd 402 03/11/15 4:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Glossary 403

Preset value (PRE) The number of time intervals or events to
be counted.

Pressure switch A switch activated at a specified pressure.

Process A continuous manufacturing operation.

Program A sequence of instructions to be executed by the processor
to control a machine or process.

Program files The area of processor memory in which the ladder
logic programming is stored.

Programmable controller A computer that has been hardened to
work in an industrial environment and is equipped with special I/O
and a control programming language.

Programmable read-only memory (PROM) A retentive memory
used to store data. This type of memory device can be programmed
only once and cannot be altered afterward.

Programming terminal A combination of keyboard and monitor
used to insert, modify, and observe programs stored in a PLC.

Program scan One of three parts of the PLC scan. During the program
scan, the CPU scans each rung of the user program.

Project file Contains all data associated with the PLC project. A
project comprises five major pieces: help folder, controller folder, ladder
folder, data folder, and data base folder.

Proportional-integral-derivative (PID) A mathematical formula
that provides a closed-loop control of a process. Inputs and outputs are
continuously variable and typically will be analog signals.

Protocol A formal definition of criteria for receiving and transmitting
data through communications channels.

Proximity switch An input device that senses the presence or absence
of a target without physical contact.

Pulse A short change in the value of a voltage or current level. A
pulse has a definite rise and fall time and a finite duration.

R

Rack A housing or framework used to hold assemblies; a plastic and/or
metal assembly that supports input/output modules and provides a means
of supplying power and signals to each input/output module or card.

Random-access memory (RAM) A memory system that permits
the random accessing of any storage location for the purpose of either
storing (writing) or retrieving (reading) information. Random-access
memory systems allow the data to be retrieved and stored at speeds
independent of the storage locations being accessed.

Read The accessing of information from a memory system or data
storage device; the gathering of information from an input device or
devices or a peripheral device.

Read-only memory (ROM) A permanent memory structure in
which data are placed at time of fabrication or by the user at a speed
much slower than it will be read. Information entered in a read-only
memory is usually not changed once it is entered.

Read/write memory Memory in which data can be stored (write
mode) or accessed (read mode). The write mode replaces previously
stored data with current data; the read mode does not alter stored data.

Real numbers Numbers that have both integer and fractional parts.

Real-time clock (RTC) A device that continually measures time in
a system without respect to what tasks the system is performing.

Rectifier A solid-state device that converts alternating current to
pulsed direct current.

Output instruction The term applied to any programmable logic
controller instruction capable of controlling the discrete or analog status
of an output device connected to the programmable logic controller.

Output register or output word A particular word in a processor’s
output image table file in which numerical data are placed for
transmission to a field output device.

Output scan One of three parts of the PLC scan. During the output
scan, data associated with the output status table are transferred to the
output terminals.

Overflow Exceeding the numerical capacity of a device such as a
timer or counter. The overflow can be either a positive or negative value.

Overload A load greater than the one that a component or system is
designed to handle.

Overload relay A special-purpose relay designed so that its contacts
transfer whenever its current exceeds a predetermined value. Overload
relays are used with electric motors to prevent motor burnout due to
mechanical overload.

P

Parallel circuit A circuit in which two or more of the connected
components or contact symbols in a ladder program are connected
to the same pair of terminals so that current may flow through all the
branches; contrasted with a series connection, in which the parts are
connected end to end so that current flow has only one path.

Parallel instruction A programmable logic controller instruction
used to begin and/or end a parallel branch of instructions programmed
on a programming terminal.

Parallel operation A type of information transfer in which all bits,
bytes, or words are handled simultaneously.

Parallel transmission A computer operation in which two or more
bits of information are transmitted simultaneously.

Parity The use of a self-checking code that employs binary digits in
which the total number of 1s is always even or odd.

PC Personal computer.

Peer-to-peer network A network in which nodes are given an equal
chance of initiating and controlling communications.

Peripheral equipment Units that communicate with the programmable
logic controller but are not part of the programmable logic controller;
example: a programming device or computer.

PID Proportional-integral-derivative closed-loop control that lets the
user hold a process variable at a desired set-point.

Pilot-type device Used in a circuit as a control apparatus to carry
electric signals for directing performance. This device does not carry
primary current.

PLC processor A computer designed specifically for programmable
controllers. It supervises the action of the modules attached to it.

Polarity The directional indication of electrical flow in a circuit; the
indication of charge as either positive or negative, or the indication of
a magnetic pole as either north or south.

Polling A network access method where a master controller manages
the communication process by interrogating each slave controller
under it to determine whether the slave has any information to send.

Port A connector or terminal strip used to access a system or circuit.
Generally, ports are used for the connection of peripheral equipment.

Power supply The unit that supplies the necessary voltage and current
to a system’s circuitry.

pet73842_gls_395-406.indd 403 03/11/15 4:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

404 Glossary

Sensor A device used to gather information by the conversion of a
physical occurrence to an electric signal.

Sequencer A mechanical, electric, or electronic device that can be
programmed so that a predetermined set of events occurs repeatedly.

Sequence table A table or chart indicating the sequence of opera-
tion of output devices.

Sequential control A process that dictates the correct order of events
and allows one event to occur only after the completion of another.

Sequential Function Chart (SFC) Graphical language whose basic
language elements are steps or states with associated actions and
transitions with associated conditions used to move from the current
state to the next.

Serial communication A type of information transfer in which the
bits are handled sequentially; contrasted with parallel communication.

Series circuit A circuit in which the components or contact symbols
are connected end to end, and all must be closed to permit current flow.

Servo module The device whose feedback is used to accomplish
closed-loop control. Though programmed through a PLC, once
programmed it can control a device independently without interfering
with the PLC’s normal operation.

Set-point The value that the process value is to be held to by the
automatic control function.

Shield A barrier, usually conductive, that substantially reduces the
effect of electric and/or magnetic fields.

Shift To move binary data within a shift register or other storage
device.

Shift register A PLC function capable of storing and shifting
binary data.

Short circuit An undesirable path of very low resistance in a circuit
between two points.

Short-circuit protection Any fuse, circuit breaker, or electronic
hardware used to protect a circuit or device from severe overcurrent
conditions or short circuits.

Signal The event or electrical quantity that conveys information
from one point to another.

Significant digit A digit that contributes to the precision of a number.
The number of significant digits is counted beginning with the digit
contributing the most value, called the most significant digit (leftmost),
and ending with the digit contributing the least value, called the least
significant digit (rightmost).

Silicon-controlled rectifier (SCR) A semiconductor device that
functions as an electronic switch.

Single-scan function A supervisory instruction that causes the
control program to be executed for one scan, including input/output
update. This troubleshooting function allows step-by-step inspection
of occurrences while the machine is stopped.

Sink mode output A mode of operation of solid-state devices in
which the device controls the current from the load. For example, when
the output is energized, it connects the load to the negative polarity of
the supply.

SINT A data type that stores an 8-bit (1-byte) signed integer value.

Snubber A circuit generally used to suppress inductive loads; it
consists of a resistor in series with a capacitor (RC snubber) and/or a
MOV placed across the alternating current load.

Software Programs that control the processing of data in a system,
as contrasted to the physical equipment itself (hardware).

Register A memory word or area for the temporary storage of data
used within mathematical, logical, or transfer functions.

Relay An electrically operated device that mechanically switches
electric circuits.

Relay contacts The contacts of a relay that are either opened or
closed according to the condition of the relay coil. Relay contacts are
designated as either normally open or normally closed in design.

Relay logic A representation of the program or other logic in a form
normally used for relays.

Remote input/output (I/O) system Any input/output system that
permits communication between the processor and input/output hardware
over a coaxial or twin axial cable. Remote input/output systems permit
the placement of input/output hardware at any distance from the
processor.

Resolution The smallest distinguishable increment into which a
quantity is divided.

Response time The amount of time required for a device to react to
a change in its input signal or to a request.

Retentive instruction Any programmable logic controller instruction
that does not need to be continuously controlled for operation. Loss
of power to the instruction does not halt execution or operation of the
instruction.

Retentive timer An electromechanical relay that accumulates time
whenever the device receives power and maintains the current time
should power be removed from the device. Loss of power to the device
after reaching its preset value does not affect the state of the contacts.

Retentive timer instruction A programmable logic controller
instruction that emulates the timing operation of the electromechanical
retentive timer.

Retentive timer reset instruction A programmable logic controller
instruction that emulates the reset operation of the electromechanical
retentive timer.

Ring topology A network topology that that forms a data path in
a ring.

Routine A series of instructions that perform a specific function or task.

RS-232 An Electronic Industries Association (EIA) standard for data
transfer and communication for serial binary communication circuits.

Run The single, continuous execution of a program by a programmable
logic controller.

Rung A group of programmable logic controller instructions that
controls an output or storage bit, or performs other control functions
such as file moves, arithmetic, and/or sequencer instructions. A rung is
represented as one section of a ladder logic diagram.

S

SCADA An acronym for supervisory control and data acquisition.

Scan time The time required to read all inputs, execute the control
program, and update local and remote input and output statuses. Scan
time is, in effect, the time required to activate an output controlled by
programmed logic.

Schematic A diagram of graphic symbols representing the electrical
scheme of a circuit.

Search function Allows the user to display quickly any instruction
in the programmable logic controller program.

Self-diagnostic The hardware and firmware within a controller that
monitors its own operation and indicates any fault it can detect.

pet73842_gls_395-406.indd 404 03/11/15 4:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Glossary 405

Timed contact A normally open and/or normally closed contact that
is actuated at the end of a timer’s time-delay period.

Timer In relay-panel hardware, an electromechanical device that can
be wired and preset to control the operating interval of other devices. In
a programmable logic controller, a timer is internal to the processor;
that is, it is controlled by a user-programmed instruction.

Toggle switch A panel-mounted switch with an extended lever;
normally used for on/off switching.

Token The logical right to initiate communications in a communication
network.

Token passing A technique in which tokens are circulated among
nodes in a communication network.

Topology The structure of a communications network; examples are
bus, ring, and star.

Transducer A device used to convert physical parameters such as
temperature, pressure, and weight into electric signals.

Transformer An electric device that converts a circuit’s electrical
energy into a circuit or circuits with different voltages and current ratings.

Transistor A three-terminal active semiconductor device composed
of silicon or germanium that is capable of switching or amplifying an
electric current.

Transistor-transistor logic (TTL) A semiconductor logic family in
which the basic logic element is a multiple-emitter transistor. This family
of devices is characterized by high speed and medium power dissipation.

Transitional contact A contact that, depending on how it is
programmed, will be on for one program scan every 0 to 1 transition,
or every 1 to 0 transition, of the referenced coil.

Transmission line A system of one or more electric conductors used
to transmit electric signals or power from one place to another.

Triac A solid-state component capable of switching alternating current.

True As related to programmable logic controller instructions, an
on, enabled, or 1 state.

Truth table A table listing that shows the state of a given output as a
function of all possible input combinations.

TTL-input module Enables devices that produce TTL-level signals
to communicate with a PLC’s processor.

TTL-output module Enables a PLC to operate devices requiring
TTL-level signals to operate.

Twisted pair cable A pair of wires that can transmit data; the wires
are twisted to provide protection against crosstalk.

U

Unlatch instruction One-half of a programmable logic controller
instruction pair that emulates the unlatching action of a latching
relay. The unlatch instruction de-energizes a specified output point or
internal coil until re-energized by a latch instruction. The output point
or internal coil remains de-energized regardless of whether or not the
unlatch instruction is energized.

Up-counter An event that starts from 0 and increments up to the
preset value.

V

Variable A factor that can be altered, measured, or controlled.

Variable data Numerical information that can be changed during
application operation. It includes timer and counter accumulated values,
thumbwheel settings, and arithmetic results.

Solid-state switch Any electronic device incorporating a transistor,
silicon-controlled rectifier, or triac semiconductor switch to control the
on/off flow of electric power.

Source mode output A mode of operation of solid-state output devices
in which the device controls the current to the load. For example,
when the output is energized, it connects the load to the positive polarity
of the supply.

Star topology A network architecture in which all network nodes
are connected to a central device that routes the nodes’ messages.

State The logic 0 or 1 condition in programmable logic controller
memory or at a circuit input or output.

Station Any programmable logic controller, computer, or data terminal
connected to, and communicating by means of, a data highway.

Status indicators LEDs that indicate the on-off status of an input or
output point and are visible on the outside of the PLC.

Stepper-motor module Provides pulse trains to a stepper-motor
translator that enables control of a stepper motor.

STI An acronym for selectable time interrupt, a subroutine that
executes on a time basis rather than an event basis.

Storage bit A bit in a data table word that can be set or reset but that
is not associated with a physical input or output terminal point.

Structure Text (ST) High-level, text-based language with commands
that support a highly structured program development and the ability
to evaluate complex mathematical expressions.

Subroutines Program files that are scanned only when called on by
logic and can be used to break the program into smaller segments.

Subtract A programmable logic controller instruction that performs
the mathematical subtraction of one number from another.

Suppression device A unit that attenuates the magnitude of
electrical noise.

Surge A transient wave of current or power.

Synchronous shift register A shift register in which only one
change of state occurs per control pulse.

Synchronous transmission A type of serial transmission that
maintains a constant time interval between successive events.

T

Tag A text-based name for an area of the controller’s memory where
data are stored.

Tap A device that provides mechanical and electrical connections to a
trunk cable. A tap allows the signals on the trunk to be passed to a station
and the signals transmitted by the stations to be passed to the trunk.

Task It holds the information necessary to schedule the program’s
execution and sets the execution priority for one or more programs.

Terminal address The alphanumeric address assigned to a particular
input or output point. It is also related directly to a specific image table
bit address.

Thermocouple A temperature-measuring device that utilizes two
dissimilar metals for temperature measurement. As the junction of
the two dissimilar metals is heated, a proportional voltage difference,
which can be measured, is generated.

Thumbwheel switch A rotating switch used to input numeric
information into a controller.

Time base A unit of time generated by a microprocessor’s clock circuit
and used by PLC timer instructions. Typical time bases are 0.01, 0.1,
and 1.0 second.

pet73842_gls_395-406.indd 405 03/11/15 4:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

406 Glossary

Work cell A group of machines that work together to manufacture
a product; normally includes one or more robots. The machines are
programmed to work together in appropriate sequences. Work cells are
often controlled by one or more PLCs.

Write Refers to the process of loading information into memory;
can also refer to block transfer, that is, a transfer of data from the
processor data table to an intelligent input/output module.

Z

Zone The portion of a PLC ladder program that can be enabled or
disabled by a control function.

Volatile memory A memory structure that loses its information
whenever power is removed. Volatile memories require a battery
backup to ensure memory retention during power outages.

W

Watchdog timer Monitors logic circuits controlling the processor.
If the watchdog timer, which is reset every scan, ever times out, the
processor is assumed to be faulty and is disconnected from the process.

Word A grouping or a number of bits in a sequence treated as a unit.

Word length The total number of bits that make up a word. Most
programmable logic controllers use either 8, 16, or 32 bits to form a word.

pet73842_gls_395-406.indd 406 03/11/15 4:09 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

407

Index

A
Abbreviations, 2
Access method, 320
Accumulated time, 134
Accumulated value

timer, 136
up-counter, 161

Active tab, 92
Actuators, 112

in control system, 308
Acumulated value (ACC) word, 136

up-counter, 161
ADC (analog-to-digital converter), 27, 94
Addition, 55–56
Addition instruction, 236–237f, 236–238
Add-On instructions, 384
Addressing, 18, 86–87, 86f

bit level, 19, 20f
I/O connection diagram, 87f
rack/slot-based, 19, 19f
rack/slot-based vs. tag-based, 19, 21f
tag-based, 19, 20f

CLX system, 347–348, 347f
word level, 19, 20f

Addressing formats, 212, 212f
Alarm monitor program, 166f
Alarm system, SCADA, 329, 330, 330f
Alias tag, 19, 338–339, 339f
Allen-Bradley

controllers, 51 (see also specific types)
ControlLogix platform from, 48 (see also ControlLogix

controllers)
memory structures, 75
MicroLogix controller, 78, 78f, 87
RSLogix software packages, 91
SLC 500 (see SLC 500 controllers)
subroutine-related instructions, 191, 191f

Allen-Bradley Data Highway, 321, 321f, 322, 322f
Allen-Bradley Pico controller, 11, 115

installation, 11
Allen-Bradley Pico GFX-70 controller, 40f
All Mode, FAL instruction, 213
Alternating current (AC) supply, 5
Ambient temperature rating, discrete I/O

modules, 33
American Standard Code for Information Interchange

(ASCII), 54
ANALOG COMMON terminal, 29, 29f
Analog control, 228, 311
Analog devices, 93–94, 224, 225
Analog input module circuit, 28, 29f
Analog I/O modules, 27–29f, 27–31

specifications, 34–35
channels per module, 34
common-mode rejection, 34–35
input current/voltage range(s), 34
input impedance and capacitance, 34
input protection, 34
output current/voltage range(s), 34
resolution, 34

Analog output interface module, 29, 225–226, 226f
Analog signals, 93–94, 94f
Analog-to-digital converter (ADC), 27, 94
AND function, 62–63, 62f, 65, 208
AND gate, 62, 62f
Annunciator flasher program, 148, 148f
Architecture, 4
Arithmetic

binary, 55–57
floating point, 57–58, 57–58f

Array, CLX system, 342–343, 343f
ASCII (American Standard Code for Information

Interchange), 54
ASCII code, 54, 55t
ASCII module, 31
Associative law, 66
Assume Data Available indicator marker, FBD, 387, 388f
Audit, SCADA, 329
Automatic control process, 121, 121f
Automatic mode, water level control process in storage

tank, 118
Automatic sequential control systems

on-delay timer (TON), 138, 140, 140f
Automatic stacking program, 174–176, 175f
Auxiliary seal-in contact, 199, 200f

B
Backplane current draw, discrete I/O modules, 34
Backplane power, 22
BAND (Boolean AND) function block, 82, 384–385, 385f
Bandwidth, 325
Bang-bang control, 228
Barcode reader, 273, 273f
Bar code scanners, 108–109, 109f
Base tag, 19, 338, 339f, 340
Base tag data, 339–340, 340f
BASIC, 31, 81
Batch processing, 306, 306f
Battery backup, 291f
BCD. See Binary Coded Decimal (BCD) output device
BCD-output module, 32, 32f
BCD-to-binary conversion, 51, 53f
Bearing lubrication program, 146f
Binary arithmetic, 55–57
Binary Coded Decimal (BCD) output device, 224–225, 225f
Binary coded decimal (BCD) system, 51–53, 52–53f

numeric values, 52t
Binary information, 268
Binary number(s)

complement of, 49
conversion to decimal number, 47, 48f
decimal number conversion to, 48, 48f
hexadecimal number conversion to, 51, 51f
octal number conversion to, 50f
signed, 49t

Binary principle, 62–65
Boolean algebra and, 65–66

Binary system, 47–48f, 47–49, 47t
binary principle, 62–65
Boolean algebra and, 65–66
numeric values, 52t

Binary-to-BCD conversion, 51, 53f
Bit, 47, 54, 208, 208f
Bit file, 75
Bit level addressing, 19, 20f
Bit-level logic instructions, 83–86

Examine If Closed (XIC), 83–84, 83f
Examine If Open (XIO), 83, 84, 84f
Output Energize (OTE), 83, 84–85, 85f
separating action of field device, 85, 85f
symbolic, 83

Bit-level programming, CLX system, 345–355
internal relay instructions, 350–352, 351–352f
ladder logic program, 346, 346f

addition to main routine, 348–350, 348–350f
latch and unlatch instructions, 352–353, 352–353f

one-shot instruction, 353–354, 354–355f
program scan, 345–346, 345f
tag-based addressing, 347–348, 347f

Bit-oriented I/O, 22
Bit shift instructions, 265, 266f

bit address, 267
carriers tracking flowing through 16-station machine,

269, 271, 271f
control, 266
file, 266
length, 267

Bit shift left (BSL) instruction, 265, 266f, 267, 267f
Allen Bradley ControlLogix, 271–272, 272f
with wraparound operation, 267–268, 269f

Bit shift registers, 264–272
bit shift instructions, 265–268, 266f
File Shift menu tab, 266

Bit shift right (BSR) instruction, 265, 266f,
267–268, 268f

Allen Bradley ControlLogix, 271
Bit-wide bus networks, 319
Bleeder resistor, 285, 285f

connected to proximity sensor, 106, 106f
Block-formatted counter, 158, 158f
Block format timer instruction, 135, 135f
Boolean algebra, 65

associative law, 66
basic operators, 65f
commutative law, 65
distributive law, 66
logic operators, 65f, 66f

Boolean equation, 65
for logic gate circuits, 66–67, 67f

Boolean expression
logic gate circuits from, 66, 66f

Bottle-filling motion control process, 315, 316f
motion module, 316
programmable logic controller, 315
servo drive, 316
servo motor, 316

Branch instructions, 87–89, 87f
input, 87, 87f
matrix limitation diagram, 88
nested, 87–88, 87f
original circuit, 89f
output, 87, 87f
reprogrammed circuit, 89f
vertical contact, 88, 88f

Break-before-make pushbutton, 102
Bridges, 320
Bus topology network, 318–320, 319f
Byte, 48
Byte-wide bus networks, 319

C
Calibration, instrument, 127
Cam-operated sequencer switch, 253, 253f
Cam switches, 253
Can-counting program, 162, 163f
Capacitive proximity sensors, 106, 106f
Cascading counters, 170–172, 171f
Cascading timers, 147–148, 149f

CLX system, 365, 366f
Centralized control, 307, 307f
Central processing unit (CPU), 4, 5–6, 6f, 35–36, 35–36f.

see also Processor module
backup memory battery, 291, 291f
power supply, 35, 35f

Note: Page numbers followed by f and t denotes figures and tables respectively.

pet73842_ind_407-414.indd 407 03/11/15 4:11 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

408 Index

Convert-to-BCD (TOD) instruction, 51, 53f, 235, 243, 243f
Conveyor warning signal circuit, 139f
COP. See File copy (COP) instruction
Cost, 2–3
Count-down (CTD) counter, 168, 168f

CLX system, 371–372f
Count-down (CD) enable bit, 160
Counter file, 75
Counter function, timer function and, 174–177
Counter number, 161
Counters, 82, 156–178

accumulated value, 158, 158f
application, 157f
block-formatted, 158, 158f
cascading counters, 170–172, 171f
CLX system, 368–372, 368f

combined with timer functions, 372, 372f
count-down (CTD) counter, 371–372f
count-up (CTU) counter, 369–370f, 369–371
overview, 368–369

coil-formatted, 157–158, 157f, 158f
combining with timer functions, 174–177, 175f
decrement, 158
down-counter, 166–169, 167f
electronic, 157, 157f
high-speed, 177–178, 178f
increment, 158
incremental encoder-counter applications, 173–174, 174f
input conditions, 158
instructions, 157–158
mechanical, 157, 157f
selection toolbar, 161f
up-counter, 159–166, 159f

Counting, high-speed, 4f
Count-up (CTU) counter

CLX system, 369–370f, 369–371
Count-up (CU) enable bit, 160
CPU section, processor module, 35
Cross reference function, 289, 290, 290f
Current sensing, 27
CV. See Control variable (CV)

D
DAC (digital-to-analog converter), 29, 94
Daisy-chain topology, 326, 327f
Data communications, 316–328. see also Network

communications
ControlNet, 325, 325f
Data Highway, 322, 322f
defined, 316
DeviceNet, 322–325, 323–324f
EtherNet/IP, 325, 326f
Fieldbus, 326, 327f
HART, 328, 328f
industrial networks, functionality levels, 318, 318f
LAN, 317–318, 317f
Modbus, 326, 326f
parallel data transmission, 321, 321f
point-to-point serial communications link, 317, 317f
PROFIBUS-DP, 326–327, 327f
SERCOS, 327, 328f
serial, 322, 322f
serial transmission, 321–322, 321f
transmission media, 317, 317f

Data comparison, 208, 216–221. See also Data
manipulation

EQU instruction, 217, 217f
GEQ instruction, 217, 218, 218f
GRT instruction, 217–218, 217f
LEQ instruction, 217, 218, 218f
LES instruction, 217, 218, 218f
LIM instruction, 217, 218–220, 219f, 220f
MEQ instruction, 217, 220–221, 220f, 221
NEQ instruction, 217, 217f
use, 216–217
vs. data transfer, 216

Data files, 75–78, 77–78f
Data File screens, RSLogix 500 software, 92, 92f
Data flow, scan process, 79, 79f
Data Highway, 322, 322f
Data latching, FBD, 387, 387f
Data manipulation

closed-loop control, 226–229

ladder logic addition to main routine, 348–350,
348–350f

ladder logic program, 346, 346f
latch and unlatch instructions, 352–353, 352–353f
one-shot instruction, 353–354, 354–355f
program scan, 345–346, 345f
tag-based addressing, 347–348, 347f

comparison instructions, 376–378, 377–379f
configuration, 334–335, 335f
counters, 368–372, 368f

combined with timer functions, 372, 372f
count-down (CTD) counter, 371–372f
count-up (CTU) counter, 369–370f, 369–371
overview, 368–369

FBD programming, 388–392, 388–393f
function block diagram (FBD), 384–387, 384–387f

add-On instructions, 384
Assume Data Available indicator marker, 387, 388f
BAND (Boolean AND) function block,

384–385, 385f
data latching, 387, 387f
feedback loop, 387, 387f
function blocks, 384
references, 385
signal flow and execution, 386–387, 386f
wire connectors, 385–386, 386f
wires and pins, 385, 386f

math, comparison, and move instructions, combining,
380–382, 380–382f

math instructions, 374–376, 374–376f
memory layout, 334, 334f
move instructions, 379, 380f
programs, 336–337, 337f
project, 335–336, 335–336f
routines, 337, 337f
structures, 340–341, 340–341f
tag-based addressing format, 19, 20f
tags, 337–340, 338–340f

creating, 341, 341f
monitoring and editing, 342, 342f

tasks, 336, 336f
timers, 358–366

cascading, 365, 366f
off-delay timer (TOF), 362–363, 362–363f
on-delay timer (TON), 359–362, 359–362f
predefined structure, 358–359, 358f
reciprocating, 365
retentive on-delay timer (RTO), 364–365,

364–365f
Control management PLC application, 13, 13f
ControlNet, 325, 325f
Control panel

PLC-based, 2, 3f
relay-based, 2, 3f

Control process
automatic, 121, 121f
combination, 121, 121f
sequential, 121, 121f

flow diagram, 121–122, 121f
I/O connection diagram, 122, 122f
ladder logic program for, 122, 123f
relay schematic for, 122, 122f

Control relays (CR)
coils, 100
contacts, 100
electromagnetic, 99–100, 99–100f
internal, 89
operation, 99, 99f
pilot lights control operation, 99–100, 100f
symbol, 99, 100f

Control systems. see also Process control; Process(es)
actuators, 308
closed-loop, 309, 309f
controllers, 308–310
distributive, 307, 308f
HMI, 308
motion control, 315–316
on/off control, 310–311, 310–311f
PID control, 311–315
sensors, 308
signal conditioning, 308
structure, 308–310

Control variable (CV), 229
Convert from BCD (FRD) instruction, 235, 243, 243f

Channels per module, analog I/O modules, 34
Circuits. see also specific types

electrical interlocking, 115–116, 115–116f
seal-in, 114–115, 114–115f

Circulating shift register function, 265
Clear (CLR) instruction, 243
Closed architecture, 4
Closed-loop control system, 226–229, 309–310, 309f

block diagram of, 227, 228f
Closed-loop servo motor system, 114, 114f
CLR (Clear), 208
CMOS-RAM chips, 38, 38f
Coaxial cable, 317, 317f
Codes. see Number systems and codes
Coil-formatted counter instruction

up-counter, 157–158, 157f, 158f
Coil-formatted timer instruction, 134–135, 135f
Cold junction compensating (CJC) thermistor, 27
Collision detection access control scheme., 320
Combination control process, 121, 121f
Combination I/O modules, 21–22, 21f
Commissioning, 288
Common Industrial Protocol (CIP), 323–324, 325
Common-mode rejection, analog I/O modules, 34–35
Communication module, 4f, 18, 32, 33f
Communications capability, 3, 4f
Communications protocol, 300
Commutative law, 65
CompactLogix system, 333
Compare menu tab, 217, 217f
Comparison instruction, CLX system, 376–378, 377–379f,

380–382, 380–382f
Compute instruction, 235–236, 235f
Compute/Math menu tab, 235, 235f
Computer memory, 48, 49f
Computers, vs. PLCs, 11–12, 11–12f
Configuration, CLX system, 334–335, 335f
Consecutive group, 208
Constant voltage (CV) transformer, 287
Contact histogram function, 290–291
Contact instruction, 85
Contactors, 100, 101f
Contacts

control relays, 100
instantaneous, 132
normally closed (NC), 99, 100f
normally open (NO), 99, 100f

Container-filling process, 310f
Continuous process, 306, 306f
Continuous-scan test mode, 93
Continuous tasks, 336
Continuous test mode, 289
Control, FAL instruction, 212
Control circuit, 100
Control devices, output, 112–113f, 112–114
Control file, 75
Controllers, 308–310. see also specific types

deadband, 311, 311f
proportional, 311–315, 311f

Controller tag, 338
ControlLogix 5000

BSL instruction, 271–272, 272f
BSR instruction, 271
counter instructions, 162, 163f
FIFO instruction pair, 275–276, 276f
immediate output instruction, 194, 194f
memory structure, 75
Modulo (MOD) instruction, 242, 242f
pass/fail inspection program, 271–272, 272f
platform, 48
program, 220, 220f
timer instruction, 136–137, 136f

ControlLogix Sequencer Output (SQO) instruction,
258–259, 259f, 260f

array, 259
control, 259
destination, 259
length, 259
mask, 259
position, 259

ControlLogix (CLX) system, 334–393
array, 342–343, 343f
bit-level programming, 345–355

internal relay instructions, 350–352, 351–352f

pet73842_ind_407-414.indd 408 03/11/15 4:11 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Index 409

File-to-word moves, 211
FAL instruction and, 214, 214f

Fill file (FLL), 215, 216f
First in, first out (FIFO) instruction, 272–276

ControlLogix programming with, 275–276, 276f
operating program, 274–275, 274f
SLC 500 FIFO load (FFL) instruction, 273, 273f
SLC 500 FIFO unload (FFU) instruction,

273–274, 273f
vs. LIFO stack operation, 275, 275f

Fixed I/O, 4, 5f
advantage, 4
disadvantage, 4

Flash EEPROM, 38, 38f
Flashing pilot light subroutine, 192f
Flash memory, 38, 38f
Flexibility, 2
FlexLogix system, 333
FLL. See Fill file (FLL)
Floating point arithmetic, 57–58

components, 58, 58f
example, 57–58, 57f, 58f
features, 57

Floating point file, 75
Flow measurement, 111, 111f
Flowmeter, turbine type, 111f
Fluid pumping process, 143–144, 143f
Force function, 195
Forcing external I/O addresses, 195–196f, 195–197
Full-duplex transmission, 322
Fully automatic/intelligent PID control, 315
Function block diagram (FBD), CLX system, 384–387

add-On instructions, 384
Assume Data Available indicator marker, 387, 388f
BAND (Boolean AND) function block, 384–385, 385f
data latching, 387, 387f
feedback loop, 387, 387f
function blocks, 384
references, 385
signal flow and execution, 386–387, 386f
wire connectors, 385–386, 386f
wires and pins, 385, 386f

Function block diagram (FBD) programming, 81, 82
CLX system, 388–392, 388–393f
concept, 82
equivalents to ladder logic contacts, 82f
ladder diagram and, 82, 82f
use of, 82

Function blocks, 384

G
Gateways, 320
GEQ. See Greater Than or Equal (GEQ) instruction
Graphic HMI terminals, 309
Graphics library, HMI, 42, 42f
Gray code, 53–54, 53t, 54f
Greater Than (GRT) instruction, 217–218, 217f
Greater Than or Equal (GEQ) instruction, 217,

218, 218f
Grounding, 285–286, 286f
Ground loops, 286, 286f
GRT. See Greater Than (GRT) instruction

H
Hand-held programming devices, 7, 39
Hand-held units, 91
Hardware, 4, 17–42

analog I/O modules, 27–29f, 27–31
BASIC or ASCII module, 31
BCD-output module, 32, 32f
communication modules, 32, 33f
CPU, 35–36, 35–36f
data recording and retrieval, 39, 39f
discrete I/O modules, 22–27, 23–25f, 24t
encoder-counter module, 31, 31f
high-speed counter module, 31, 31f
human machine interfaces (HMIs), 39–42, 40f
I/O section, 18–22, 18f
I/O specifications

analog I/O module, 34–35
discrete I/O module, 33–34

memory design, 36–37, 37f

Electrical isolation, discrete I/O modules, 34
Electrically erasable programmable read only memory

(EEPROM), 38, 38f
Electrical noise, 284–285
Electromagnetic control relays, 99–100, 99–100f
Electromagnetic interference (EMI), 284–285
Electromagnetic latching relays, 116–120, 117–120f
Electromechanical retentive timer, 144f
Electronic counters, 157, 157f
Electronic output module protection, 294, 294f
Electronic timing relays, 132, 132f
Enable (EN) bit, 136
Enclosures, 282–284, 282f

HMI, 41, 41f
NEMA 12 enclosure, 282
temperature inside, 282

Encoder, 111, 111f
Encoder-counter module, 31, 31f
EQU (Equal) instruction, 217, 217f
Erasable Programmable Read Only Memory

(EPROM), 38
Error amplifier, 309
Error(s), 228–229

checking, 292
verifying program, 294, 295f

EtherNet/IP, 325, 326f
Even parity bit, 54, 55t
Event-driven sequencer program, 259, 262, 263f
Event history, HMIs and, 41
Event tasks, 336
Examine If Closed (XIC) instruction, 83–84, 83f

interpretation, 84, 84f
programming, 90–91, 90f

Examine If Open (XIO) instruction, 83, 84, 84f
interpretation, 84, 84f
programming, 90–91, 90f

Exclusive-OR (XOR) function, 65, 65f, 208
Exponent, 58
Expression, FAL instruction, 213

F
FactoryTalk services platform, SCADA, 329–330, 330f
FAL. See File arithmetic and logic (FAL) instruction
Fault routine, 201, 337
Feedback, 228
Feedback loop, FBD, 387, 387f
Fiber optic sensors, 108, 109f
Fiber optic transmission medium, 317
Field devices, 7
Field devices testing, 4
FIFO (first in, first out) instruction, 272–276

ControlLogix programming with, 275–276, 276f
operating program, 274–275, 274f
SLC 500 FIFO load (FFL) instruction, 273, 273f
SLC 500 FIFO unload (FFU) instruction,

273–274, 273f
vs. LIFO stack operation, 275, 275f

File, 208, 208f, 211
File add function, 245, 245f
File addressing, 212, 212f
File arithmetic and logic (FAL) instruction, 245, 245f

All Mode, 213
Control, 212
Destination, 213
exceptions to rule, 215
Expression, 213
file-to-file copy function and, 213–214, 214f
file-to-word moves, 214, 214f
Incremental mode, 213
Length, 212
Mode, 213
Numeric Mode, 213
overview, 212, 212f
Position, 213

File arithmetic operations, 245–246, 245–246f
File copy (COP) instruction, 215, 215f

PLC drink-manufacturing program, 216, 216f
File divide function, 246, 246f
File multiply function, 246, 246f
File Shift menu tab, 266
File subtract function, 245, 245f
File-to-file shifts, 211, 212f

FAL instruction and, 213–214, 214f

data comparison, 208, 216–221
data transfer, 208–216
defined, 208
FAL instruction (See File arithmetic and logic (FAL)

instruction)
features, 208
numerical data I/O interfaces, 224–226
PID controllers and, 227, 228–229, 228f
programs, 221–224, 221f–223f
use of, 208

Data monitoring function, 289–290, 290f
Data transfer, 208–216. See also Data manipulation

concept, 208, 209f
defined, 208
vs. data comparison, 216

DCS (distributive control system), 307, 308f, 317–318
Deadband, 228, 311, 311f
Decimal number(s)

binary number conversion to, 47, 48f
conversion to binary number, 48, 48f
hexadecimal number conversion to, 51, 51f
octal number conversion to, 50f

Decimal system, 47, 47f, 47t
numeric values, 52t

Decrement counter, 158
Derivative action, proportional control and, 313
Destination, FAL instruction, 213
Destination register, 209
Determinism, data communication and, 325
Device bus networks, 319
DeviceNet, 322–325, 323–324f
DF1 Radio Modem, 317
Difference, 56
Digital devices, 93–94
Digital signal waveform, 47f
Digital-to-analog converter (DAC), 29, 94
DIP (dual in-line package) switches, 103, 103f
Direct current (DC) supply, 5
Directory, SCADA, 329
Direct scan technique, 108, 108f
Discrete I/O modules, 22–27, 23–25f, 24t

specifications, 33–34
ambient temperature rating, 33
backplane current draw, 34
electrical isolation, 34
input on/off delay, 33
input threshold voltages, 33
inrush current, 34
leakage current, 34
nominal current per input, 33
nominal input voltage, 33
output current, 33
output voltage, 33
points per module, 34
short circuit protection, 34

Discrete manufacturing, 306, 306f
Dishwasher

timed sequencer switch, 253–254, 254f
wiring diagram and timing chart, 254f

Distributive control system (DCS), 307, 308f, 317–318
Distributive law, 66
Division, 55, 57
Division instruction, 235, 240–242, 241f
Done (DN) bit, 136, 160
Double precision, 58
Down-counter, 158, 166–169, 167f
Drilling process, ladder logic program for (example),

124–126, 124–126f
Drink-manufacturing program, PLC, 216, 216f
DriveLogix system, 333
Driver, 300
Drum-operated sequencer switch, 253, 253f
Drum switches, 253
Dual in-line package (DIP) switches, 103, 103f
Duplex communication system, 322
Duration, PID controllers, 228

E
Editing, 288
Edit tags, CLX system, 342, 342f
Electrical continuity, 79
Electrical devices, 93–94
Electrical interlocking circuits, 115–116, 115–116f

pet73842_ind_407-414.indd 409 03/11/15 4:11 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

410 Index

points per module, 34
short circuit protection, 34

Isolation transformers, 287

J
Jog circuit with control relay, 123–124f
Jump (JMP) instruction, 188–190, 188–190f
Jump to subroutine (JSR) output instruction, 191

K
Keyboards, 91
Keyswitch, three-position, 93f
1-K word memory, 48, 48f

L
Label (LBL) instruction, 188–189
Ladder diagram (LD) language, 81

advantages, 92–93
entering program, 91–93

Data File screens, 92, 92f
instruction toolbar with bit, 91f
I/O Configuration screen, 92, 92f
main window, 91–92, 91f
Select Processor Type screen, 92, 92f

function block diagram and, 82, 82f
function of, 85–86, 85f
vs. instruction list programming, 81–82, 81f

Ladder logic contacts
function block diagram equivalents to, 82f

Ladder logic program, 7, 9–10, 9f, 67–68, 67f
CLX system, 346, 346f

addition to main routine, 348–350, 348–350f
diagram for modified process, 11f
drilling process (example), 124–126, 124–126f
electrical continuity in, 79
monitoring, 93, 93f
parallel instructions, 122–123, 123f
relay schematics conversion to, 121–123
rung conditions, evaluating, 79, 79f
for sequential control process, 122, 123f
series instructions, 122, 123f
troubleshooting, 294–299, 295–296f
writing, from narrative description, 124–126, 124–126f

Ladder rung, 85–86, 85f
Ladder window, 92

properties, 92
Language, 7, 67, 81–83, 81f

function block diagram programming, 81, 82, 82f
IEC 61131 standard, 81, 81f
instruction list programming language, 81–82, 81f
ladder diagram language, 81, 82, 82f
sequential function chart (SFC) programming language,

81, 82, 82f
structured text (ST), 81, 83, 83f

Last In, First Out (LIFO) instruction, 275
example, 275, 275f
vs. FIFO stack operation, 275, 275f

Latch coil, 116–117
Latching relays, 116–120, 117–120f
Latch instructions, CLX system, 352–353, 352–353f
Leakage current, 285

discrete I/O modules, 34
Least significant bit (LSB), 48
Length, FAL instruction, 212
Less Than (LES) instruction, 217, 218, 218f
Less Than or Equal (LEQ) instruction, 217, 218, 218f
Level switches, 104, 104f
LIFO (last in, first out) instruction, 275

example, 275, 275f
vs. FIFO stack operation, 275, 275f

Light-emitting diode (LED) window, 39
Light sensors, 107–109, 107–109f

bar code scanners, 108–109, 109f
fiber optic, 108, 109f
photoconductive cell, 107, 107f
photoelectric, 107–108, 108f
photovoltaic/solar cell, 107, 107f
scan technique, 108, 108f

LIM. See Limit test (LIM) instruction
Limit switch, 103, 103f
Limit test (LIM) instruction, 217, 218–220, 219f, 220f
Liquid-crystal display (LCD) windows, 39

fixed, 4, 5f
modular, 4–5, 6f
PC interface card, 21f
plug-in terminal block, 22, 22f
rack-based, 18, 18f
remote I/O rack, 18, 18f
wiring connections, 9, 9f

Input protection, analog I/O modules, 34
Input threshold voltages, discrete I/O modules, 33
Input troubleshooting guide, 298f
Inrush current, discrete I/O modules, 34
Instantaneous contacts, 132
Instruction addressing, 86–87, 86f
Instruction list (IL) programming language, 81

vs. ladder diagram programming, 81–82, 81f
Instruction palette, 92
Instructions. see also Program control instructions;

Sequencer instructions
counter, 157–158
override, 185
timer, 134–135, 134–135f

block format, 135, 135f
coil-formatted, 134–135, 135f
off-delay timer, 140–144, 141–143f
on-delay timer, 135–138f, 135–140

Instruction set, 14, 14t
Instruction toolbar with bit, RSLogix 500 software, 91f
Instrumentation, 127
Instrument(s), 127

calibration, 127
smart, 127, 127f

Intact, data, 211, 212f
Integer file, 75
Integral action, proportional control and, 312
Internal bits, 89
Internal coils, 89
Internal control relays, 89
Internal outputs, 89
Internal relay instructions, 89, 89f, 90f

CLX system, 350–352, 351–352f
Internal storage bits, 89
Inverter, 64
I/O address format

for SLC family of PLCs, 75–76, 77f
I/O bus networks, 319
I/O Configuration screen, RSLogix 500 software, 92, 92f
I/O connection diagram, 87f

Sequential control process, 122, 122f
I/O count, 12–13
I/O modules

analog, 27–29f, 27–31
BASIC or ASCII module, 31
BCD-output module, 32, 32f
communication modules, 32, 33f
discrete, 22–27, 23–25f, 24t
encoder-counter module, 31, 31f
high-speed counter module, 31, 31f
motion and position control modules, 32, 32f
PID module, 32, 32f
special, 31–32
stepper-motor module, 32, 32f
thumbwheel module, 31, 31f
TTL module, 31

I/O specifications
analog I/O module, 34–35

channels per module, 34
common-mode rejection, 34–35
input current/voltage range(s), 34
input impedance and capacitance, 34
input protection, 34
output current/voltage range(s), 34
resolution, 34

discrete I/O module, 33–34
ambient temperature rating, 33
backplane current draw, 34
electrical isolation, 34
input on/off delay, 33
input threshold voltages, 33
inrush current, 34
leakage current, 34
nominal current per input, 33
nominal input voltage, 33
output current, 33
output voltage, 33

Hardware (continued)
memory types, 37–38, 38f
motion and position control modules, 32, 32f
PID module, 32, 32f
programming terminal device, 39, 39f
special I/O modules, 31–32
stepper-motor module, 32, 32f
thumbwheel module, 31, 31f
TTL module, 31

Hardwired logic
defined, 67
vs. programmed logic, 67–68

Hardwired time-delay circuit, 221
Hardwired TOF relay circuit, 142–143, 142f

equivalent PLC program, 143–144, 143f
HART, 328, 328f
Heating application, proportional band for, 312, 312f
Heat-shrinkable wire identification sleeves, 285f
Hexadecimal (hex) numbering system, 47t, 50–51, 51t

conversion to binary number, 51, 51f
conversion to decimal number, 51, 51f
numeric values, 52t

High-density module, 22
High-speed counter (HSC), 160, 177–178, 178f
High-speed counter module, 31, 31f
High-speed counting, 4f
HMIs. see Human machine interfaces (HMIs)
Holding circuits, 114–115, 114–115f
Hold-up time, 35
Horizontal scan, 81, 81f
Human machine interfaces (HMIs), 12, 12f, 39–42, 40f,

308–309, 308f
alarms, 41, 41f
Allen-Bradley Pico GFX-70 controller, 40f
design, 40
event history, 41
graphics library, 42, 42f
graphic terminals, 309
monitor and enclosure, 41, 41f
structure, 40, 40f
tasks, 40–41
trend, 41–42, 42f

Hunting, 311
Hysteresis, 105–106

I
IEC 61131 standard

programming language, 81, 81f
IEEE 754 Standard, 58
Immediate input with mask (IIM) instruction,

193–194, 194f
Immediate I/O instructions, 193–194, 194f
Immediate output with mask (IOM) instruction,

193, 194, 194f
Incremental encoder-counter applications, 173–174, 174f
Incremental mode, FAL instruction, 213
Incremental optical encoder, 173–174, 174f
Increment counter, 158
Individual control, 306, 307f
Inductive loads, noise suppression for, 284, 284f
Inductive proximity sensors, 105, 105f
Inductive proximity switches, 106–107
Industrial networks

control level, 318
device level, 318
functionality levels, 318, 318f
information level, 318

Input branching, 87, 87f
nested, 87–88, 87f

Input current/voltage range(s), analog I/O modules, 34
Input devices, 6–7

and outputs, relationships between, 2, 3f
Input file, 75
Input image table file, 76–77, 77f
Input impedance and capacitance, analog I/O

modules, 34
Input instructions, 216. See also Data comparison
Input malfunctions, troubleshooting, 292–293, 293f
Input on/off delay, discrete I/O modules, 33
Input/output (I/O) section, 4, 6–7, 7f, 18–22, 18f

addressing, 18–21, 19f, 20f
combination I/O modules, 21–22, 21f
field/real-world devices, 7

pet73842_ind_407-414.indd 410 03/11/15 4:11 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Index 411

HART, 328, 328f
industrial networks, functionality levels, 318, 318f
I/O bus networks, 319
LAN, 317–318, 317f
master/slave network, 320–321, 320f
Modbus, 326, 326f
OSI model, 319–320
peer-to-peer network, 321, 321f
process bus networks, 319
PROFIBUS-DP, 326–327, 327f
SERCOS, 327, 328f
star topology, 318, 318f
token passing network, 320, 320f

Network protocol, 319
Network scanner, 323
Node, 318
Noise, electrical, 284–285, 284f
Noise suppression, 284, 284f
Nominal current per input, discrete I/O modules, 33
Nominal input voltage, discrete I/O modules, 33
Nonretentive on-delay timer (TON), 144
Nonvolatile memory, 37–38
NOR gate symbol, 64, 64f
Normally closed, timed closed (NCTC) contact

off-delay timer circuit, 134, 134f
Normally closed, timed open (NCTO) contact

on-delay timer circuit, 133, 133f
Normally closed (NC) contacts, 99, 100f
Normally closed (NC) pushbutton, 102
Normally open, timed closed (NOTC) contact

on-delay timer circuit, 132–133, 133f
Normally open, timed open (NOTO) contact

off-delay timer circuit, 133, 133f
Normally open (NO) contacts, 99, 100f
Normally open (NO) pushbutton, 102
Not equal (NEQ) instruction, 217, 217f
NOT function, 64, 64f, 65, 208
Number systems and codes, 46–58

ASCII code, 54, 55t
binary arithmetic, 55–57
binary coded decimal (BCD) system, 51–53,

52–53f, 52t
binary system, 47–48f, 47–49
comparisons, 47t
decimal system, 47, 47f
floating point arithmetic, 57–58, 57–58f
Gray code, 53–54, 53t, 54f
hexadecimal system, 50–51, 51t
negative numbers, 49–50t
octal system, 49–50, 50f, 50t
parity bit, 54, 55t

Numerical data I/O interfaces, 224–226
analog devices, 224
multibit digital devices, 224

Numeric Mode, FAL instruction, 213
Numeric values, comparison, 216, 216f. See also

Data comparison

O
Octal numbering system, 47t, 49–50, 50t

conversion to binary number, 50f
conversion to decimal number, 50f
numeric values, 52t

Odd parity bit, 54, 55t
Off-delay timer (TOF), 134

CLX system, 362–363, 362–363f
fluid pumping process, 143–144, 143f
hardwired TOF relay circuit, 142–143, 142f, 143f
instruction, 140–144
operation, 140–141, 141f
for switching motors off, 141–142, 142f

Off-delay timer circuit
normally closed, timed closed (NCTC) contact.,

134, 134f
normally open, timed open (NOTO) contact, 133, 133f

Offline programming, 289
OFF position, water level control process in storage

tank, 118
OL relay. see Overload (OL) relay
On-delay timer (TON), 134

acumulated value (ACC) word, 136
application, 137, 138, 139f
automatic sequential control systems, 138, 140, 140f

single bit, 83
size, 13, 37f
types, 37–38, 38f
utilization, 37
volatile, 37

Memory map, 75
Memory section, processor module, 35
Memory structures, 75

rack-based, 75
tag-based, 75

Menu bar, 91
MEQ. See Masked Comparison for Equal (MEQ)
Metal oxide varistor (MOV) surge suppressor,

287–288, 288f
MicroLogix controller, 78, 78f

addressing, 87
high-speed up-counter instruction, 178, 178f

Microprocessor, 35
Modbus, 326, 326f
Mode, FAL instruction, 213
Modes of operation

program mode, 93
remote mode, 93
run mode, 93
test mode, 93
three-position keyswitch, 93f

Modular I/O, 4–5, 6f
Module-defined structures, CLX system, 340–341, 340f
Modules. see also I/O modules

combination I/O, 21
Modulo (MOD) instruction, 242, 242f
Monitor, HMI, 41, 41f
Monitoring, 289–291
Monitor tags, CLX system, 342, 342f
Most significant bit (MSB), 48, 49
Motion control modules, 32, 32f
Motion control system, 315–316

bottle-filling process, 315, 316f
Motion module, 316
Motor-driven analog proportional control valve, 311f
Motor lock-out program, 176–177, 176f
Motor seal-in circuit, 115f
Motor starters, 101–102, 102f
Move (MOV) instruction, 208, 209, 209f

CLX system, 379–382, 380–382f
variable preset counter values, 210–211, 211f
variable preset timer values, 210, 210f

Move/Logical menu tab, 208, 208f
MSB (most significant bit), 48, 49
Multibit digital devices, 224
Multiple rung program, scan process and, 80, 80f
Multiplication, 55, 57
Multiplication instruction, 235, 239–240, 239–240f
Multitask PLC application, 13
MVM. See Masked Move (MVM) instruction

N
NAND gate symbol, 64, 64f
National Electrical Code (NEC), 285–286
National Electric Manufacturers Association (NEMA),

102, 282
Negate (NEG) instruction, 242–243, 243f
Negative numbers, 49, 49t, 50t
NEMA 12 enclosure, 282
NEQ. See Not equal (NEQ) instruction
Nested branching, 87–88, 87f

contact program, 88f
program to eliminate, 88, 88f

Nested contact program, 88f
Nested subroutines, 191, 193, 193f
Network communications. see also Data communications

access method, 320
bit-wide bus networks, 319
bridges, 320
bus topology, 318–320, 319f
byte-wide bus networks, 319
ControlNet, 325, 325f
Data Highway, 322, 322f
device bus networks, 319
DeviceNet, 322–325, 323–324f
EtherNet/IP, 325, 326f
Fieldbus, 326, 327f
gateways, 320

LiveData, SCADA, 329
Local area network (LAN), 317–318, 317f
Lockout/tagout devices, 291f
Logic, 82
Logical continuity, 79, 86f
Logic gate, 62, 62f

truth tables, 62
Logic gate circuits

Boolean equation for, 66–67, 67f
from Boolean expression, 66, 66f

Logic operators, 65f, 66f
Logic wiring error, 2
LogixDesigner, 334, 335f
LSB (least significant bit), 48

M
Magnetic reed switch, 107, 107f
Magnitude, PID controllers, 228
Main ladder program (file 2), 75
Main routine, CLX system, 337

ladder logic program and, 348–350, 348–350f
Maintenance, preventive, 291, 291f
Main window, RSLogix 500 software, 91–92, 91f
Mantissa, 58
Manually operated switches, 102–103, 103f

dual in-line package (DIP) switches, 103, 103f
pushbutton switches, 102, 103f
selector switch, 103, 103f

Manual mode, water level control process in storage
tank, 118

Manual PID control, 314
Masked Comparison for Equal (MEQ), 217, 220–221,

220f, 221
Masked Move (MVM) instruction, 208, 209–210, 209f
Master control relay (MCR), 198–199, 282–284

hardwired electromechanical, 282–284, 283f
Master control reset (MCR) instruction, 185–187f,

185–188
Master/slave network, 320–321, 320f
Math instructions, 234–246

addition, 236–237f, 236–238
clear, 243, 243f
CLX system, 374–376, 374–376f, 380–382, 380–382f
Compute/Math menu tab, 235, 235f
convert from BCD (FRD), 243, 243f
convert to BCD (TOD), 243, 243f
division, 235, 240–242, 241f
file arithmetic operations, 245–246, 245–246f
multiplication, 235, 239–240, 239–240f
negate, 242–243, 243f
overview, 235
scale, 243–244, 244–245f
SLC 500 CPT (compute) instruction, 235–236, 235f
square root, 242, 242f
subtraction, 235, 238–239, 238f
word-level math instructions, 242–244

Matrix limitation diagram, 88
Matrix-style sequencer chart, 259, 261f
Mechanical counters, 157, 157f
Mechanically operated switches, 103–104, 103–104f

level switches, 104, 104f
limit switch, 103, 103f
pressure switches, 104, 104f
temperature switch/thermostat, 103–104, 104f

Mechanical sequencers, 253–254, 253f
cam-operated, 253, 253f, 254
dishwasher timed sequencer switch., 253–254, 254f
drum-operated, 253, 253f
operation, 253

Mechanical timing relays, 132–134, 132f
Memory

capacity measurement, 13
CLX system, 334, 334f
design, 36–37, 37f
EEPROM, 38, 38f
EPROM, 38
factors, 13
flash, 38, 38f
location, 37
nonvolatile, 37–38
organization of, 48
RAM, 38
ROM, 38

pet73842_ind_407-414.indd 411 03/11/15 4:11 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

412 Index

immediate I/O instructions, 193–194, 194f
jump instruction, 188–190, 188–190f
master control reset, 185–187f, 185–188
safety circuitry, 197–200, 198–200f
selectable timed interrupt, 200–201, 201f
subroutine functions, 190–193, 190–193f
suspend instruction, 202, 202f
temporary end, 201, 202f

Program files, 75, 76f
Programmable automation controller (PAC), 12, 12f,

333, 333f
Programmable logic controllers (PLCs), 2f

abbreviations, 2
advantages, 2
applications, 2, 12–13, 13f
architecture, 4
benefits, 2–4
closed architecture, 4
communications capability, 3
defined, 2
easier to troubleshoot, 3–4
faster response time, 3
flexibility, 2
hardware, 4
industrial application, 11, 11f
instruction set, 14, 14t
I/O system, 4–5, 5f, 6–7, 6f, 7f
lower cost, 2–3
modifying operation, 11, 11f
motion control process, 315
open architecture, 4
overview, 1–14
parts of, 4–7, 5f
power supply, 5, 6f
principles of operation, 8–10f, 8–11
processor (CPU), 5–6, 6f
program, 7
programming device, 7
programming language, 7
proprietary, 4
as real-time system, 2
relay logic, 2
reliability, 2
size, 12–13, 12f
software, 4, 12
vs. computers, 11–12, 11–12f

Programmed logic, hardwired logic vs., 67–68
Programming, 289–291

addressing, 86–87, 86f
analog devices, connecting with, 93–94, 94f
bit-level logic instructions, 83–86
branch instructions, 87–89, 87f
Examine If Closed (XIC) instruction, 90–91, 90f
Examine If Open (XIO) instruction, 90–91, 90f
internal relay instructions, 89, 89f, 90f
ladder diagram, 91–93, 93f
languages, 81–83, 81f
modes of operation, 93, 93f
offline, 289
online, 289
processor memory organization, 75–79, 76f

data files, 75–78, 77–78f
program files, 75, 76f

program scan cycle, 78–81, 78f
Programming counters. see Counters
Programming device, 4, 7
Programming language. see Language
Programming terminal devices, 39, 39f
Programming timers. see Timers
Program mode, 93
Program/processor status toolbar, 91–92
Program scan cycle, 78–81, 78f

CLX system, 345–346, 345f
data flow, 79, 79f
horizontal scan, 81, 81f
ladder logic rung conditions, evaluating, 79, 79f
multiple rung program., 80, 80f
patterns, 80–81, 81f
single rung program, 79–80, 80f
time, 78–79
vertical scan, 81, 81f

Program tag, 338
Project, CLX system, 335–336, 335–336f
Project tree, 92

Photoconductive cell, 107, 107f
Photoelectric sensors, 107–108, 108f
Photoresistive cell, 107
Photovoltaic cell, 107, 107f
PI. See Proportional-integral (PI) control
Pick and Place machines, 315, 315f
PID. See Proportional-integral-derivative (PID) control
PID module, 32, 32f
Pins, FBD, 385, 386f
PLC-based control panel, 2, 3f
PLC drink-manufacturing program, 216, 216f
PLC programming language. see Language
PLCs. see Programmable logic controllers (PLCs)
Plug and play, 325
Plug-in terminal block, 22, 22f
Pneumatic on-delay timer, 132f
Points per module, discrete I/O modules, 34
Point-to-point serial communications link, 317, 317f
Polling, 320
Position, FAL instruction, 213
Position control modules, 32, 32f
Position sensors, 111, 111f
Positive temperature coefficient (PTC), of metals, 110
Power circuit, 100
Power supply, 4, 5, 6f

alternating current (AC), 5
CPU, 35, 35f
direct current (DC), 5

Predefined structures, CLX system, 340, 340f
programming timers, 358–359, 358f

Preset counter values, MOV instruction and,
210–211, 211f

Preset time, 134
Preset timer values, MOV instruction and, 210, 210f
Preset value, 136

counter, 161
Preset value (PRE) word

timers, 136
up-counter, 161

Pressure switches, 104, 104f
Preventive maintenance program, 291, 291f
Principles of operation, 8–10f, 8–11

modifying, 11, 11f
Process bus networks, 319
Process control, 306. see also Control systems

centralized, 307, 307f
distributive control system, 307, 308f
individual, 306, 307f

Process control problem, 8, 8f
ladder logic program, 9–10, 10f
relay method for, 8–9, 8f
RUN operation, 10
wiring connections, 9, 9f, 10–11, 10f

Process(es). see also Control systems
batch, 306, 306f
centralized control, 307, 307f
continuous, 306, 306f
control, 306
discrete manufacturing, 306, 306f
distributive control system, 307, 308f
individual control, 306, 307f

Processor (CPU), 4, 5–6, 6f
Processor memory organization, 75–79, 76f

data files, 75–78, 77–78f
program files, 75, 76f

Processor module, 35f, 36f
CPU section, 35
memory section, 35
PROG position, 35–36
REM Position, 36
RUN position, 35
troubleshooting, 292, 292f

Process parameters display, 127f
Process variable (PV), 228, 309
Produced/consumed tags, 339, 339f
Product part flow rate program, 177, 177f
PROFIBUS-DP, 326–327, 327f
Program, 7

CLX system, 336–337, 337f
data manipulation, 221–224, 221f–223f

Program control instructions, 184–202. see also
Instructions

fault routine, 201
forcing external I/O addresses, 195–196f, 195–197

On-delay timer (TON) (continued)
CLX system, 359–362, 359–362f
control bits, 137–138, 138f
control word, 136
fluid pumping process, 143–144, 143f
instruction, 135–140
preset value (PRE) word, 136
principle of operation, 135, 135f
SLC 500 timer file, 135–136, 136f
SLC 500 timer table, 138, 138f

On-delay timer circuit
normally closed, timed open (NCTO) contact,

133, 133f
normally open, timed closed (NOTC) contact,

132–133, 133f
On-delay timer program, 221–223, 222f
One-Shot Falling (OSF) instruction

CLX system, 354, 354f
One-Shot (ONS) instruction

CLX system, 353–354, 354–355f
up-counter, 162–166, 164f

One-shot rising (OSR) instruction, 165–166, 165f
CLX system, 354, 354f

1’s complement number, 49, 50t
Online programming, 289
On/off control, 310–311, 310–311f
On/off PLC control, 228
i symbol, 10
Open architecture, 4
Open-loop motor control system, 113, 113f
Open Systems Interconnection (OSI model), 319–320
Optical encoder, 111, 111f

incremental, 173–174, 174f
Optical encoder disk, 53–54, 54f
Optical isolator, 7
OR function, 63, 63f, 65, 208
OR gate, 63, 63f
OTL instruction. see Output latch (OTL) instruction
OTU instruction. see Output unlatch (OTU) instruction
Output actuator, 310
Output branching, 87, 87f

with conditions, 87, 87f
nested, 87–88, 87f

Output control devices, 112–113f, 112–114
actuator, 112
operation, 112
servo motors, 113, 113f
stepper motors, 113, 113f
symbols for, 112f

Output current, discrete I/O modules, 33
Output current/voltage range(s), analog I/O modules, 34
Output devices, 7

inputs and, relationships between, 2, 3f
Output Energize (OTE) instruction, 83, 84–85, 85f
Output file, 75
Output image table file, 77–78, 77f
Output instructions, 216. See also Data transfer
Output latch (OTL) instruction, 117–118, 117–118f

CLX system, 352–353, 352–353f
Output malfunctions, troubleshooting, 294, 294f, 295f
Output troubleshooting guide, 299f
Output unlatch (OTU) instruction, 117–118, 117–118f

CLX system, 352–353, 352–353f
Output voltage, discrete I/O modules, 33
Overflow (OV) bit, 160–161
Overload (OL) relay, 102

function of, 101, 101f
Override instructions, 185

P
PanelView graphic terminals, 309f
Parallel data transmission, 321, 321f
Parity bit, 54, 55t, 322
Parking garage counter, 167–168, 168f
PASCAL, 81
PC. see Personal computer (PC)
PC interface card, 21f
Peer-to-peer network, 321, 321f
Periodic tasks, 336
Personal computer (PC), 7, 8f, 39

memory, 48, 49f
as programmer, 91
vs. PLCs, 11–12, 11–12f

pet73842_ind_407-414.indd 412 03/11/15 4:11 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

Index 413

ControlLogix Sequencer Output (SQO) instruction,
258–259, 259f

four-step sequencer, 256–257, 257f
mask word, 256–257

moving data through, 256–257, 258f
moving data from file to output, 257–258, 258f
Sequencer menu tab, 255f
SQC instruction, 262–263, 264f
SQL instruction, 263–264, 265f
SQO instruction, 255–259, 255–259f

Sequencer load (SQL) instruction, 263–264, 265f
Sequencer Output (SQO) instruction, 255–259, 255–259f

control, 256
destination, 256
file, 255
length, 256
mask, 255–256
position, 256
source, 256

Sequencer programs, 259–264
event-driven, 259, 262, 263f
sequencer chart, 259, 261f
SQC instruction, 262–263, 264f
SQL instruction, 263–264, 265f
time-driven, 259, 260–261, 261f, 262f

Sequencer switch, 253–254, 253f
cam-operated, 253, 253f, 254
dishwasher timed, 253–254, 254f
drum-operated, 253, 253f
operation, 253

Sequential control process, 121, 121f
flow diagram, 121–122, 121f
I/O connection diagram, 122, 122f
ladder logic program for, 122, 123f
relay schematic for, 122, 122f

Sequential function chart (SFC) programming language,
81, 82, 82f

Sequential time-delayed motor-starting circuit
hardwired, 147f
PLC program of, 147f

SERCOS (Serial Real-time Communications System),
327, 328f

Serial data communication, 317, 317f, 322, 322f
point-to-point link, 317, 317f

Serial data transmission, 321–322, 321f
Servo drive, motion control process, 316
Servo motors, 113, 113f

closed-loop control, 114
motion control process, 316
open loop control, 113–114, 113f

Set-point (SP), 228, 309
Set-point control, 226–227, 227f
Seven-segment LED display board,

224, 225f
Shift registers, 264–272

bit, 264–272
circulating shift register function, 265
concept of, 265, 266f
data in, 265
in material handling processes, 268, 269f
spray-painting operation, 268–269, 270f
types of, 265, 266f

Short circuit protection, discrete I/O modules, 34
Sign, 58
Signal conditioning, in control system, 308
Signals, 93–94
Sign bit, 49
Signed binary numbers, 49t
Single bit, 83, 224
Single-ended PLC application, 13, 13f
Single precision, 58
Single rung program, scan process and, 79–80, 80f
Single-scan test mode, 93, 289
Single-step test mode, 93
Sinking inputs, 26, 26f
Six-axis robot arm, 316f
16-bit word, 48f
Size, PLCs, 12–13, 12f

memory, 13
SLC 500 controllers, 75, 208

addressing format, 86, 86f
bit level and word level addressing, 19, 20f
control word, 160–161
counter file, 160, 160f

Return (RET) output instruction, 191
Rotary switches, 253
Rotating cam limit switch, 253f
Routines, CLX system, 337, 337f
Routing, wire, guidelines for, 284–285
RS-232, 54, 300, 322
RS-422, 54, 322
RS-485, 322
RSLinx software, 299–300, 300f, 334, 335f
RSLogix software, 91, 217, 299, 299f, 300,

334, 334f
compute instruction, 235–236
controller organizer tree, 336f
counter selection tool bar, 161f
Data File screens, 92, 92f
instruction toolbar with bit, 91f
I/O Configuration screen, 92, 92f
main window, 91–92, 91f
project, 335
Select Processor Type screen, 92, 92f

RSWho, 301, 301f, 334
RTDs (resistance temperature detectors), 110–111, 110f
RTO timer. see Retentive on-delay (RTO) timer
Rung, 68
Run mode, 93

S
Safety circuitry, 197–200, 198–200f
Safety PLCs, 199, 199f

vs. standard PLC, 199
Safety requirements, 197–198, 198f
Same address, program with, 296–297, 296f
SCADA (supervisory control and data acquisition), 36,

318, 328–330, 329–330f
alarm, 329
alert, 329
FactoryTalk services platform, 329–330, 330f

SCADA/HMI software, 329
Scale instruction, 243–244, 244–245f
Scale with Parameters (SCP) instruction, 30,

243–244, 245f
Scaling, 30
Scan, 10
Scan cycle time, 78–79
Scan process, 75–79, 76f

data flow, 79, 79f
horizontal scan, 81, 81f
ladder logic rung conditions, evaluating, 79, 79f
multiple rung program., 80, 80f
patterns, 80–81, 81f
single rung program, 79–80, 80f
vertical scan, 81, 81f

Scan technique, 108, 108f
Scan time, 10
Scope, defined, 338
Seal-in circuits, 114–115, 114–115f
Security, SCADA, 329
Selectable timed disable (STD) instruction, 201, 201f
Selectable timed enable (STE) instruction, 201, 201f
Selectable timed interrupt (STI) instruction,

200–201, 201f
Selection toolbar, timer, 134f
Selector switch, 103, 103f
Select Processor Type screen, RSLogix 500 software,

92, 92f
Self-detection, 292
Semiautomatic/autotune PID control, 314–315
Sensing range, proximity sensors, 105–106, 106f
Sensors, 28f, 104–111. see also Switches

in control system, 308
flow measurement, 111, 111f
light, 107–109, 107–109f
magnetic reed switch, 107, 107f
position, 111, 111f
proximity, 104–106f, 104–107
strain/weight, 110, 110f
temperature, 110–111, 110f
ultrasonic, 109–110, 109f
velocity, 111, 111f

Sequencer chart, 259, 261f
Sequencer compare (SQC) instruction, 262–263, 264f
Sequencer instructions, 255–259, 255f. see also

Instructions

Project window, 92
Proportional band, for heating application, 312, 312f
Proportional control/controllers, 228, 311–315, 311f

derivative action and, 313
droop, 312
integral action and, 312
offset, 312
steady-state error, 312

Proportional-integral (PI) control, 227
Proportional-integral-derivative (PID) control, 227, 228–

229, 228f, 311–315, 313f
fully automatic/intelligent, 315
manual, 314
output instruction and setup screen, 315f
response of, 314
semiautomatic/autotune, 314–315

Proportional plus integral (PI) control, 313
Proportioning, time, 312, 312f
Protocol, 319
Proximity sensors, 104–106f, 104–107

application conditions, 104–105
bleeder resistor connected to, 106, 106f
capacitive, 106, 106f
inductive-type, 105, 105f
sensing range, 105–106, 106f
three-wire DC, 105, 105f
two-wire, 105, 105f

Pulse width modulation, 312
Pumping process, fluid, 143–144, 143f
Pushbutton interlocking, 115, 116f
Pushbutton switches, 102, 103f
PV. See Process variable (PV)

R
Rack-based I/O section, 18, 18f
Rack-based memory structures, 75
Rack-based systems, 75
Rack/slot-based addressing, 19, 19f

vs. tag-based addressing, 19, 21f
Radiated noise, 284
Random Access Memory (RAM), 38, 38f
Rate of change, PID controllers, 228
Reading, 36
Read Only Memory (ROM), 38
Real-time system, PLC as, 2
Real-world devices, 7
Reciprocating timers, 147–148

CLX system, 365
Recording, data, 39, 39f
Redundant processors, 35
References, FBD, 385
Registers, 208
Relay-based control panel, 2, 3f
Relay ladder logic (RLL) program, 7, 92

diagram for modified process, 11f
Relay logic, 2, 7
Relay operation, 99, 99f
Relay schematics

conversion to PLC ladder programs, 121–123
for sequential control process, 122, 122f

Release coil, 117
Reliability, 2, 3f
Remote I/O rack, 18, 18f
Remote mode, 93
Repeatability, data communication and, 325
Repeater, 318
Reserved (file 1), 75
Reset (RES), 134
Resistance temperature detectors (RTDs),

110–111, 110f
Resolution, analog I/O modules, 34
Response time, 3, 4f
Result window, 92
Retentive on-delay (RTO) timer, 134

alarm program, 145–146, 145f
application, 146
CLX system, 364–365, 364–365f
program, 144–145, 144f
timing chart, 145, 145f

Retentive timer, 144–146
Retentive timer reset (RES) instruction, 144
Retrieval, data, 39, 39f
Retroreflective scan technique, 108, 108f

pet73842_ind_407-414.indd 413 03/11/15 4:11 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

414 Index

output guide, 299f
output malfunctions, 294, 294f, 295f
processor module, 292, 292f

Truth tables, 62
NAND gate symbol and, 64, 64f
NOR gate symbol and, 64, 64f
XOR gate symbol and, 65, 65f

TTL module, 31
TTL (Transistor-Transistor-Logic) signals, 31
Turbine flowmeter, 111, 111f
24-hour clock program, 172
Twisted pairs, of wire, 317
Two-position control, 228
2’s complement number, 49, 50t
Two-wire proximity sensor, 105, 105f

U
Ultrasonic sensors, 109–110, 109f
Underflow (UN) bit, 161
Unipolar modules, 28
Unlatch coil, 117
Unlatch instructions

CLX system, 352–353, 352–353f
Up-counter, 158, 159–166, 159f

alarm monitor program, 166f
coil-formatted instruction, 157–158, 157f
one-shot instruction, 162–166, 164f
one-shot rising (OSR) instruction, 165–166, 165f

Up-counter program, 223, 223f
Update accumulator (UA) bit, 161
Up/down-counter, 166–169, 167–170f
User-defined structure, CLX system, 341, 341f

V
Velocity sensors, 111, 111f
Verifying program errors, 294, 295f
Vertical contact

program with, 88, 88f
reprogrammed to eliminate, 88, 88f

Vertical scan, 81, 81f
Vessel filling operation, 223–224
Vessel overfill alarm program, 238f
Volatile memory, 37
Voltage sensing, 27
Voltage variations, 287–288, 288f

W
Watchdog timer, 292
Weight sensors, 110, 110f
Windows environment, 91
Windows toolbar, 91
Wire connectors, FBD, 385–386, 386f
Wire identification sleeves, heat-shrinkable, 285f
Wireless Wi-Fi Ethernet networks, 317
Wire routing

guidelines for, 284–285
heat-shrinkable wire identification sleeves, 285, 285f

Wires/wiring
FBD, 385, 386f
of stop buttons, 200, 200f

Wiring connections
input/output (I/O) system, 9, 9f
process control scheme, 10–11, 10f

Word level addressing, 19, 20f
Word level logic instructions, 70–71, 70–71f, 70t
Word-level math instructions, 242–244. see also Math

instructions
Words, 47–48, 208, 208f
Word shift operations, 272–276
Word-to-file moves, 211

FAL instruction and, 214, 214f
Wraparound operation

BSL instruction and, 267–268, 269f
Writing, 36
Writing over the existing data, 208

X
XOR (exclusive-OR) function, 65, 65f, 208

positions, 103
() symbol, 10
System functions (file 0), 75

T
Tabbed instruction toolbar, 92
Table, 208
Tachometer generators, 111, 111f
Tag-based addressing, 19, 20f

CLX system, 347–348, 347f
vs. rack/slot-based addressing, 19, 21f

Tag-based memory structures, 75
Tag-based systems, 75
Tags, 87. see also specific types

CLX system, 337–340, 338–340f, 347
creating, 341, 341f
edit tags, 342, 342f
monitor tags, 342, 342f

Tank-filling process, analog control for, 94, 94f
Tasks, CLX system, 336, 336f

continuous, 336
event, 336
periodic, 336

Temperature measurement, 30, 30f
Temperature sensors, 110–111, 110f
Temperature switch, 103–104, 104f
Temporary end (TND) instruction, 201, 202f,

295–296, 296f
Test mode, 93
Thermocouples, 110–111, 110f
Thermostat, 103–104, 104f
Three-phase magnetic motor starter, 101–102, 102f
Three-pole magnetic contactor, 101f
Three-wire DC proximity sensor, 105, 105f
Through-beam scan technique, 108, 108f
Thumbwheel module, 31, 31f
Thumbwheel switches (TWS), 51, 53f, 224, 224f, 225f
Time base, 134, 136
Timed contact symbols, 132, 133f
Time-driven sequencer program, 259, 260–261,

261f, 262f
Time proportioning, 312, 312f
Timer file, 75
Timer function, and counter function, 174–177, 372, 372f
Timer number, 136
Timers, 82, 131–150, 147–148, 147–150f

advantages, 134
cascading timers, 147–148, 149f
CLX system, 358–366

cascading, 365, 366f
off-delay timer (TOF), 362–363, 362–363f
on-delay timer (TON), 359–362, 359–362f
predefined structure, 358–359, 358f
reciprocating, 365
retentive on-delay timer (RTO), 364–365, 364–365f

instructions, 134–135, 134–135f
mechanical timing relays, 132–134, 132f
off-delay timer instruction, 140–144, 141–143f
on-delay timer instruction, 135–138f, 135–140
quantities, 134–135
reciprocating, 147–148
retentive timer, 144–145f, 144–146
selection toolbar, 134f

Timer-timing (TT) bit, 136
Timing relays, 132, 132f
Title bar, 91
TOF. see Off-delay timer (TOF)
Token passing network, 320, 320f
TON. see On-delay timer (TON)
Traffic lights, control of

in one direction, 148–149, 149f
timing chart, 149f
in two directions, 149, 150f

Transducer, 28, 29f
Transmission media, 317, 317f
Transmitter, 28, 29f
Trend monitoring, 41–42, 42f
Troubleshooting, 3–4, 4f, 12, 290, 292–299

for discrete output module, 297, 298f
general methods, 297, 297f
input guide, 298f
input malfunctions, 292–293, 293f
ladder logic program, 294–299, 295–296f

SLC 500 controllers (continued)
counter instructions, 162, 163f
counter table for, 160–161, 160f
count-up counter, 161f
CPT (compute) instruction, 235–236, 235f (see also

Math instructions)
drilling process, ladder logic program for, 124–126,

124–126f
input image table file, 76–77, 77f
internal bit addressing, 89, 89f
jump (JMP) instruction, 188
master control reset (MCR) instruction, 187–188, 187f
on-delay timer instruction, 136, 136f
one-shot rising (OSR) instruction, 165–166, 165f
output image table file, 77–78, 77f
program and data file organization, 75, 76f
Program Control menu tab, 185
rack/slot-based addressing format, 19, 19f
Sequencer menu tab, 255f
subroutine functions, 191, 193f
timer file, 135–136, 136f
timer selection toolbar, 134f
timer table, 138, 138f
water level control program using, 119, 120f

SLC 500 controller word addressing, 212, 212f
SLC family, of PLCs. see also SLC 500 controllers

I/O address format, 75–76, 77f
SLC 500 FIFO load (FFL) instruction, 273, 273f
SLC 500 FIFO unload (FFU) instruction, 273–274, 273f
SLC 500 output status file, 48–49, 49f
SLC 500 Scale data (SCL) instruction, 243–244, 244f
Smart instruments, 127, 127f
SoftLogix 5800 controller, 333
Software, 4, 12, 299–300f, 299–301
Solar cell, 107, 107f
Solenoid, 112, 112f
Solenoid valve, 112

construction and operation, 112–113, 113f
Source register, 209
Sourcing inputs, 26, 26f
SP. See Set-point (SP)
Split bar, 92
Spray-painting operation, by shift left register,

268–269, 270f
Square root (SQR) instruction, 242, 242f
Stack, 272
Stand-alone PLC application, 13, 13f
Standard PLCs, vs. safety PLCs, 199
Star topology network, 318, 318f
Station, 318
Status bar, 92
Status file, 75
Stepper-motor module, 32, 32f
Stepper motors, 113, 113f
Stepper switches, 253
Stop buttons, wiring of, 200, 200f
Storage tank, water level control process in, 118, 118f

automatic mode, 118
manual mode, 118
OFF position, 118
program used for, 118–119, 119f
status indicating lights, 118
using Allen-Bradley modular SLC 500 controller, 119, 120f

Strain gauge, 110, 110f
Strain gauge load cells, 110
Structured text (ST), 81, 83, 83f
Structure-type tag, CLX system, 340, 340f
Subroutine functions, 190–193, 190–193f
Subroutine (SBR) input instruction, 191
Subroutine ladder program (files 3-255), 75
Subroutines, 337
Subtraction, 55, 56–57
Subtraction instruction, 235, 238–239, 238f
Supervisory control and data acquisition (SCADA), 36, 318,

328–330, 329–330f
alarm, 329
alert, 329
FactoryTalk services platform, 329–330, 330f

Suppression device, 287
Surges, 287–288
Suspend (SUS) instruction, 202, 202f, 296, 296f
Switches. see also Sensors; specific types

manually operated, 102–103, 103f
mechanically operated, 103–104, 103–104f

pet73842_ind_407-414.indd 414 03/11/15 4:11 PM

plc4me.com

https://instrumentationforum.com/c/plc/18

	Programmable Logic Controllers 2017.pdf
	Cover
	Title
	Copyright
	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1 Programmable Logic Controllers (PLCs): An Overview
	1.1 Programmable Logic Controllers
	1.2 Parts of a PLC
	1.3 Principles of Operation
	1.4 Modifying the Operation
	1.5 PLCs versus Computers
	1.6 PLC Size and Application
	Review Questions
	Problems

	Chapter 2 PLC Hardware Components
	2.1 The I/O Section
	2.2 Discrete I/O Modules
	2.3 Analog I/O Modules
	2.4 Special I/O Modules
	2.5 I/O Specifications
	Typical Discrete I/O Module Specifications
	Typical Analog I/O Module Specifications

	2.6 The Central Processing Unit (CPU)
	2.7 Memory Design
	2.8 Memory Types
	2.9 Programming Terminal Devices
	2.10 Recording and Retrieving Data
	2.11 Human Machine Interfaces (HMIs)
	Review Questions
	Problems

	Chapter 3 Number Systems and Codes
	3.1 Decimal System
	3.2 Binary System
	3.3 Negative Numbers
	3.4 Octal System
	3.5 Hexadecimal System
	3.6 Binary Coded Decimal (BCD) System
	3.7 Gray Code
	3.8 ASCII Code
	3.9 Parity Bit
	3.10 Binary Arithmetic
	3.11 Floating Point Arithmetic
	Review Questions
	Problems

	Chapter 4 Fundamentals of Logic
	4.1 The Binary Concept
	4.2 AND, OR, and NOT Functions
	The AND Function
	The OR Function
	The NOT Function
	The Exclusive-OR (XOR) Function

	4.3 Boolean Algebra
	4.4 Developing Logic Gate Circuits from Boolean Expressions
	4.5 Producing the Boolean Equation for a Given Logic Gate Circuit
	4.6 Hardwired Logic versus Programmed Logic
	4.7 Programming Word Level Logic Instructions
	Review Questions
	Problems

	Chapter 5 Basics of PLC Programming
	5.1 Processor Memory Organization
	Program Files
	Data Files

	5.2 Program Scan
	5.3 PLC Programming Languages
	5.4 Bit-Level Logic Instructions
	5.5 Instruction Addressing
	5.6 Branch Instructions
	5.7 Internal Relay Instructions
	5.8 Programming Examine If Closed and Examine If Open Instructions
	5.9 Entering the Ladder Diagram
	5.10 Modes of Operation
	5.11 Connecting with Analog Devices
	Review Questions
	Problems

	Chapter 6 Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs
	6.1 Electromagnetic Control Relays
	6.2 Contactors
	6.3 Motor Starters
	6.4 Manually Operated Switches
	6.5 Mechanically Operated Switches
	6.6 Sensors
	Proximity Sensor
	Magnetic Reed Switch
	Light Sensors
	Ultrasonic Sensors
	Strain/Weight Sensors
	Temperature Sensors
	Flow Measurement
	Velocity and Position Sensors

	6.7 Output Control Devices
	6.8 Seal-In Circuits
	6.9 Electrical Interlocking Circuits
	6.10 Latching Relays
	6.11 Converting Relay Schematics into PLC Ladder Programs
	6.12 Writing a Ladder Logic Program Directly from a Narrative Description
	6.13 Instrumentation
	Review Questions
	Problems

	Chapter 7 Programming Timers
	7.1 Mechanical Timing Relays
	7.2 Timer Instructions
	7.3 On-Delay Timer Instruction
	7.4 Off-Delay Timer Instruction
	7.5 Retentive Timer
	7.6 Cascading Timers
	Review Questions
	Problems

	Chapter 8 Programming Counters
	8.1 Counter Instructions
	8.2 Up-Counter
	One-Shot Instruction

	8.3 Down-Counter
	8.4 Cascading Counters
	8.5 Incremental Encoder-Counter Applications
	8.6 Combining Counter and Timer Functions
	8.7 High-Speed Counters
	Review Questions
	Problems

	Chapter 9 Program Control Instructions
	9.1 Program Control
	9.2 Master Control Reset Instruction
	9.3 Jump Instruction
	9.4 Subroutine Functions
	9.5 Immediate Input and Immediate Output Instructions
	9.6 Forcing External I/O Addresses
	9.7 Safety Circuitry
	9.8 Selectable Timed Interrupt
	9.9 Fault Routine
	9.10 Temporary End Instruction
	9.11 Suspend Instruction
	Review Questions
	Problems

	Chapter 10 Data Manipulation Instructions
	10.1 Data Manipulation
	10.2 Data Transfer Operations
	10.3 Data Compare Instructions
	10.4 Data Manipulation Programs
	10.5 Numerical Data I/O Interfaces
	10.6 Closed-Loop Control
	Review Questions
	Problems

	Chapter 11 Math Instructions
	11.1 Math Instructions
	11.2 Addition Instruction
	11.3 Subtraction Instruction
	11.4 Multiplication Instruction
	11.5 Division Instruction
	11.6 Other Word-Level Math Instructions
	11.7 File Arithmetic Operations
	Review Questions
	Problems

	Chapter 12 Sequencer and Shift Register Instructions
	12.1 Mechanical Sequencers
	12.2 Sequencer Instructions
	12.3 Sequencer Programs
	12.4 Bit Shift Registers
	12.5 Word Shift Operations
	Review Questions
	Problems

	Chapter 13 PLC Installation Practices, Editing, and Troubleshooting
	13.1 PLC Enclosures
	13.2 Electrical Noise
	13.3 Leaky Inputs and Outputs
	13.4 Grounding
	13.5 Voltage Variations and Surges
	13.6 Program Editing and Commissioning
	13.7 Programming and Monitoring
	13.8 Preventive Maintenance
	13.9 Troubleshooting
	Processor Module
	Input Malfunctions
	Output Malfunctions
	Ladder Logic Program

	13.10 PLC Programming Software
	Review Questions
	Problems

	Chapter 14 Process Control, Network Systems, and SCADA
	14.1 Types of Processes
	14.2 Structure of Control Systems
	14.3 On/Off Control
	14.4 PID Control
	14.5 Motion Control
	14.6 Data Communications
	Data Highway
	Serial Communication
	DeviceNet
	ControlNet
	EtherNet/IP
	Modbus
	Fieldbus
	PROFIBUS-DP

	14.7 Supervisory Control and Data Acquisition (SCADA)
	Review Questions
	Problems

	Chapter 15 ControlLogix Controllers
	Part 1 Memory and Project Organization
	Memory Layout
	Configuration
	Project
	Tasks
	Programs
	Routines
	Tags
	Structures
	Creating Tags
	Monitoring and Editing Tags
	Array
	Review Questions

	Part 2 Bit-Level Programming
	Program Scan
	Creating Ladder Logic
	Tag-Based Addressing
	Adding Ladder Logic to the Main Routine
	Internal Relay Instructions
	Latch and Unlatch Instructions
	One-Shot Instruction
	Review Questions
	Problems

	Part 3 Programming Timers
	Timer Predefined Structure
	On-Delay Timer (TON)
	Off-Delay Timer (TOF)
	Retentive Timer On (RTO)
	Cascading of Timers
	Review Questions
	Problems

	Part 4 Programming Counters
	Counters
	Count-Up (CTU) Counter
	Count-Down (CTD) Counter
	Combining Counter and Timer Functions
	Review Questions
	Problems

	Part 5 Math, Comparison, and Move Instructions
	Math Instructions
	Comparison Instructions
	Move Instructions
	Combining Math, Comparison, and Move Instructions
	Review Questions
	Problems

	Part 6 Function Block Programming
	Function Block Diagram (FBD)
	FBD Programming
	Review Questions
	Problems

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

