

Failure	Consequence
Sticky	Loss of control
Cavitation	Damage
Passing	Integrity HSE
Leaking gland	Spill small HSE
Noise	Damage valve
Corrosion	Major leak
Closing	Spurious Trip (random error)
Not closing	Hazard (HSE)

Dema	id mode
SIL	RRF
Safety Integrity Levels	Risk reduction factor
SIL 1	100 to 10
SIL 2	1000 to 100
SIL 3	10000 to 1000
SIL 4	100000 to 10000
Through the SIL leve the safety instrumented The SIL level is defined for of the safety instrum	I we define how good function (SIF) has to be !! the total set of components ented function (SIF).

Sate railure	Fraction (SFF)	Hardware	Fault Tolera	nce (HFT)
Тур А	Тур В	N = 0	N = 1	N = 2
	0%< 60%		SIL1	SIL2
0%< 60%	60%< 90%	SIL1	SIL2	SIL3
60%< 90%	90%< 99%	SIL2	SIL3	SIL4
≥ 90%	≥ 99%	SIL3	SIL4	SIL4
e behaviour of " npletely determi	simple" (type A) ned. The failure	devices unde modes of all e metal film re	r fault conditi constituent constituent constituent constituent	ons can be omponents are istors. relavs. e

Safe Failure	Fraction (SFF)	Hardware	Fault Tolera	nce (HFT)
Тур А	Тур В	N = 0	N = 1	N = 2
	0%< 60%		SIL1	SIL2
0%< 60%	60%< 90%	SIL1	SIL2	SIL3
60%< 90%	90%< 99%	SIL2	SIL3	SIL4
≥ 90%	≥ 99%	SIL3	SIL4	SIL4
e behaviour of " mpletely determi Il defined. Such e behaviour of "e	simple" (type A) ined. The failure components are complex" (type E	devices unde modes of all e metal film re 3) devices und	er fault condition constituent constituent constituent esistors, trans der fault cond	ons can be omponents are istors, relays, e litions cannot b

47 Basics of Functional Safety in Process Industry

CONTACT

From an architectural view required SIL achieved, but ...

24

	Mode			
hitecture	with low demand rate	High demand or continuous mode		
1001	$\begin{split} PFD_{g} &= \left(\lambda_{DU} + \lambda_{DD}\right) \bullet t_{CE} \\ t_{CE} &= \frac{\lambda_{DU}}{\lambda_{D}} \left(\frac{T_{1}}{2} + MTTR\right) + \frac{\lambda_{DD}}{\lambda_{D}} MTTR \end{split}$	$PFH_{G} = \lambda_{pe}$		
1002	$\begin{split} PFI_{2} = & 2((1-\beta_{0})\lambda_{xo} + (1-\beta)\lambda_{yo})^{2}t_{xx}t_{ox} + \beta_{0}\lambda_{yo}MTTR_{0}\beta\lambda_{yo}\left(\frac{T}{2} + MTR\right) \\ & t_{cx} = \frac{\lambda_{yo}}{\lambda_{0}}\left(\frac{T}{2} + MTR\right) + \frac{\lambda_{yo}}{\lambda_{0}}MTTR \\ & t_{cx} = \frac{\lambda_{cy}}{\lambda_{0}}\left(\frac{T}{2} + MTR\right) + \frac{\lambda_{yo}}{\lambda_{0}}MTTR \end{split}$	$\begin{split} PFH_{\alpha} &= 2((1-\beta_{\alpha})\lambda_{\alpha\alpha} + (1-\beta)\lambda_{\alpha\nu})^{\frac{1}{2}}t_{cx} + \beta_{\alpha}\lambda_{\alpha\alpha} + \beta\lambda_{\alpha\nu}\\ t_{cx} &= \frac{\lambda_{\alpha\nu}}{\lambda_{\alpha}}\left(\frac{T_{1}}{2} + MTR\right) + \frac{\lambda_{\alpha\alpha}}{\lambda_{\alpha}}MTTR \end{split}$		
2003	$\begin{split} PFD_{c} = & d((1-\beta_{c}))\lambda_{0:0} + (1-\beta)\lambda_{0:0})^{2} t_{12}t_{c2} + \beta_{0}\lambda_{0:0}MITR \cdot \beta_{0:n} \Big(\frac{T_{1}}{2} + MITR \\ & t_{c2} = \frac{\Delta_{0:0}}{\lambda_{0}} \Big(\frac{T_{2}}{2} + MITR \Big) + \frac{\Delta_{0:0}}{\lambda_{0}}MITR \\ & t_{c3} = \frac{\Delta_{0:0}}{\lambda_{0}} \Big(\frac{T_{1}}{3} + MITR \Big) + \frac{\Delta_{0:0}}{\lambda_{0}}MITR \end{split}$	$\begin{split} & PFH_{c} = 6 \big((1 - \beta_{o}) \lambda_{DD} + (1 - \beta) \lambda_{DU} \big)^{2} t_{CE} + \beta_{D} \lambda_{DD} + \beta \lambda_{DU} \\ & t_{CE} = \frac{\lambda_{DU}}{\lambda_{D}} \left(\frac{T_{i}}{2} + MTR \right) + \frac{\lambda_{DD}}{\lambda_{D}} MTTR \end{split}$		
1002D	$\begin{split} PFD_{0} = & 2(1-\beta)\lambda_{nn}((1-\beta_{0})\lambda_{nm} + (1-\beta)\lambda_{nm} + \lambda_{nm})\gamma_{cx}\gamma_{txx} + \beta_{0}\lambda_{nm}MITR + \beta\lambda_{nn}(\frac{T}{2} + MITR) \\ & I_{cx} = -\frac{\lambda_{nn}(\frac{T}{2} + MITR) + (\lambda_{nm} + \lambda_{nm})MITR}{\lambda_{nm} + \lambda_{nm} + \lambda_{nm}} \\ & I_{cx} = -\frac{\lambda_{nm}(\frac{T}{2} + MITR) + (\lambda_{nm} + \lambda_{nm})MITR}{\lambda_{nm} + \lambda_{nm} + \lambda_{nm}} \end{split}$	$\begin{split} & PFH_{\alpha} = 2(1-\beta)\lambda_{\alpha0}\left((1-\beta_{\alpha})\lambda_{\alpha0} + (1-\beta)\lambda_{\alpha0} + \lambda_{\alpha0}\right)\epsilon_{\alpha} + \beta\lambda_{\alpha0} + \beta\lambda_{\alpha0} \\ & t_{cx} = \frac{\lambda_{\alpha0}\left(\frac{T_{1}}{2} + MTTR\right) + (\lambda_{\alpha0} + \lambda_{\alpha0})MTR}{\lambda_{\alpha0} + \lambda_{\alpha0} + \lambda_{\alpha0}} \end{split}$		

Term	Description
CDF	Cumulative Distribution Function
Electrical/electronical/programmable electronical systems (E/E/PES)	A term used to embrace all possible electrical equipment that may be used to carry out a safety function. Thus simple electrical devices and programmable logic controllers (PLCs) of all forms are included.
Equipment under control (EUC)	Equipment, machinery, apparatus or plant used for manufacturing, process, transportation, medical or other activities.
ESD	Emergency Shut-Down
ETA	Event Tree Analysis
FME(C)A	Failure Mode Effect (and Criticality) Analysis
FMEDA	Failure Mode Effect and Diagnostics Analysis
FIT	Failures in Time
FTA	Fault Tree Analysis
Hazardous event	hazardous situation which results in harm
HAZOP	HAZard and OPerability study
HFT	Hardware Failure Tolerance
IEC/EN 61508	Standard of functional safety of electrical/electronical/programmable electronical safety-related systems
IEC/EN 61511	Standard of functional safety: safety instrumented systems for the process industry sector
LDM	Low Demand Mode – where the frequency of demands for operation made on a safety related system is no greater than one per year and no greater than twice the proof test frequency.

Definitions	
MooN	Mout of N channels
MTBE	Mean Time between Failures
MTTE	Mean Time to Failure
MTTR	Mean Time to Repair
PDF	Probability Density Function
PFD	Probability of Failure on Demand – mean failure probability in the demand case – the probability that a safety system will not execute its function when it is required to do so.
PFD _{avg}	Average Probability of Failure on Demand
PFH	Probability of dangerous Failure per Hour
Risk	Combination of the probability of occurrence of harm and the severity of that harm. Calculated as the product between incident frequency and incident severity
SFF	Safe Failure Fraction – proportion of non-dangerous failures – the ratio of the rate of safe faults plus the rate of diagnosed/recognized faults in relation to the total failure rate of the system.
SIF	Safety Instrumented Function
64 Basics of Functional Safety in Process Industry	

Definitions	
SIS	Safety Instrumented System – A SIS (Safety system) comprises one or more safety functions; for each of these safety functions there is a SIL requirement.
SIL	Safety Integrity Level – One of four discrete stages in specifying the requirements for the safety integrity of the safety functions, which are assigned to the $E/E/PE$ safety-related system, in which the Safety Integrity Level 4 represents the highest stage and the Safety Integrity Level 1 represents the lowest stage of safety integrity.
SLC	Safety Life Cycle – Covers all aspects of safety, including the initial conception, design, implementation, installation, commissioning, validation, maintenance and decommissioning of the risk-reducing measures.
Safety	The freedom from unacceptable risk of physical injury or of damage to the health of persons, either directly or indirectly, as a result of damage to property or the environment.
Safety function	Function to be implemented by an E/E/PE safety-related system, other technology safety-related system or external risk reduction facilities, which is intended to achieve or maintain a safe state for the EUC, in respect of a specific hazardous event.
Tolerable risk	Risk, which is accepted in a given context based upon the current values of society.
65 Basics of Functional Safety in Process Industry	