Inputs to, and outputs from, a PLC are necessary to monitor and control a process. Both inputs and outputs can be categorized into two basic types: logical or continuous.
Consider the example of a light bulb. If it can only be turned on or off, it is logical control. If the light can be dimmed to different levels, it is continuous.
Continuous values seem more intuitive, but logical values are preferred because they allow more certainty, and simplify control. As a result most controls applications (and PLCs) use logical inputs and outputs for most applications.
Hence, we will discuss logical I/O and leave continuous I/O for later. Outputs to actuators allow a PLC to cause something to happen in a process.
A short list of popular actuators is given below in order of relative popularity.
Solenoid Valves - logical outputs that can switch a hydraulic or pneumatic flow.
Lights - logical outputs that can often be powered directly from PLC output boards.
Motor Starters - motors often draw a large amount of current when started, so they require motor starters, which are basically large relays.
Servo Motors - a continuous output from the PLC can command a variable speed or position.
Outputs from PLC
Outputs from PLCs are often relays, but they can also be solid state electronics such as transistors for DC outputs or Triacs for AC outputs.
Continuous outputs require special output cards with digital to analog converters. Inputs come from sensors that translate physical phenomena into electrical signals.
Typical examples of sensors are listed below in relative order of popularity.
Proximity Switches - use inductance, capacitance or light to detect an object logically.
Switches - mechanical mechanisms will open or close electrical contacts for a logical signal.
Potentiometer - measures angular positions continuously, using resistance.
LVDT (linear variable differential transformer) - measures linear displacement continuously using magnetic coupling.
Inputs for a PLC
Inputs for a PLC come in a few basic varieties, the simplest are AC and DC inputs. Sourcing and sinking inputs are also popular.
This output method dictates that a device does not supply any power. Instead, the device only switches current on or off, like a simple switch.
Sinking
When active the output allows current to flow to a common ground. This is best selected when different voltages are supplied.
Sourcing
When active, current flows from a supply, through the output device and to ground. This method is best used when all devices use a single supply voltage.
This is also referred to as NPN (sinking) and PNP (sourcing). PNP is more popular. This will be covered in detail in the chapter on sensors.